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Preface

A few years ago when I was about to teach another EMC fundamentals course for
the industry, I was contacted by some of the participants asking about a textbook for the
course. Then I realized that there is no single self-contained book covering the topics
of mathematic, electric circuits and electromagnetics with the focus on EMC. There
is a plethora of books devoted to each of these subjects separately and each written for
a general audience. It was then that the idea of writing this book was born.

This text reviews the fundamentals of mathematics, electric circuits, and electromag-
netics specifically needed for the study of EMC. Each chapter reviews the material per-
tinent to EMC and concludes with practical EMC examples illustrating the applicability
of the discussed topics. The book is intended as a reference and a refresher for both the
practicing professionals and the new EMC engineers entering the field.

This book also provides a background material helpful in following the two classical
texts on EMC: Clayton Paul’s “Introduction to Electromagnetic Compatibility” (Wiley,
2006) and Henry Ott’s “Electromagnetic Compatibility Engineering” (Wiley, 2009).
Many formulas in those two books (presented without derivations) are derived from
basic principles in this text.

This approach provides the reader with the understanding of the underlying assump-
tions and the confidence in using the final results. This insight is invaluable in the field
of EMC where so many design rules and principles are based on several approximations
and are only valid when the underlying assumptions are met.

The author owes a great deal of gratitude for the insight and knowledge gained
from the association with colleagues from the EMC lab at Gentex Corporation
(Bill Spence and Pete Vander Wel) and the EMC specialists and friends at E3
Compliance LLC (Jim Teune and Scott Mee). The author would also like to thank
Mark Steffka for his guidance and help over the past ten years. Finally, the author
would like to acknowledge the support of Grand Valley State University and especially
its engineering dean Paul Plotkowski who was instrumental in the creation of the
EMC Center, greatly contributing to the EMC education and the publication of
this book.

Bogdan Adamczyk
Grand Rapids, Michigan, September 2016

xiii



Part |

Math Foundations of EMC



Matrix and Vector Algebra

Matrices and determinants are very powerful tools in circuit analysis and electromag-
netics. Matrices are useful because they enable us to replace an array of many entries as
a single symbol and perform operations in a compact symbolic form.

We begin this chapter by defining a matrix, followed by the algebraic operations and
properties. We will conclude this chapter by showing practical EMC-related applica-
tions of matrix algebra.

1.1 Basic Concepts and Operations

A matrix is a mathematical structure consisting of rows and columns of elements (often
numbers or functions) enclosed in brackets (Kreyszig, 1999, p. 305).
For example,

6 5 2
A=3 2 0 (1.1)
7 1 4

The entries in matrix A are real numbers. Matrices L and Cin Eq. (1.2) are the matrices
containing per-unit-length inductances and capacitances, respectively, representing a
crosstalk model of transmission lines (Paul, 2006, p. 567). (We will discuss the details of
this model later in this chapter.)

I 1, cg+Cm —Cy
L= Ly x| C= —Cy  Cr+Cu (1.2)
We denote matrices by capital boldface letters. It is often convenient, especially when

discussing matric operations and properties, to represent a matrix in terms of its gen-
eral entry in brackets:

a; G o iy
dyy  dyy Ay,

A=[a;]=| © T . . (1.3)
Anl Am2 Gy

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Here, A is an m x n matrix; that is, a matrix with # rows and # columns.

In the double-subscript notation for the entries, the first subscript always denotes the
row and the second the column in which the given entry stands. Thus 4,3 is the entry in
the second row and third column.

If m =n, we call A an # x n square matrix. Square matrices are particularly important,
as we shall see.

A matrix that has only one column is often called a column vector. For example,

V( t){‘v/ig Zﬂ 1(z, t):[ji Ez zﬂ (1.4

Here, V and I are the column vectors representing the voltages and currents, respec-
tively, associated with the crosstalk model of transmission lines (Paul, 2006, p. 566).

Equality of Matrices 'We say that two matrices have the same size if they are both m x n.

Two matrices A =[a;] and B=[b;] are equal, written A =B, if they are of the same
size and the corresponding entries are equal; that is, a1; = by, a12=b1,, and so on. For
example, let

a;y  dyp 7 -4
A= ay ap | B= 5 8 (1.5)

Then A=B 1mphes that an= 7, aig= -4, a1 = 2, and A = 8.

Matrix Addition and Scalar Multiplication Just like the matrix equality, matrix addition
and scalar multiplication are intuitive concepts, for they follow the laws of numbers.
(We point this out because matrix multiplication, to be defined shortly, is not an
intuitive operation.)

Addition is defined for matrices of the same size. The sum of two matrices, A and B,
written, A +B, is a matrix whose entries are obtained by adding the corresponding
entries of A and B. That is,

A a;; ap B by by A+Bo a +by an+by (16)
an an | | by | @by an+by '

The product of any matrix A and any scalar k, written kA, is the matrix obtained by
multiplying each element of A by k. That is,

da;n  ap kay,  kay,
A= , kA= (1.7)
ay  dxp kay, kay,

From the familiar laws for numbers, we obtain similar laws for matrix addition and
scalar multiplication.

A+B=B+A (1.82)

k(A +B)=kA +kB (1.8b)
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A+0=A (1.8¢)
A+(-A)=0 (1.8d)
1A=A (1.8e)
0A=0 (1.8)

There is one more algebraic operation: the multiplication of matrices by matrices.
Since this operation does not follow the familiar rule of number multiplication we
devote a separate section to it.

1.2 Matrix Multiplication

Matrix multiplication means multiplying matrices by matrices. Recall: matrices are
added by adding corresponding entries, as shown in Eq. (1.6). Matrix multiplication
could be defined in a similar manner:

A- a1 A B= bll b12
lan an| | ba bn |
But it is not. Why? Because it is not useful.

The definition of multiplication seems artificial, but it is motivated by the use of
matrices in solving the systems of equations.

anby  ayby

anby  anb
:{ e 12} (incorrect) (1.9)

Matrix Multiplication  1f A =[a;;] is an m x n matrix and B =[b;] is an n x p matrix, then
the product of A and B, AB=C=[c;], is an m x p matrix defined by

n

Cij = zﬂikbkj =anbij +apbyj +---+ay,by,
k=1

i=12,...m; j=12,.,p

(1.10)

Note that AB is defined only when the number of columns of A is the same as the
number of rows of B. Therefore, while in some cases we can calculate the product AB,
of matrix A by matrix B, the product BA, of matrix B by matrix A, may not be defined.

We also observe that the (ij) entry in C is obtained by using the ith row of A and the
jth column of B.

an  dip o iy
Ay Gy Gy, | b by e blj blp €1 C2 r Cip
by by - b2;‘ b2p Cy1  Cxp "t Cp
: o, N N : : (1.11)
a; ;o Ay : : Cij :
: bnl bn2 e bn]' e bnp Cm1i Cm2 *° Cup
Aml A2 Gy

5
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Example 1.1 Matrix multiplication

7 2 6 4
A=l1 g B=l5 o)

7 26 4] [7-6+2-5 7-4+2-2] [52 32
B=11 sls 2[7|16+85 1.4+82| |46 20

n
Example 1.2 Multiplication of a matrix and a vector
4 2|3 4-342-7 26
1 87| |1-3+8:7 | |59
314 2], defined
whereas 21| 1 g |is undefined. .

Itis important to note that unlike number multiplication, multiplication of two square
matrices is not, in general, commutative. That is, in general, AB = AB

Example 1.3 Multiplication of matrices in a reverse order
Using the matrices from Example 1.1, but multiplying them in a reverse order, we get

7 2 6 4
=11 s B7|5 2

6 41[7 2] [6-7+4-1 6-2+4-8] [46 44
BA=lo 5ll1 8|7|5.742:1 5.242.8|7[37 26

which differs from the result obtained in Example 1.1.

A

1.3 Special Matrices

The most important special matrices are the diagonal matrix, the identity matrix, and
the inverse of a given matrix.

Diagonal Matrix A diagonal matrix is a square matrix that can have non-zero entries

only on the main diagonal. Any entry above or below the main diagonal must be zero.
For example,

A=|0 -3 0 (1.12)
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Identity Matrix A diagonal matrix whose entries on the main diagonal are all 1 is called
an identity matrix and is denoted by I,, or simply L.
For example,

1 00
I=[0 1 0 (1.13)
0 0 1
The identity matrix has the following important property
AI=IA=A (1.14)
where A and I are square matrices of the same size.
Also, for any vector b we have
Ib=b (1.15)

where the identity matrix is of the appropriate size.

1.4 Matrices and Determinants

If we were to associate a single number with a square matrix, what would it be? The
largest element, the sum of all elements, or maybe the product? It turns out that there is
one very useful single number called the determinant.

For a 2 x 2 matrix, we can obtain its determinant using the following approach:

ZV V)
det A= =d1140y) —ay1a12 (116)

ay1  dx

Note that we denote determinant by using bars (whereas we denote the matrices by
using brackets).

Example 1.4 Determinant of a 2 x 2 matrix

3 5

o =36-25=8

The procedure for obtaining the determinant for a 3 x 3 matrix is a bit more involved.
Let the matrix A be specified as

an diz 43
A= a1 dyy Ay (1.17)

azy  dsz  ds3

7
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Its determinant
a1 dip a3
detA = ay; dyy drs

az; dszx  ds3

(1.18)

can be obtained using the following procedure. Let’s create an augmented “determi-

nant” by rewriting the first two rows underneath the original ones:

an 4z di3
daxy dyy dj3
det,,, A=|d31 daz ds
an 4z 413

ay1 Gy dy3

(1.19)

then the value of det A can be obtained by adding and subtracting the triples of numbers

from the augmented determinant as follows:

det A =

21 22 3

= 6111022033 + a21a22al3+ 0316112023

Ty A1y ayy— A A5y 0,y — Ay )0

Example 1.5 Determinant of a 3 x 3 matrix
Calculate determinant of a matrix A given by

6 1 3
A=|7 -2 5
-9 8 4

Solution: Create and evaluate the augmented determinant.

=@ E)@B+MDE G+ M G)
(DM H-6)®) () -9 (-2) 3)=-247

(1.20)
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Why do we need to know how to obtain a second- or third-order determinant?
Obviously, we could use a calculator or a software program to do that for us. There are
numerous occasions when the software or a calculator would not be able to handle the
calculations.

As we will later see, when discussing capacitive termination to a transmission line, we
will need to obtain a symbolic solution in a proper form; even if we had access to a
symbolic-calculation software, its output, in most cases, would not be in a useful form.

When discussing Maxwell’s equations, we will need to evaluate a third-order determi-
nant whose entries are vectors, vector components, and differential operators. This can
only be done by hand.

1.5 Inverse of a Matrix

An inverse of a square matrix A (when it exists) is another matrix of the same size,
denoted A™. This new matrix, is perhaps, the most useful matrix in matrix algebra.
The inverse of a matrix has the following property of paramount importance

AAT=ATA=1 (1.21)

Given a square matrix of numbers we can easily obtain its inverse using a calculator
or an appropriate software package. In many engineering calculations, however, we
need to obtain the inverse of a 2 x 2 matrix in a symbolic form.

Let
(2SS 75D)
A= (1.22)
ay1  dx
Then the inverse of A can be obtained as
a —a
R (1.23)
detA|—dxn an

Example 1.6 Inverse of a 2 x 2 matrix
Obtain the inverse of

A 4 3
12 5
Solution: According to Eq. (1.23) the inverse of A is

-1
Al 4 3 _ 1 5 -3
2 5 4 3|1-2 4

2 5
5 3
D S R4 I A VRV
20-6-2 4 2 4

14 14

9
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Verification:
5 3 3 206 -12+12
aaio|f 3 e 1| 1a 4 |_|1 0
2 5 _i i 10-10 —-6+20 01
14 14 14 14 n

1.6 Matrices and Systems of Equations

We will now explain the reason behind the “unnatural” definition of matrix multiplica-
tion. Consider a system of equations:

A% + 1%y + di3xs = by
ay1X1 + AyXy + dxz X3y = bz (1.24:)

Az1% + Az Xy + az3x; = by

Let’s define three matrices as follows:

a; dip a3 X1 b
A= ay; dyy drz3 |, X=| X |, b= bz (1.25)
a3 dz  dz3 X3 by

Then the system of equations (1.24) can be written in compact form using matrices
defined by Eq. (1.25) as

Ax=b (1.26)
Since
a1 dip diz || X%

Ax=|ay axn ay | x

a31 dszx  dsz || X3

= (1.27)
ayx) +apX; ta;sxs by
=| dy%y +anx; +dyuxs |=| b, |=b
az1X) +dsy Xy +dsz3Xs by

and two matrices are equal when their corresponding entries are equal. Thus, Eqs (1.24)
and (1.27) are equivalent.

Equation (1.26) shows one of the benefits of using matrices: a system of linear equa-
tion can be expressed in a compact form. An even more important benefit is the fact
that we can obtain the solution to the system of equations by manipulating the matrices
in a symbolic form instead of the equations themselves. This will be shown in the next
section.



Matrix and Vector Algebra

1.7 Solution of Systems of Equations
Consider a system of equations:
Ax=b (1.28)
If the inverse of A exists, then premultiplication of Eq. (1.28) by A~ results in
AT'Ax=A"b (1.29)
Since A'A =1, it follows
Ix=A"b (1.30)
Because Ix =x, we obtain the solution to Eq. (1.28) as

x=A"'b (1.31)

Example 1.7 Solution of systems of equations using matrix inverse
Obtain the solution of

4x, +3xy =12
2x1 + 5x2 =-8

using matrix inversion.

Solution: Our system of equations in matrix form can be written as

O

According to Eq. (1.31), the solution, therefore, can be written as

2T

Utilizing the result of Example 1.6, we have

4 3T S 3
w| [4 3]7[12] |1y Tiq |12
x| |2 5 |8 | 2 4 |-8

. 14

11
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1.8 Cramer’s Rule

As we have seen, we can obtain a solution to a system of equations using matrix inver-
sion. When dealing with 2 x 2 matrices, it is sometimes more expedient to use an alter-
native approach using Cramer’s rule.

Let the system of equations be given by

Ay +apx, =b

1.32
A%, +anXx; = b, ( )
or in a matrix form:
Ax=b (1.33)

where

an dip X1 b
NG -

The main determinant of the system is

a1 ap
D= (1.35a)

dy;  d

Let’s create two additional determinants D; by replacing the first column of D with
the column vector b, and the determinant D, by replacing the second column of D
by the column vector b. That is,

b @,
D, = by ay (1.35b)
D, & (1.35¢)
= .35¢

? ay b

Then the solution of the system of equations in (1.32) is

D D,
X =—, x%=—, D=#0 1.36
1= =g (1.36)

Example 1.8 Solution of systems of equations using Cramer’s rule
We will use the same system of equations as in Example 1.7.

4, +3x, =12
le + 5x2 =-8
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Using Cramer’s rule we obtain the solutions as

12 3
L8 (12)5)-(-8)3)
43 (4)(5)-(2)(3)

2 5
‘12 3‘
2y = S (4)(8)-(2)(12) _
43 (4)(5)-(2)(3)
2 5

which, of course, agrees with the solution of the previous example.

1.9 Vector Operations

In this section we define two fundamental operations on them: scalar product and
vector product.

1.9.1 Scalar Product

Scalar product (or inner product, or dot product) of two vectors A and B, denoted A -B,
is defined as

A - B=|A|B|cosy (1.37)
where 0<y <7 is the angle between A and B (computed when the vectors have their
initial points coinciding).

Note that the result of a scalar product, as the name indicates, is a scalar (number).

Also note that when two vectors are perpendicular to each other, their scalar product
is zero.

if y=90° = cosy=0 (1.38)

The order of multiplication in a scalar product does not matter, that is,
A-B=B-A (1.39)

1.9.2 Vector Product

Vector product (or cross product) of two vectors A and B, denoted A x B, is defined as a
vector V whose length is

|V|=|A|B]siny (1.40)

where 7y is the angle between A and B, and whose direction is perpendicular to both
A and B and is such that A, B, and V, in this order, form a right-handed triple.

13
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Note that a vector product results in a vector. Also note that when two vectors are
parallel to each other, their vector product is a zero vector.

if y=0° = siny=0 (1.41)

The order of multiplication in a vector product does matter, since
AxB=-BxA (1.42)

1.10 EMC Applications

1.10.1 Crosstalk Model of Transmission Lines

In this section we will show how the matrices can be used to describe a mathematical
model of the crosstalk between wires in cables or between PCB traces.

Crosstalk occurs when a signal on one pair of conductors couples to an adjacent pair
of conductors, causing an unintended reception of that signal at the terminals of the
second pair of conductors. Figure 1.1 shows a PCB specifically designed to produce this
phenomenon.

PCB geometry is shown in Figure 1.2(a) and the corresponding circuit model is shown
in Figure 1.2(b).

A pair of parallel conductors called the generator (aggressor) circuit connects a source
represented by Vs and R; to a load represented by R;. Another pair of parallel conduc-
tors is adjacent to the generator line. These conductors, the receptor (or victim) circuit,
are terminated at the near and far end. Signals in the generator circuit induce voltages
across the receptor circuit terminations (Adamczyk and Teune, 2009). This is shown in
Figure 1.3.

The generator and receptor circuits have per-unit-length self inductances /g and Ig,
respectively, associated with them, and a per-unit-length mutual inductance /,, between
the two circuits. The per-unit-length self-capacitances between the generator conduc-
tor and the reference conductor and between the receptor conductor and the reference
conductor are represented by cg and cg, respectively. The per-unit-length mutual

Figure 1.1 PCB used for creating crosstalk between traces.
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(@) (b)
Ge’ﬁ”m’ Receptor Ry (2 1) Generator conductor
* Receptor conductor
120} Fo Ve Izt + R,
RNE VNE VR(Z’ t) VFE RFE
_IG(Z’ t) + IR(Z, t)_
Ground plane

Z=0 Reference conductor Z=L

Figure 1.2 Three-conductor transmission line: (a) PCB arrangement; (b) circuit model.

Run i
: : : : '
Aggresspr signgl : 1

25 mils g

 Fallitimie = 200 ns

<! Rise time =5100 ns

Case 1 54.8 mils

P _somvet, @ @ 100mveh }[ZOOns ][S.OOGS/s il & o 000

i+ —288.000ns

10k points

Figure 1.3 Crosstalk induced by the aggressor circuit in the victim circuit.

capacitance between the generator and receptor conductors is represented by c,,. This
is shown in Figure 1.4.
Differential equations describing the model in Figure 1.4 are (Paul, 2006, pp. 565—566):

GVG(z,t)_ I alG(Z,t) I aIR(Z,t)
—TlG “im

(1.43a)
0z Ot ot
6VR (Z; t):—l aIG (Z1 t)—l aIR (Z) t) (1 43b)
oz " ot R ot ’
Us(zt) =—(cg +c )aVG (z.0) + OVl t) (1.43¢)
oz " ot " ot

15
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I5(z, 1) lgAz Is(z+ Az 1)
— . Generator conductor —
+ "
Illlr
‘ [ 1,Az — ¢, Az
\
) [pAz Ip(z+ Az, t
Ix .t) R Receptor conductor: R(Z—r )
V(;(Zy )]
.
+ +
l Vi(z, 0 —crAz cgAz Vip(z+ Az 1)

Io(z D)+ I(z, 1)

-—

Z

Reference conductor

7+ Az

Figure 1.4 Per-unit length circuit model of three-conductor transmission line.

aIR(Z, t) aVG(Z, t)

oz " o

—(cr+cm)

6VR (Z, t)
ot

Let’s introduce the following matrices:

Vet |y

(=)= LR (2.t)
lc 1,
o

cg +¢,y —Ci
C =
—Ci Ccr+¢Cpy

Equations (1.43) can now be written in a matrix form as:

0 P
Oz t)=L1(z, ¢
5 V(@ 0)=121(z1)

0 0
—I(z,t)=—C—V(z, ¢
(2 1)=-CV(z1)

+

|

Vo(z+ Az 1)

|

(1.43d)

(1.44a)
(1.44b)
(1.44c¢)

(1.44d)

(1.45a)

(1.45b)

To appreciate the usefulness of this matrix form, we will compare it to the two-
conductor transmission lines equations (Paul, 2006, p. 183):



Matrix and Vector Algebra

oV(zt)_ (z1) (1.462)

0z ot

ol(z,t) » oV (z,t)

(1.46b)

oz ot

Notice that the equations in matrix form (1.45) have an appearance identical to that
of the transmission-line equations (1.46) for a two-conductor line. Equations of the
same mathematical form have solutions of the same mathematical form. This is a very
powerful result since two-conductor transmission line theory easily provides consider-
able insight into the theory of multiple-line conductors.

1.10.2 Radiated Susceptibility Test

Radiated susceptibility test RS 101 of MIL STD-461-G and ISO 11452-8 standards
utilizes the radiating loop fixture shown in Figure 1.5.

The fixture used can be modeled as magnetically coupled coils of a transformer
shown in Figure 1.6.

Figure 1.5 Radiating loop fixture.

I M I
Figure 1.6 Coupled coils in the frequency domain. —
ey —
+ L] L ] +
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In Chapter 10 we will derive the following equations governing this circuit

Vi = joLi L, + joMl, (1.47a)
Vs = joMI, + joL,l, (1.47Db)

In matrix form, Eq. (1.47) can be written as

Vi| [joL joM)| L
v, | |jeoM joL || i, (1.48)
The solution of Eq. (1.48) can be obtained by matrix inversion or by Cramer’s rule
discussed in this chapter. Let’s present both methods.

Matrix Inversion Approach  Using matrix inversion, the solution of Eq. (1.48) is
L] [joL joMT'|\V;
A = . . A 1.4
L | [joM joL,| |V, (1.49)

The inverse of the matrix is obtained according to Eq. (1.23) as

joL, joM|" 1 joL,  —joM
[/’a)M ]'601/2} ) m[—ﬂw joL, }
joM  joL,
1 joL, —joM
- -0*LiL, +0*M {—ja)M joL }
i —joM
_ —szlle isz —sziQ +0*M (1.50)
—joM joL,
| —0’LL, +0’M  ~0’LiL, +o°M
i jla —jM
_|o(M-LL) o(M-LL)
—jM jL
o(M-LL) o(M-LL)
And thus
jL —-jiM
L| |e(M-LL) o(M-LL)|V
H L L [VJ (151



resulting in

b v M \

e(M-LL) ' o(M-LL) ®
and

R L S e

P o(M-LL) ' o(M-LL) "

Cramer’s Rule Approach Now we will solve the system of equations

Vi| [joL joM| I,
Vo | |joM  joL, || I,
using the Cramer’s rule approach.

The main determinant of the matrix in Eq. (1.53) is

joM  jol,

=—0’LL, + M

The remaining two determinants are

Vi joM \ .
A =] . =joL,V, — joMV;
1 V, ol ] 1] 2
PO M LV — joMV,
= A~ |=]JO — ]
2 joM v, JwLiVy — ] 1
Therefore,

LA, oLV - joMV,

[ ==L
YA oL, + o’ M

b M
Co(M-LL) ' o(M-LL) "

. A, JOLVy—joMV;

TN Ll +o*M

+
o(M-LL) ' o(M-LL)

The solutions (1.52) and (1.56) are, of course, identical.

Matrix and Vector Algebra

(1.52a)

(1.52b)

(1.53)

(1.54a)

(1.54b)

(1.54¢)

(1.55a)

(1.55b)

19
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1.10.3 s Parameters

To characterize high—frequency circuits, scattering parameters, or s parameters, are
used (Ludwig and Bogdanov, 2009). Just like the other sets of parameters (z, y, 4, g, to be
discussed in Chapter 9), the s parameters completely describe the performance of a
two-port network.

Unlike the other sets of parameters, s parameters do not make use of open-circuit or
short-circuit measurements, but rather relate the traveling waves that are incident,
reflected, and transmitted when a two-port network is inserted into a transmission line.
(We will discuss travelling waves in Chapter 16 and transmission lines in Chapter 17.)

Figure 1.7 shows a two-port network (circuit or device) together with the incident,
reflected, and transmitted waves.

The incident waves (a1, ;) and reflected waves (b, by) used to define s parameters for
a two-port network are shown in Figure 1.8.

The linear equations describing this two-port network in terms of the s parameters are

by =spay +sp2ay

1.56
by = sy ay +spa; ( )

Or in a matrix form,

b _ S Sz || a4 (157)
by - S21 S22 || '

where S is the scattering matrix given by

S= (1.58)
We will discuss s parameters in detail in Chapter 17.

Port 1 Port2
Incident wave . _/\/_..
Circuit
o Transmitted wave

Reflected wave

Figure 1.7 Two-port network and the travelling waves.

Device

Figure 1.8 Incident and reflected waves at port 1 and port 2.
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Coordinate Systems

In this chapter we discuss three coordinate systems frequently encountered in electro-
magnetics: Cartesian, cylindrical, and spherical. In each system we define the relevant
operations and properties. We conclude by showing the transformations between the
systems. These transformations are necessary when deriving the radiation from a
Hertzian dipole, as shown in the EMC applications section at the end of this chapter.

2.1 Cartesian Coordinate System

Cartesian coordinate system is shown in Figure 2.1.

Unit vectors in this system, denoted a,, a,, and a_, are usually drawn at the origin (but
can be drawn at any point in space). They point in the direction of the increasing coor-
dinate variables, and are orthogonal to each other.

A point P can be represented as a triple of numbers

P:(x,9,2) (2.1)

where x, y, and z are called the coordinates of P.
The ranges of the coordinate variables are
—00 < X <00
—00 < § <0 (2.2)

—0<Z<o©

A vector A can be represented as a triple

A=(AA)LA) (2.3)

where A,, A), and A; are called the components of A.

A vector A can be decomposed into a sum of three vectors along the coordinate
directions, as shown in Figure 2.2.

This decomposition can be expressed as

A=A, +A,+A, (2.4)

This seemingly obvious decomposition is extremely useful when evaluating line and
surface integrals, as we shall see.

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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z Figure 2.1 Cartesian coordinate system.
P(x,y2)
3
z
aZ
a,
a\ Ca . Ea y
y
X
z Figure 2.2 Vector decomposition.
A
AZ
y
A}C
A,
X

In terms of its components, we can also write
A=(A, A, A)=Aa,+Aa, +Aa, (2.5)

where the unit vectors in terms of their own components are defined as

a, :(1, 0, 0) (2.6a)
a,=(0,1,0) (2.6b)
a,=(0,0,1) (2.6¢)

Since the unit vectors are perpendicular, it follows

a,-a,=a,-a,=a;-a=0 (2.7a)

a,-a,=a,-a,=a,-a =1 (2.7b)
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Figure 2.3 Cross product using cyclic permutations. a

In many electromagnetics problems, we need to determine the direction of a vector
resulting from a vector product of two vectors along the coordinate directions. The
following equations show this result.

a,xa,=a, (2.8a)
a,xa, =a, (2.8b)
a,xa,=a, (2.8¢)

These cross products can be easily obtained with the help of the cyclic permutations
(Sadiku, 2010, p.15) shown in Figure 2.3.

If A and B are represented in terms of components, say, A=(4,, 4,, A;) and
B =(B,, B,, B,), their scalar product is given by

AB=A,B, +A,B, +A,B, (2.9)

The vector product can be obtained by evaluating the following “determinant” (using
the approach discussed in Section 1.5).

a, a, a,

AxB=|A, A A, (2.10)
B, B, B,
Note that
AA=A2+ A2+ A2=|Af (2.11)

and thus, the magnitude of a vector is

|A|= A2+ A + A2 (2.12)
Also,
AxA=0 (2.13)

2.2 (Cylindrical Coordinate System

The cylindrical coordinate system is an extension of a polar system from plane to space.
The cylindrical coordinate system, shown in Figure 2.4, is very convenient whenever we
are dealing with problems having cylindrical symmetry (e.g. coaxial cable).

25
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74 Figure 2.4 Cylindrical coordinate system.

Unit vectors in this system, denoted a,, a,, and a,, are usually not drawn at the origin
but at a convenient point in space. They point in the direction of the increasing coordi-
nate variables, and are orthogonal to each other.

A point P can be represented as a triple of numbers

P:(p, b 2) (2.14)

where p, @, and z are called the coordinates of P.
The ranges of the coordinate variables are

0<p<oo

0<p<2n (2.15)
—00<zZ<©

A vector A can be represented as a triple
A=(A, A A,) (2.16)

where A, A, and A; are called the components of A.
A vector A can be represented as

A=A, +A,+A =A,a,+A5a,+4Aa, (2.17)

The unit vectors in terms of their own components are defined as

a,=(1,0,0) (2.18a)
a, =(0,1,0) (2.18b)

a,=(0,0,1) (2.18c)
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Figure 2.5 Cross product using cyclic permutations in cylindrical a
system.

'\_/ a4
It also follows that
a,-a,=ag-a,=a;-a,=0 (2.19a)
a,-a,=ag-as=a,-a,=1 (2.19b)

With the help of Figure 2.5 we obtain

a,Xa, = az 2.208
P ¢ ( )
a Xaz =a .
a,xXa, =a 2.20C
z P ) ( )

If A and B are represented in terms of components, say, A=(4,,4,,4;) and
B=(B,, B,, B,), their scalar product is given by

A-B=A4,B,+A,By+A,B, (2.21)
The vector product can be obtained by evaluating the following “determinant”:

a, a; a,
AxB=[A, A, A, (2.22)
B, B, B,

The magnitude of the vector is

|A| = A+ A7 + A2 (2.23)

2.3 Spherical Coordinate System

The spherical coordinate system, shown in Figure 2.6, is very convenient whenever we
are dealing with problems having spherical symmetry (e.g. Hertzian dipole described in
Section 2.5).
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28
Figure 2.6 Spherical coordinate system.

Unit vectors in this system, denoted a,, ag, and a,, are usually not drawn at the origin

but again at a convenient point in space. They point in the direction of the increasing

coordinate variables, and are orthogonal to each other.
A point P can be represented as a triple of numbers

P (r,9,¢)

where r, 0, and ¢, are called the coordinates of P.
The ranges of the coordinate variables are

0<r<w
0<0<m
0<p<2n

A vector A can be represented as a triple

A= (4, 40, 4y)

where A,, Ay, and A, are called the components of A.

A vector A can be represented as
A=A, +Ag+A;=Aa, +Apay +Aa,

The unit vectors in terms of their own components are defined as
a, = (1, 0, O)
ap =(0,1,0)

a¢ Z(O, 0, 1)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28a)
(2.28b)

(2.28¢)
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Figure 2.7 Cross product using cyclic permutations in spherical a
system.

b\_/ 0
It also follows that
a,-ag=ag-a,=a,-a =0 (2.29a)
a,-a, =ag-ag=ay-a;=1 (2.29b)

With the help of Figure 2.7 we obtain

a,xag =ay (2.30a)
agxay =a, (2.30b)
agxa, =ay (2.30¢)

If A and B are represented in terms of components, say, A=(4,,A4y,A,) and
B =(B,, By, B,), their scalar product is given by

A-B=AB, + AgBy + A,B, (2.31)

The vector product can be obtained by evaluating the following “determinant”:

a, ap ay
AxB=|4, A, A, (2.32)
B, By B

The magnitude of a vector is

A=A + A3 + A} (2.33)

2.4 Transformations between Coordinate Systems

In this section we discuss transformations between Cartesian and cylindrical systems,
as well as the transformations between Cartesian and spherical systems.
2.4.1 Transformation between Cartesian and Cylindrical Systems

The relationships between the variables (x,y,z) of the Cartesian coordinate system and
those of the cylindrical system (p, ¢, z) are easily obtained from Figure 2.8.

29
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z Figure 2.8 Relationship between

in 8 Cartesian and cylindrical variables.
p =rsin

P(x,v2)=P(p, 0,20 =P 0, )

y
'Ilr.u"
Ty
,.r’ff z=rcosf
9/
_.f'r
ﬂW y
X=pcosg
y=psing

Coordinate Transformations from Cartesian to Cylindrical System

p=yx*+y

¢p=tan'Z (2.34)
x
z=z
Coordinate Transformations from Cylindrical to Cartesian System
X =pcos¢g
y=psing (2.35)
z=z

From Figure 2.8 we can geometrically obtain the relationships between the vector
components in the two coordinate systems.

Vector Components Transformations from Cartesian to Cylindrical System (Sadiku, 2010, p. 36)

A, cosp sing 0| A,
Ay |=| —sing cos¢p 0] A, (2.36)
A, 0 0 1A

Vector Components Transformations from Cylindrical to Cartesian System

A, cos¢ —sing O A,
A, |=|sing cosg O A (2.37)
A, 0 0 1|4
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Example 2.1 Coordinate transformations from Cartesian to cylindrical system
Express the point P:(1,—4,-3) in cylindrical coordinates.

Solution:
p=yx>+y* =41+16 =4.1231
—4
p=tan’ Y —tan™ u =-75.96°
X 1
z=z=-3

Thus,
P: (1,—4,—3) =P: (4.1231,—75.96°,—3)

Note: The transformation (4,, A,, A,) = (A, A,, A;) as given by Eq. (2.37) is not
complete. To complete it we need to express sing and cos¢ in terms of x, y, and z.
From Eq. (2.35) we get

x x
Ccosp=—=—— (2.38a)
P IxZ +y2
sing=2=—L (2.38b)

PRy

And thus the transformation (4,, A,, A;) = (4, Ay, A,) can be expressed as

-, -, ;
A, \/x2 +y2 \/x2 +y2 _Ap
A, |= Zy : 2’“ = 0] 4 (2.39)
R

0 0 1

The cylindrical variables appearing in (4,,A,,4,) need to be expressed in terms of
Cartesian variables before the matrix operation takes place, as illustrated by the follow-

ing example.

Example 2.2 Component transformation from cylindrical to Cartesian system
Convert the following vector to Cartesian coordinates:

C=zsing a, —pcosp a, +2pza,
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Using Eq. (2.39) we have

S B - S B O_
2, .2 2, ,2 2, .2 2, .2

C, \/x y+y \/xx+y C, \/x y+y \/xx+y zsing

C, 0]|Cy |= 0|l pcos¢
2, .2 2, .2 2, .2 2, .2
0 0 1 0 0 1

Now that the cylindrical variables appearing in (C,, C4, C,) need to be expressed in

terms of the Cartesian variables before the matrix operation takes place.

Using the relationships. (2.34) and (2.38) we obtain

N

0

e

and thus

HHn

W

(F=7)

2z,/x% +y*

)

x _ J
N N e
y x
\/x2 +y° \/x2 +y°
0 0
[ xyz L ]
zy° x?
2z,/x% + 9

2.4.2 Transformation between Cartesian and Spherical Systems
Coordinate Transformations from Cartesian to Spherical System (Sadiku, 2010, p. 36)
=yx*+y*+2°

2 2

Ay
z

60 =tan (2.40)

¢=tan Ed
x
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Coordinate Transformations from Spherical to Cartesian System

x=rsinfcos¢
y=rsinOsing (2.41)

z=rcosf

Vector Components Transformations from Cartesian to Spherical System

A, sinfcos¢ sinfsing cosO || A,
Ay |=| cosOcos¢ cosOsing —sind || A, (2.42)
Ay —sing cos¢ 0 A,

Vector Components Transformations from Spherical to Cartesian System

A, sinfcos¢ cosOcosg —sing || A,

A, |=|sinOsing cosOsing cosd || Ay (2.43)
A, cos@ —sin6 0 Ay

2.5 EMC Applications

In this section we will show an important EMC application of the Cartesian-to-spherical
systems transformations: derivations of the electric and magnetic fields radiated by a
Hertzian (electric) dipole antenna.

2.5.1 Radiation Fields of an Electric Dipole Antenna

The electric or Hertzian dipole is perhaps the most fundamental antenna that facilitates
the derivation of expressions for electric and magnetic field intensities of many practical
antennas, like the monopole antenna used in EMC compliance testing shown in
Figure 2.9.

We model the Hertzian dipole as a very short current element of length /, carrying a
constant current /. The current element is positioned symmetrically at the origin of the
coordinate system and oriented along the z axis, as shown in Figure 2.10.

In Section 6.7.3 we will show that the electric and magnetic field intensities can be
calculated from the vector magnetic potential A, shown in Figure 2.10. At a distance r
from the dipole, the vector magnetic potential is given by

Il _y.
A(x, ¥, z):ZTore ik a, (2.44a)

where

r=qx+ yz +2° (2.44b)
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Figure 2.9 Monopole antenna used in EMC
compliance testing.

Z 4 Figure 2.10 Hertzian dipole.
A -
., E,
H, &
r/ NE,
y

The vector magnetic potential in Eq. (2.44a) is expressed in Cartesian coordinate
system — with the substitution of Eq. (2.44b) into it. To derive electric and magnetic
field intensities at a distance r from the dipole, it is more convenient to express A in
spherical coordinate system. This transformation is accomplished through:

A, sinfcos¢ sinfsing cosO || A,
Ag |=| cosOcosd cosOsing —sinf || A, (2.45)
Ay —sin ¢ cos ¢ 0 A,
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For this problem A, = A, =0, and thus Eq. (2.45) becomes

A, sinfcos@ sinfsing cosO 0
Ag |=|cosOcos@p cosOsingp —sinf 0 (2.46)
A, —sin @ cos @ 0 pdol o

4mr

Therefore, in spherical coordinate system, the vector magnetic potential is expressed as

r —jkr
%cos@
A nr
4 —jkr
Ay |= —%sin@ (2.47)
A, 0

We will use this result in Section 6.7.4 to derive the radiation fields of a Hertzian
dipole, (Paul, 2006, pp. 422-423):

H,= IZZZ B2 sine{ j$+ §1r2 }e‘fﬁo’ (2.48a)

E =2 I,O;Zi 1032 Cose{ﬁglﬂ —j ﬁglr3 }e—/ﬁor (2.48b)

Ep = Iiil o2 sin@{ﬁ%;r+ ; 31# _ﬁgLﬁ}w (2.48¢)
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3.1 Derivatives

3.1.1 Basic Definition and Formulas

Derivatives describe the rate at which things change. The derivative is defined as

f’(x)=Aljicm0f(x+AZ£_f(x) (3.1)

(We will use this definition when deriving transmission line equations at the end of this
chapter.)

Other Notations for Derivatives Let y be the function of «, that is, y = f(x). We often use
the shorthand notation y’ or f'(x) to denote the derivative of y (Simon, 1982, p. 115).
This notation does not indicate the variable with respect to which the derivative is
evaluated (y could be a function not only of x but also of other variables). In many
applications, it is important to identify that variable. We therefore use the alternative
notation %’ or af(x) to indicate that derivative of y is computed with respect to the

dx dx
variable x.

Derivative Formulas Computing derivatives using the definition (3.1) can be tedious.
Fortunately, such computations are usually unnecessary because there are derivative
formulas that enable us to find the derivatives without computing limits.

Next we will state several useful formulas for derivatives

f(x)=const = f'(x)=0 (3.22)
(x)=x = f(x)=1 (3.2b)
(x)=2" = [f'(x)=ax"" (3.2¢)
f(x)=€* = f'(x)=¢" (3.2d)
(x)=e" = f/(x)=ae™ (3.2¢)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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f(x)=Inx = f’(x)zl, x>0
x

f(x)=sinax = f'(x)=acosax

f(x)=sinx = f'(x)=cosx
f

(x)=cosx = f'(x)=-sinx

f(x)=cosax = f'(x)=-asinax

Derivative Properties:

(af ) =af’

(f+g)=f+¢g

(fe)=rfg+fg

(1)’ fe-f
g g

Example 3.1 Derivative of a product

Let f(x)=2x> +4x and g(x) = x> —1a. Find the derivative of their product.

Solution A: Let’s first multiply the functions out and then take the derivative.

(f2) = (2x® +4x)(x® —1) =2x° —24° +4x® —4x =2x° +2x° —4x

Thus

a
dx dx

Solution B: Let’s make use of Eq. (3.3¢).

f=2x%+4x, f'=6x>+4
g=x*-1, g'=2x

Thus,

(f2) = frg+fg' = (62" +4)(x* 1)+ (2 +4x)(22)
=6x* —6x7 +4x> —4+4x" +8x> =10x" + 6x* — 4

which, of course, agrees with the Solution A.

(fo)= i(2x5 +2x° —4x)=2(5x*)+2(3x*) -4 =10x* + 61> — 4

(3.3a)
(3.3b)

(3.3¢)

(3.3d)
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Example 3.2 Derivative of a quotient
Let f(x)=2x+4and g(x)=4x—1. Find the derivative of their quotient.

Solution:
(ij' _flg—fg' _2(4x-1)-(2x+4)4 8x-2-8x-16_ 18
g ' (4x -1y’ (4x-1)’ (4x-1)’ .

Second-Order Derivatives
It is often useful to know the derivative of f'; that is, (f’)". This is called the second

2
derivative of f. The notation used is f” or q
dx

Example 3.3 Second derivative
Find the second derivative of y = 6x° —4x> +2x*.
Solution:

y' =30x* —12x% +4x

y"=120x° —24x +4

3.1.2 Composite Function and Chain Rule

The composite function of f(x) and g(x) is a function f(g(x).
For instance:

f(x)=cosx, g(x):\/;. Thenf(g(x))zcos\/;
f(x)=sinx, g(x)=x". Thenf(g(x)):sinx2 and g(g(f)):sinzx

Chain Rule - Derivative of a composite function

[£(g(x)] = f(g(x))-&'(x) (3.4)

Example 3.4 Chain rule
Use the chain rule to differentiate (3x* + 4x)>

Solution:

[(sz vax) } =2(3x” +4ux ) (6 +4)

3.1.3 Partial Derivative

When we have a function of several variables, say f = f(x, ¥, z) we can obtain partial
derivatives. A partial derivative of a function of several variables is its derivative with
respect to one of those variables, with the other variables treated as constants.
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A partial variable of flx, y, z) with respect to x is often denoted as ?, while that with
x
respect to y is denoted by Zl, and so on.

Example 3.5 Partial derivatives

Let f (x, y,z)=3x2 y+2yz. Determine the partial derivatives of f with respect to x,
¥, and z.

Solution:
g:&cy, Y 3 +2z, @:2)/
Ox oy 0Oz -

3.2 Differential Elements

In the study of electromagnetics we often need to perform line, surface, and volume
integrations. We will discuss these integrals in Chapter 4. The evaluation of these integrals
in a particular coordinate system requires the knowledge of differential elements of
length, surface, and volume. In the following subsections we describe these differential
elements in each coordinate system.

3.2.1 Differential Length Element

In Section 4.1 we will introduce and learn how to evaluate line integrals of the form
[E-a1 (3.5)

The vector, dl, appearing on the right-hand side of the scalar product in Eq. (3.5) is
called the differential length vector, or the differential displacement vector.

Differential Length in Cartesian System  Differential displacement (or length) dl in Cartesian
coordinate system is a vector defined by

dl=(dl,, dl,, dl,)=dl, +dl, +dl, (3.6)

and is shown in Figure 3.1. The figure shows a decomposition of a differential displace-
ment vector dl into the differential displacement vectors along the coordinate axes.

z Figure 3.1 Differential displacement in the Cartesian system.
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Figure 3.2 Differential displacement in cylindrical system. z
dl,
,r’/ e /
- 2 dl,
dl,
Z
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In terms of unit vectors, the differential displacement vectors along the coordinate
directions can also be expressed as

dl=dla, +dla, +dla, (3.7)

In Cartesian system, the differential amount of displacement, dl,, dl,, and dl, is sim-
ply dx, dy, and dz, respectively, thus we may express the differential displacement vector
in (3.7) in terms of the coordinate variables as

dl= (dx,dy,dz) =dxa, +dya, +dza, (3.8

Differential Displacement in Cylindrical System  Differential displacement (or length) dl in
cylindrical coordinate system is a vector defined by

dl=(dl,,dly,dl, ) =d1, +dl +d1, (3.9)

The differential displacement vectors along the coordinate directions are shown in
Figure 3.2.

In terms of unit vectors, the differential displacement vectors along the coordinate
directions can also be expressed as

dl=dlya, +dlsa, +dla, (3.10)
When the angle ¢ increases by the amount of dg the differential displacement d/,

increases by pdg as shown in Figure 3.3.
Thus,

dly = pdg (3.11)

Therefore, in terms of the coordinate variables, we may express the differential dis-
placement vector in (3.10) as

dl= (dp, pdo, dz) —dpa,+p dpa,+dza, (3.12)
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~ T Figure 3.3 Differential displacement in ¢ direction.

Figure 3.4 Differential displacement in spherical system.

Z
dl,
/ dl,/,
/ dl
f , 0
f 0
|
|
| f
” ‘ / y
\
\
hY .—-‘/
_ -

Differential Displacement in Spherical System Differential displacement (or length) dl in
spherical coordinate system is a vector defined by

dl:(dlrvdle’dl(p):dlr "rdlg +dl¢ (3'13)

The differential displacement vectors along the coordinate directions are shown in

Figure 3.4.
In terms of unit vectors, the differential displacement vectors along the coordinate

directions can also be expressed as

dl=dl,ar +dlgag +dl¢a¢ (314)
In spherical coordinate system, both € and ¢ are the angular coordinates, thus,

dly =rd6 (3.15a)

dly = pd¢ =rsin0d¢ (3.15b)

In terms of the coordinate variables, the differential displacement vector in (3.13) can
be expressed as

dl= (dV,VdQ,VSiHQd(P) =dra, +rdfay +rsinfdpa, (3.16)
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Figure 3.5 Differential surface vector. - .

,

3.2.2 Differential Surface Element

Differential surface element dS (or differential surface area) is a vector that we will
encounter when evaluating surface integrals of the form

_[F -dS (3.17)
S

Consider a surface S, and a differential amount of it, dS, as shown in Figure 3.5.

With this differential surface dS, we may associated a differential surface vector dS
whose magnitude is equal to dS, and whose direction is perpendicular to the differential
surface dS (Sadiku, 2010, p. 59)

dS=dSa, (3.18)

where a,, is a unit vector normal to the surface.

(There are, of course, two normal vectors to any such surface, so which one do we
choose? In all instances when we will use such vectors, it will be clear from the problem
description which perpendicular vector is of interest to us.)

In the next section we will decompose the differential surface vector into three
component vectors along the coordinate directions in each of the three coordinate
systems.

Differential Area in Cartesian System In Cartesian coordinate system, the differential area
may, in general, be expressed as

dS=dS, +dS, +dS, =dS,a, +dS,a, +dS,a, (3.19)

This decomposition is shown in Figure 3.6.

The differential area vector dS, is perpendicular to the differential surface area dS,
which lies in the yz plane. This differential surface area is equal to the product of two
differential displacements in the yz plane: di, and dl,. Thus, we may write,

dS, =dl,dl, =dydz (3.20a)
Similarly,
dS, =dl,dl, = dxdz (3.20b)

ds, =dl.dl, = dxdy (3.200)
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z Figure 3.6 Differential surface
. dS,=4dS.a, vector decomposition.
_ il
|

m F o

ds, = ds.a, dSy = cLS»\, a,

/ y

X

Therefore, we may alternatively, express the differential surface area as
dS =(dydz, dxdz, dxdy) (3.21)
=dydza, +dxdza, +dxdya,

Differential Area in Cylindrical System In cylindrical coordinate system, the differential
area may be expressed as

dS=dS, +dS, +dS, =dS,a, +dS,a,; +dS,a, (3.22)
where

dS, =dlydl, = pd¢dz (3.23a)

dSy =dl,dl, =dpdz (3.23b)

ds, =dl,dly; = (dp)(pde)= pdpdd (3:23¢)

Therefore, in cylindrical system, we may alternatively, express the differential surface
area as

ds = ( pdédz,dpdz, pdpd p)

3.24
= pdddza, +dpdza, + pdddpa, (3.24)

Differential Area in Spherical System In spherical coordinate system, the differential area
may be expressed as

dS=dS, +dS, +dS; =dS,a, +dSpa, +dS,a, (3.25)
where

ds, = dlpdly = (rd0)(rsin0dg)=r* sin0d0 dg (3.260)

dSy = di,dly = (dr)( rsin0dg)=rsin0drdg (3.26b)

dS, = dl,dly = (dr)(rd0) = rdrd0 (3:26¢)

Therefore, in spherical system, we may alternatively, express the differential surface
area as
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ds =(r2 sinfd0dg, rsin@drds, rdrd@)
=r’sin0d0d¢a, +rsinOdrdpa, +rdrd0a,

(3.27)

3.2.3 Differential Volume Element

We will encounter differential volume element, dv, in the volume integrals of the form
[Fav (3.28)

The differential volume element, dv, is defined as a scalar equal to the product of
three differential displacements in each coordinate system.

Differential Volume in Cartesian System Differential volume dv, in Cartesian system is
defined as the scalar

dv=dl.dl,dl, (3.29a)
or in terms of the coordinate variables:

av =dxdydz (3.29b)

Differential Volume in Cylindrical System Differential volume dv, in cylindrical system is
defined as the scalar

dv=dl,dlydl, (3.30a)

Or in terms of the coordinate variables:
dv= dp(pd¢)dz = pdpdddz (3.30b)

Differential Volume in Spherical System Differential volume dv, in spherical system is
defined as the scalar

dv =dl,dlydl, (3.31a)
or in terms of the coordinate variables:
dv = dr(rd@)rsin@dgb
=r*sin0drd0d¢

(3.31b)

3.3 Constant-Coordinate Surfaces

In this section we discuss a special class of surfaces, called constant-coordinate surfaces.
These surfaces in Cartesian, cylindrical, or spherical coordinate systems are easily gener-
ated by keeping one of the coordinate variables constant and allowing the other two to vary.

These surfaces are extremely useful when evaluating line and surface integrals, as we
will see in Chapter 4.
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Figure 3.7 Constant-coordinate surfaces in a Cartesian system.

3.3.1 Cartesian Coordinate System

In the Cartesian system, we have three families of constant-coordinate surfaces (planes)
defined by

X = const —0<y<o, —00<Zz<0
y = const —0<x <0, —0<Z<m (3.32)
z = const —0<x <0, —0<y<0

These surfaces are shown in Figure 3.7.

The intersection of any two such planes is a line parallel to one of the coordinate axes.
For instance, x = const and y = const is the line parallel to the z axis. These lines are
constant-coordinates lines.

3.3.2 (Cylindrical Coordinate System

Orthogonal surfaces in cylindrical coordinates are described by:
p =const, 0<p<2m, —-o<z<©
@=const, O0<p<o, —w<z<® (3.33)

z =const, 0<p<oo, 0<p<2n

and are shown in Figure 3.8.
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Figure 3.8 Constant-coordinate surfaces in a cylindrical system.

Note that p = const is a circular cylinder; ¢ = const is a semi-infinite plane with
its edge along the z axis; z = const is the same infinite plane as in a Cartesian
system.

The intersection of any two surfaces is a curve — either a line or a circle: p = const
and z = const is a circle of radius p; z = const and ¢ = const is a semi-infinite
line originating at the z axis and passing through P; p = const and ¢ = const is an infinite
line parallel to the z axis and passing through P. These curves are constant-coordinates
curves.

3.3.3 Spherical Coordinate System

Orthogonal surfaces in spherical coordinates are described by:

r =const, 0<O<m, 0<¢<2n
0 = const, 0<r<o, 0<¢<2m (3.34)
¢ = const, 0<r<w, 0<6<m

and are shown in Figure 3.9.

Note that r = const is a sphere with its center at the origin; 8 = const is a circular cone
with the z axis as its axis and the origin as its vertex; @ = const is the semi-infinite plane
as in a cylindrical system.

A curve is formed by the intersection of any two surfaces; for example: r = const and
@ = const is a semi-circle. These curves are constant-coordinates curves.
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Figure 3.9 Constant-coordinate surfaces in a spherical system.

3.3.4 Differential Elements on Constant Coordinate Surfaces

Recall: Constant-coordinate surfaces in Cartesian, cylindrical, or spherical coordinate
systems were obtained by keeping one of the coordinate variables constant and allowing
the other two to vary.

The consequence of keeping one of the coordinate variables constant is the fact that
the differential displacement along that variable direction is zero. Let’s look at the resulting
differential surface and displacement vectors in all three coordinate systems.

Cartesian Coordinate System In Cartesian, the differential surface vector is given by
dS =(dydz, dxdz, dxdy) (3.35)
On the constant coordinate surfaces we have:
x=const = dx=0 = dS= (dydz, 0, 0) (3.36a)
y=const = dy=0 = dS= (0, dxdz, 0) (3.36b)

z=const = dz=0 = dS= (0, 0, dxdy) (3.36¢)
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Recall: the differential displacement vector, in general, is given by
dl=(dx, dy, dz) (3.37)

Since the intersection of two constant-coordinate surfaces produces a constant
coordinate line (parallel to the coordinate axes), it follows that on a constant-coordinate
line two-out-of-three components of dl in (3.37) are zero. That is,

dl=(dx,0,0) or dl=(0,dy,0) or dl=(0,0,dz) (3.38)

Cylindrical Coordinate System In cylindrical coordinate system, the differential surface
vector is given by

dS =(pdedz, dpdz, pdpdz) (3.39)
On the constant coordinate surfaces we have:

p=const = dp=0 = dS=(pddz,0,0) (3.40a)

p=const = dp=0 = dS=(0,dpdz,0) (3.40Db)

z=const = dz=0 = dS=(0,0, pdpdz) (3.40c)

Also, the differential displacement vector is, in general, given by
dl=(dp, pd¢, dz) (3.41)

Since the intersection of two constant-coordinate surfaces produces a constant coordinate
curve, it follows that on a constant-coordinate curve two-out-of-three components of
dl in (3.41) are zero. That is,

dl=(dp,0,0) or dl=(0, pd$,0) or dl1=(0,0,dz) (3.42)

Spherical Coordinate System In spherical coordinate system, the differential surface
vector is given by

ds= (r2 sin0d0d¢, rsinOdrdg, rdrdo) (3.43)
On the constant coordinate surfaces we have:

r=const = dr=0 = dS=(r’sin0d6d,0,0) (3.44)

O=const = dO=0 = dS=(0,rsin6dr,0) (3.44b)

p=const = dp=0 = dS=(0,0, rdrd0) (3.44¢)
Also, the differential displacement vector is, in general, given by

dl= (dr, rd0, rsin 9d¢) (3.45)

Since the intersection of two constant-coordinate surfaces produces a constant coordi-
nate curve, it follows that on a constant-coordinate curve two-out-of-three components
of dl in (3.44) are zero. That is,

dl=(dr,0,0) or dl1=(0,rd0,0) or dl=(0,0,rsin0d¢) (3.46)
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3.4 Differential Operators

In this section we will introduce several differential operators: gradient, divergence,
curl, and Laplacian. These operators appear in Maxwell’s equations and in the wave
equation which we will study later in this text.

3.4.1 Gradient

Given a scalar function we can create a vector function. The operation involved is that
of taking the “gradient”. We will next define the gradient operation in Cartesian system,
and subsequently in the cylindrical and spherical systems.

Gradient in Cartesian Coordinates The gradient of given scalar function fix, y, z), grad f, is
the vector function defined by (Kreyszig, 1999, p. 446)

grad f :aia,c +gay +laz (3.47)
%

oy 0z
If we introduce the differential operator

Vziax +£ay +£az (3.48)
ox oy 0z

we may write

PR/ A 3.49
grad f=Vf ™ +ayay+azaz (3.49)

Gradient in Cylindrical Coordinates The gradient of a given scalar function f(p, ¢, z),
grad f, is the vector function defined by (Sadiku, 2010, p. 70)

Vf:af +l% +8laz (3.50)
74

Gradient in Spherical Coordinates The gradient of given scalar function f(r, 0, ), grad f,
is the vector function defined by

Vf = f 1of 1 af (3.51)

rt—2-ay
r 00 rsin@ 6¢

Example 3.6 Gradient of a scalar function
Determine the gradient of the following scalar fields:

a) f=x’y+3xyz
b) f=2pzsing -z cos *p + p*
¢) f=r*cosfOsing
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Solution:

a) Vf = f f +laz, f=x*y+3xyz
8y 0z

vf :(2xy+3yz)ax +(x% +3xz)a, +3xya,

+——ay +—a,, =2pzsing —z% cos® d + p*
p6¢¢ P f=2pzsing p+p

1 .
Vf =(2zsing +2p)a, +;[szcosqﬁ—222cos¢(—sm¢)]a¢ +<2psin¢—2ZCOSZ¢)az

0v-La, s 18,0

ovf=ZL f +11 ag+—— 1 6f . f=r*cosOsing
6r r 00 rsin@ 8(/5

1 1
Vf =(2rcosOsing)a, +—(r2 sin¢)(_sin9)a9 + (72 cosg)cosda,
r rsin@

3.4.2 Divergence

Given a vector function we can create a scalar function. The operation involved is that
of taking the “divergence” We will next define the divergence operation in Cartesian
system, and subsequently in the cylindrical and spherical systems.

Divergence in Cartesian Coordinates The divergence of given vector function
E(x, y,z)=(Ex, Ey, E. ), div E, is the scalar function defined by (Kreyszig, 1999,
p. 453)

OF  OF, , COE, (3.52)
ox oy Oz

divE =

Another common notation for divergence is V<E

divE=V-E= iax +iay +£az (E;a,+E,a, +E.a,)
Ox oy 0z

(3.53)
OE, OFE, GF,
=——+—=+—=

ox Oy Oz

Note that the divergence operation on a vector produces a scalar, while the gradient
operation on a scalar produces a vector.

Divergence in Cylindrical Coordinates The divergence of given vector function
E(p,, z)=(E,, Ep, E,) is the scalar function defined by (Sadiku, 2010, p. 75)

OE,
V.E:li(pgp)+i_¢+a£ (3.54)
p op p 0p Oz
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Divergence in Spherical Coordinates The divergence of a given vector function
E(r,0,9)= (E,, E,, Eq,) is the scalar function defined by

VE-LL(PE )+ —— 2 (E,sin0) s —— L2 (3.55)
or rsin@ 060 rsin@ O¢

Example 3.7 Divergence of a vector function
Determine the divergence of the following vector fields:

a) E=e*a, +zsin xya, + cos® xza,

b) E=2pz*cosga, —zsin’ ga,

3
¢) E=2rcosfa, +—sinfa, +2r>sin0a,
r

Solution:
OE
a) V~E=aﬂ+—y+aﬁ:2yez"y + zxCosxy —2xCcosxzsin xz
ox 0y Oz
OE,
b) VoEzli(pEp)+l—¢+aEz :li( 3pz2c0s¢)+10+sin2¢
p op pop oz pop P
=li(3pzzzcos¢)+sin2¢=l(6pzzcos¢)+sin2¢=6z2cos¢+sin2¢
p op P
OF,
<) vE:iﬁ(ﬁE,) 1 i(fg sinf) + 1 %
r? or rsin@ 00 rsin@ 0¢
d(2r*sin0
=iﬁ(2r3cos9)+ —(ésinesin9)+ 1 ( )
r* or rsinf 00\ r rsinf o¢
=i(6r2c059)+ , §(251n9c059)+0:6cos9+£c059
r rsinf r r .
3.4.3 Curl

Given a vector function H(x, y, z) we can create another vector function. The operation
involved is that of taking the “curl” We will next define the curl operation in Cartesian
system, and subsequently in the cylindrical and spherical systems.

Curl in Cartesian Coordinates The curl of given vector function H(x, ¥, z) = (H « Hy, H, ),
curl H, is the vector function defined by (Kreyszig, 1999, p. 457)

a, a, a,

vsH=|2 2 2
ox 0Oy Oz (3.56)
H, H, H,

O0H, ©H, (aHx OH, ] OH, 0oH,
=l |ay | ——— |a, | ——— |a,
oy 0z 0z Ox Ox oy
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Curlin Cylindrical Coordinates  The curl of given vector function H(p, ¢, z) = ( H,, H,, H, )
is the vector function defined by (Sadiku, 2010, p. 80)

a, pa; a,

vxH=|2 ¢ @
op 09 0Oz (3.57)
H, pH, H,
H H H
_ 10H, OH, a,+ OH, OH, a¢,+l i(pH¢)_6 2 la
p 0p Oz oz Op plop o¢

Curlin Spherical Coordinates  The curl of given vector functionH(r, 0, ¢)=(H,, Hy, Hy)
is the vector function defined by
a, ray, rsinfay
1 0 0 0
r*sin0 o 00 %
H, rHy rsin0H,

= 1 i(H¢sin9)——aH9 a,+l —.1 %—g(rHH ag
rsinf| 00 o¢ r|sin@ 0¢ Or

1| 0 OH
Z| =—(rH,) - r
+r[8r(r 9) 00 }ag

There are two important properties of the gradient, divergence, and curl operations
that we will use later in this text:

VxVf=0 (3.59)
V-(VxH)=0 (3.60)

VxH =

Example 3.8 Curl of a vector function
Determine the curl of the following vector fields:

a) H=e"a, +sinxya, + cos® xza,
b) H = pz” cosga, +zsin’ da,

1
c) H=rcosOa, —=sinfagy +2r* sinfa,
r

Solution:

a, a, a, a, a, a;
a) yxg=| 2 2 2|19 o 9
ox Oy 0Oz| |[0x Oy 0z

H, H, H,| |¢” sinxy cos’xz
= 0 (cos? 9 (4 9 (v
= ay(cos xz)ax + ax(smxy)az + = (e )ay
0/ 0. 0 ( x
_6_(COS xz)ay —a—(smxy)ax —a—(e y)az

% z y
= ycosxya, +2zcosxzsinxza, —xe”a, =2zcosxzsinxza, + (ycosxy —xe™ )az

|53
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a pag a,

P
b) VxH:li i i
plop O¢p Oz
H, pH, H,
1 6H, 1 5(PH¢) 1 0H,
=——Ta,+————a, +— pa,
p 09 p op p 0z
o afots) e,
pop " p 2 T pog
= ZSln2¢ap +2zpcosgpa, +2z%singa,
a, rap rsinfa,
o vxH-—L |2 9 0

r?sin0 | or 20 %
H, rHy rsinfH,

a, rag rsinfa,
T N R )
r*sin@| or 00 o¢
rcos® —sin® 2r°sin’@
[0(9,3 «in2 o
_ 1 (2% sin Q)a,+a( Slne)rsin9a¢+a(rcose)ra9
r*sinf | 00 or o0¢
3.2 ,
c1 _0(2r%sin e)rag—a(_sme)a,—6(rcoso)rsin9a¢
r*sin@ or o¢ 00

1 . . .

=—— (4r3 sinfcosfa, —6r° sin” Oay +r” sin® 9a¢)
r”sin@

=4rcosfa, —6rsinfay +sinfay

3.4.4 Laplacian

The remaining differential operator is the Laplacian. When the Laplacian operation is
performed on a scalar function, the result is another scalar function; when it is per-
formed on a vector function, the result is another vector function. We will next define
the Laplacian of a scalar function in Cartesian system, and subsequently in the cylindri-
cal and spherical systems.

Laplacian in Cartesian Coordinates ~Recall: The gradient of given scalar function fix, y, z),
is the vector function defined by (Sadiku, 2010, p. 88)

o IS (3.61)

a,+-—a,+—a,

Vf="L
4 Ox oy 0z
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If we take the divergence of the resulting vector, we obtain a scalar function

2 2 2
x> oyt o7
The resulting expression is called the Laplacian of fand is denoted by V> f. Thus,
2 2 2
v2f=%+%+% (3.63)
ox~ oy oz

Laplacian in cylindrical coordinates The Laplacian of given scalar function fip, ¢, z), is
the scalar function defined by

2 2
vepotof o +L2%+% (3.64)
pop\" Op) p°op° oz

Laplacian in spherical coordinates The Laplacian of given scalar function f{r, 0, ¢), is the
scalar function defined by

2
sz:izﬁ(ﬂ@}z;i(smgi} 1 _of (3.65)
reor\_ or) r”sin0 00 00 ) r*sin®@ 09>

When computing the electric and magnetic radiation fields of antennas, we will
encounter the Laplacian of a vector function V*V. Instead of computing this Laplacian
from the definition (which is quite involved), we will make use of the following identity:

VPV=V(V-V)-VxVxV (3.66)

3.5 EMC Applications

3.5.1 Transmission-Line Equations

We will show the application of the concept of a derivative through the derivation of
transmission line equations. (Transmission lines will be discussed in detail in Part III of
this book.)

Figure 3.10 shows the per-unit-length equivalent circuit model of a transmission line;
[ and c represent the per-unit-length inductance and capacitance associated with the
length Az of the line (Paul, 2006, p. 182).

Writing Kirchhoff’s voltage law around the outside loop (we will review the basic
circuit laws in Part II of this book) gives

ol (z,t)

V(z+Az,t)-V(z,t)= —lAzT (3.67)

Dividing both sides by Az and taking the limit as Az — 0 gives

lim V(z+Az,t)-V(z,t) . I (z,t)
Az—0 Az Ot

(3.68)
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I(z, 1) Figure 3.10 Equivalent circuit model
—» 1Az I(z+Az, 1) of a transmission line.
2114
+ +
Viz 1) chz == V(z+Az t)
H H
i i
1 1
i i
1 1
1 1
z 7+Az

We recognize that the expression on the left-hand side of Eq. (3.68) is the partial
derivative of the line voltage with respect to the variable z. Thus,
GV(zt):_fﬂ(zt) (3.69)
0z ot
This is the first transmission line equation. Similarly, writing Kirchhoff’s current law
at the upper node of the capacitor gives

1(z+Az,t)—1(z,t)=—cAzW (3.70)
Dividing both sides by Az and taking the limit as Az — 0 gives
i 1(z+Az,t)—1(z,t):_Cav(z+Az,t) (3.71)

Az—0 Az ot

Again, we recognize that the expression on the left-hand side of Eq. (3.71) is the par-
tial derivative of the line current with respect to the variable z. Thus,
al(z,t)  0V(zt)
—c

_ (3.72)
0z ot

This is the second transmission line equation. Equations (3.68) and (3.71) are called
the transmission-line equations.

3.5.2 Maxwell’s Equations in a Differential Form

The differential operators presented in this chapter appear throughout the study of
electromagnetics and EMC. Perhaps the most important application of these operators
is in Maxwell’s equations.
Maxwell’s equations can be expressed in several forms. Here, we present the differential
time-domain version of these equations in a simple medium (Paul, 2006, pp. 899, 901).
cH

VXE=—pu— (3.73a)
ot
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VxH=6E+zE 4+ (3.73b)
ot
vV.E=P" (3.73¢)
¢ (3.73d)
V.H=0

In Eqs (3.73) E denotes electric field intensity, while H denotes magnetic field inten-
sity. J stands for volume current density, while p, denotes volume charge density. We
will derive and discuss these equations in Part III of this text.

3.5.3 Electromagnetic Wave Equation

The concept of a vector magnetic potential is useful in the derivation of the electric and
magnetic fields radiated by an antenna. In such derivations (to be presented in
Section 6.7.4), the following wave equation needs to be solved (Balanis, 2005, p. 139).

V2A, +k*A, =0 (3.74)
where A, is the z component of a vector magnetic potential and & is a constant.

A, = A, () in spherical coordinate system (A, is not a function of € or ¢). Thus, the
Laplacian in spherical coordinate system:

2
r*or\_ 0or) r”sin0 00 00) r°sin“0 0¢

Applied to Eq. (3.74) this reduces to

VA, +k2A, :ig{rz 0A, (r)}+k2AZ (+)=0 (3.76)
r* or or
which, when expanded, gives
2
i {zraAz(r)+r2 0 Az(r)} FK2A, (r)=0 (3.77)
r or or?
which reduces to
2
d AZ(r)"I'%dAZ(r)"l'szz(r):O (3.78)
dr* rodr

In Chapter 6 we will discuss the solution of this differential equation.
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4.1 LineIntegrals

In this section we will define and learn how to evaluate the line integrals of the form

jp-dl (4.1)

Before discussing the line integrals, however, let’s review the concept of indefinite and
definite integrals.

4.1.1 Indefinite and Definite Integrals
We will first introduce the indefinite integral and then use it to present the definite

integral.

Indefinite Integral The indefinite integral can be easily defined using the concept of a
derivative as follows.
Consider a function flx). If its integral exists, denoted,

g(%)=] f(x)dx (4.2)
then
g'(%)=f(%) (43)
Several useful integral formulas are presented next:
f(x)=1 jf(x)dxzjdx:x (4.4a)
(x) =1
1

— 5 drx = [x%dx = —— x**1 4.4b
f(x)=x If(x)x _[x h=——x (4.4b)
( 1 xa+1):a+1xa+l—1:xa
a+1 a+1

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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f(x)=e" [f(x)dx=[e"dx=e" (4.4c)
(e -
ax _ ax _l ex
f(x)=e™ [f(x)dx=e di=—e (4.4d)
1 ex ’__ ax _ _ax
(;e j—a(a)e =e
1 1
_= —[Zdx=1Inx, 4.4
f(x) " jf(x)dx dex nx, x>0 (4.4e)
o1
(lnx) =2
f(x)=sinx J-f(x)dx:jsinxdx:—cosx (4.4f)

(—cosx)’ =—(—sinx)=sinx

f(x)=sinax J.f(x)dx:"‘sinaxdx:—écosax (4.4g)
(—lcosaxjr = (—l)(—sinax)(u) =sinax
f(x)=cosx If(x)dxz_[cos xdx=sin x (4.4i)

(sinx)l =cosx

f(x)=cosax If(x)dxzjcosaxdlesinax (4.4j)
a

Gsin axj, z[ij(cos ax)(a) = cos ax

Definite Integral If the indefinite integral is given by

[f(x)dx=g(x (4.5)
then the definite integral is defined by

jf Jdx=g(x)|" = g(b)-g(a) (4.6)
Integral Properties

b b

jq”(x)dx:cjf(x)dx (4.72)

T(f+g)(x)dx:j‘f(x)dx+ig(x)dx (4.7b)

a
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b c b

jf(x)dxzjf(x)dx+_[f(x)dx, a<c<b (4.7¢)
T ()= [ () (47d)
b a

4.1.2 LineIntegral

The concept of a line integral is a simple generalization of the concept of a definite
integral

b
[£(x)ax (4.8)

In Eq. (4.8) we integrate flx) from x =a along the x axis to x =b. In a line integral we
integrate a given function, called the integrand, along a curve C in space, or in the plane
(Kreyszig, 1999, p. 464).

Consider a curve C in space extending from point 4 to point b, as shown in Figure 4.1.

The line integral of a vector F over the curve C is defined as

jF-dl (4.9)
C

When the curve is a closed curve (points a and b coincide) then the line integral over
the curve C s defined as (Sadiku, 2010, p. 64)

qSF-dl (4.10)
C

The evaluation of the line integral in Eqs (4.9) or (4.10) is, in general, quite difficult.
However, as we will show next, if the curve is a constant-coordinate curve, this line
integral reduces to the definite integral discussed earlier.

Cartesian Coordinate System In the Cartesian coordinate system, if the vector F and the
differential displacement dl have the components

F:(Fx,Fy,FZ), dl:(dx,dy,dz) (4.11)
then the line integral in Eq. (4.9) becomes

IF.dl:_[(Fx dx+F,dy+F, dz) (4.12)

o c

Figure 4.1 lllustration of the line integral. b
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And if the line is a constant coordinate line, then this integral reduces to one of the
three definite integrals:

jr- cdl= Tdex (4.13a)
C X,
[E-a1= yfpy dy (4.13b)
c n
jr cdl= Tdez (4.13¢)
C zZ

Cylindrical Coordinate System In the cylindrical coordinate system, if the vector F and
the differential displacement dl have the components

F=(Fp,1—;,,1-;), dl=(dp,pd¢,dz) (4.14)

then the line integral in Eq. (4.9) becomes
[E-d1={[(F,dp+F,pd¢+E.dz) (4.15)
c C

And if the curve is a constant coordinate curve, then this integral reduces to one of
the three definite integrals:

jr.dlzpfpp dp (4.16a)
C P1

A
[E-d1=[F,pd¢ (4.16b)
c [
jF-dl:szZdz (4.16¢)
C zZ

Spherical Coordinate System In the spherical coordinate system, if the vector F and the
differential displacement dl have the components

F:(E,FQ,F¢), dl:(dr,rde,rsin9d¢) (4.17)

then the line integral in Eq. (4.9) becomes

[F-d1=[(E dr+ Fyrdo + Fyrsing do) (4.18)
C C
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And if the curve is a constant coordinate curve, then this integral reduces to one of
the three definite integrals:

j]?-dl:rff, dr (4.19a)
C 7
jp-dl :TFgrdQ (4.19b)
C 0,
jF-dl:TF¢rsin9d¢ (4.19¢)
C [

4.1.3 Properties of Line Integrals

From familiar properties of integrals in calculus we obtain formulas for line integrals

[KE-dl=k[E-dl  (k=const) (4.20)
C C

[(E+G)-dl=[F-dl+[G-al (4.21)
C C C

[E-d1=[F-d1+ [F-dl (4.22)
C C, G

where in Eq. (4.22) the path C is subdivided into two curves C; and C, that have the
same orientation as C, as shown in Figure 4.2.

Line Integral Independence of Path  Consider the line integral given by

j]? dl= I(dex +F,dy +F,dz) (4.23)
C C

In Eq. (4.23) we integrate from a point a to a point b over a path C.

The value of this integral generally depends not only on 4 and b, but also on the path
along which we integrate. This raises the question of conditions for independence of the
path, so that we get the same value in integrating from a to b along any path C.

A very practical criterion for path independence is the following:

A line integral in Eq. (4.23) is independent of path if the vector F is a gradient of some
scalar function f.

Figure 4.2 lllustration of Eq. (4.22). b
|
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Note that we don’t need to know what that scalar function f'is; we just need to know
that F is the gradient of it. So, how is this useful in electromagnetics?

It is very useful, because in Part II of this book we will be evaluating the following
integral

jEdl (4.24)
C

where E is the electric field intensity. Since
E=-VV (4.25)

we will be free to choose any path of integration in Eq. (4.24).

Integration along Closed Curves 'When discussing electrostatic fields we will make use of
the following property of line integrals:
The line integral

jﬁﬂ:ﬂ@@+@@+@ﬁ) (4.26)
C C

is independent of path if its value around every closed path is zero.
On the other hand, if we know that the line integral is independent of path, then

VxE=0 (4.27)

Example 4.1 Evaluation of a line integral
Let F be given by

A =4psinga, +3cospay

and the curve C, in the xy plane, be defined and oriented as shown in Figure 4.3. Evaluate
the line integral Ic F-dl

Yy & Figure 4.3 Line integral example.

v
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Solution: To evaluate this integral we make use of Eq. (4.22)

d}A dl_jA d1+jA d1+jA d1+jA dl

C, C, C, G,

Along C; have

Ci:p=3->6, (p:n/6:const, z=0=const
dl=(dp, pdp, dz)=(dp, 0, 0)

jA-dl:J(ZLpsin(p,?)cosq), ) (dp,0,0)= J 4psinpdp
C o)

p=3
(p=n/6

2|° 36 9
=2 =_-Z|=25
2 2
p=3

_4sm— Tpdp (4 )[;]{%

p:S

Along Cy:

C,:p=6, (p:n/6—>rc/3, z = const
dl=(dp, pde, dz)=(0, pdp, 0)

Along Cs:

C3:p=6—3, (p=n/3=const, z=0=const
dl:(dp, pdo, dz):(dp, 0, 0)

p=3
IA dl= I(4psm¢ 3cos¢, 0) (dp, 0, O J. 4psinpdp
Gy [ p=
o= n/f)’
3 513
=4sin > Ipdp:(él)[ﬁJ{p— J_zﬁ(g_ﬁj:_%ﬁ
37 2 )| 2| 2
p=6 p=6
Along Cy:

C,:p=3, (p:n/3—>n/6, z =const
dl=(dp, pde, dz)=(0, pdp, 0)
/6
jA~dl: I(4psin(p,3cosq),0)~(0, pdo, 0 ’ I/ 3pcospdg
' (p T[/3
e - 1 43
=(3)(3) I cos<pd(p:9(s1n(p|z=n;:):9(5—7j=4.5(1—\/§)

(p:n/s
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Therefore

gSA-dl:jA-dHjA-dl+jA.d1+jA-d1
C C, C, C, C,

=25+9(v3-1)-25v3 +4.5(1-+3)=205(1-+3)

4.2 Surface Integrals

The concept of a surface integral is a simple generalization of the concept of a double
integral, which we will define next.

4.2.1 Double Integrals

b

In a definite integral | f (x)dx, we integrate a function f(x) over an interval of the x axis. In
a double integral, wé ‘integrate a function f{x, y) over a region R in the xy plane (Kreyszig,
1999, p. 480).

[[ £ (%, ) dxdy (4.27)
R

Double integrals have properties similar to those of definite integrals.
”kf(x, y)dxdy = k”f(x, y)dxdy (4.28a)
R R
j j (f +g)dxdy= j j fdxdy + jj gdxdy (4.28b)
R R R
.gf(x, y)dxdy = '!;If(x, y)dxdy + }Uf(x, y)dxdy (4.28¢)

where the region R in Eq. (2.28c¢) is subdivided into two regions R; and Ry, as shown in
Figure 4.4.

In many electromagnetics problems the region R is a rectangular region described by
a<x<band c<y<d, and the double integral over a region R in Eq. (4.27) may be evalu-
ated by two successive integrations:

J]/(x y)dxdyziﬁf(x»y)dy}dx (4.29)

] £ (2 7)dxdy =Tﬁf (x,y)dx}dy (4.30)

Figure 4.4 Subdivision of the region R in Eq. (4.28c).



Vector Integral Calculus

In Eq. (4.29) we first integrate the inner integral with respect to y, treating x as a
constant. Then, we integrate this result with respect to x.

In Eq. (4.30) we first integrate the inner integral with respect to x, treating y as a
constant. Then, we integrate this result with respect to y.

Both (4.29) and (4.30) produce the same result, as illustrated by the following example.

Example 4.2 Evaluation of a double integral
Evaluate

3

j‘ I (2xy +3y2)dydx

x=0y=1

and then reverse the order of integration and reevaluate.

Solution:
2 3 2 [ 3 2 2 3\[P=3
I .[(2xy+3y2)dydx: J { I (2xy+3y2)dy]dx: I £2xy—+3y—J dx
x=0y=1 x=0] y=1 x=0 2 3 y=1
= j. {(xyz +y3)‘y=jdx= j. (9x+27)—(x+1)dx = JZ. (8x+26)dx
x=0 r= x=0 x=0
x=2
=(8§+26xj =16+52=68
x=0

Now, let’s reverse the limits of integration.

T T(zxﬂ?’yz)dxdﬁ T{T(2xy+3y2)dx}dy:

y=1x=0 y=1 x=0
3 x*y+3y°x = dy = 3 4y+6y* )dy = 4£+6£
=1 x=0 =1 2 3
=3

=(2 +29°)_ =(18+54)-(2+2)=68
-

x=2

dy

—_—w

2
2x—y+3y2x
1 2

y=3

y x=0

y=1

Useful Application of Double Integrals 'The area A of a region R in the xy plane is given by
a double integral

A= [ dxdy (4.31)
R

4.2.2 Surface Integrals
For a given vector function F, the surface integral is defined by

j F-dS (4.32)
S

This integral, in many applications, is called the flux of F through S. When the surface
is a closed surface, we denote the integral in (4.32) by

ngF .ds (4.33)
S
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The evaluation of the surface integral in Eqs (4.33) or (4.34) is, in general, quite
difficult. However, as we will show next, if the surface is a constant-coordinate sur-
face, this surface integral reduces to the double integral discussed in the previous
section.

Cartesian Coordinate System In Cartesian coordinate system, if the vector F and the
differential surface vector dS have the components

F= (1—;,1—;,1—; ) ds= (dydz,dxdz,dxdy) (4.34)

then the surface integral in Eq. (4.33) becomes

[[-ds = [[(E.dydz + F,dxdz + F.dxdy) (4.35)
N S

And if the surface is a constant coordinate surface, then this integral reduces to one of
the three double integrals:

22

[[E-as=[[F.dydz (4.36a)

N zZ N

[[E-as= TTdexdz (4.36b)

S 2z Xy

jsjp -dS= ﬁfzdxdy (4.36¢)
1%

Cylindrical Coordinate System In cylindrical coordinate system, if the vector F and the
differential surface vector dS have the components

F=(F,,F,F), dS=(pdedz, dpdz, pdddp) (4.37)
then the surface integral in Eq. (4.33) becomes

[[-as = [[(F,pd¢dz + Fydpdz + F.pdgdp) (4.38)
N S

And if the surface is a constant coordinate surface, then this integral reduces to one of
the three double integrals:

¢

F-dS= T F,pd¢dz 4.39a
( )

S zZ

”F-dSzTTQ,dpdz (4.39b)

S z1 Py

j j F-dS= TTFZ pdddp (4.39¢)

S X
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Spherical Coordinate System In spherical coordinate system, if the vector F and the
differential surface vector dS have the components

F :(E,FB,F¢) (4.40)
ds :(r2 sin9d9d¢,rsin9drd¢,rdrd9)

then the surface integral in Eq. (4.33) becomes

ﬂ F-dS= jj(F,rZ sin0d0d¢ + FyrsinOdrde + F¢rdrd0) (4.41)
S S

And if the surface is a constant coordinate surface, then this integral reduces to one of
the three double integrals:

[[E-as= Tafp,r? sin0do d¢ (4.42a)
S ¢ 6
[[E-as= ﬁpgr sin@drdg (4.42b)
S hn
[[E-as= 9”1—;, rdr do (4.42c)
S O n

Example 4.3 Evaluation of a Surface Integral
Evaluate the surface integral when the function A is given by

F= szr"ap —4zsinga, + pza,

and the closed surface shown in Figure 4.5 is given by
S:p=2, 0<5¢p<2m, 1<z<4

Figure 4.5 Closed surface in Example 4.3.

dS;
-

S (side)

.
>

y
/ as, S, (bottom)

X

69



70 | Foundations of Electromagnetic Compatibility

Solution:

@F-dSz”F-dSl+HF-dSz+HF-d53
M S, Ss

On S; we have,
$1:0<p<2, 0<p<2m, z=4
F—(szz,—4zsin(p,pz)
dS; =(0,0,dS;)=(0,0, pdpdp)
”F-dSl = _U (szz,—4zsin(p,pz)‘(0, 0, pd pdo)
S

0<p<2

0<p<2m
z=4
Q=27 p=2 3 2
64
” zp*dpde =(4) I dop J. pzdp:(4)(2n)[%J =?n
0<p<2 ¢=0 p=0 0
0<p<2m
z=4
()H.Sz
$,:0<p<2, 0<p<2m, z=1
F:(szz,—élzsin(p,pz)
ds, =(0,0,—dS; ) =(0,0,—pd pdp)
”F ds, = J.J. <3pz , —4zsing, pz) (0,0,— pdpdep)
0<p<2
0<p<2rm
z=1
Q=27 p=2 p?, 2
= ” zp*dpde =—(1) j do I pldp=— (211)( 3 J =
0<p<2 =0 =0 0
0<p<2m

z=1
On S3:
S3:p=2, O<p<2m, 1<z<4
F=F=(3pz’,-4zsing,pz)
dS; =(dS,,0,0)=(pdedz, 0, 0)
”F -dS; = ” (3pz,—4zsing, pz)-(pdedz, 0, 0)

p=2

0<p<2m
1<z<4
_U 3pz2d<pdz J.d(pJ. *dz
g<;<2n
1<z<4
2\ 12n 7567
(6 5| < 2er)-
1
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Therefore,
gj%r— ds = ”F dSl+HF dsz+ﬁ1: ds, _64—“—16—“ 25T _ 68
|
4.3 Volume Integrals
The volume integral is a generalization of the triple integral and is denoted by
[[[ f (%, 3, 2) dxdydz (4.43)
|4
Triple integrals can be evaluated by three successive integrations.
Example 4.4 Evaluation of a Triple Integral
Let f(p,$,z)=2zp. Then
2 2 2¢m 2 2 2n 2 2
j _[ j 2zpdodpdz =2 j j _[d(p zpdpdz:ékn_[ j pdp |zdz
z=0p=0¢0=0 z=0p=0\ =0 z=0\_p=0
2
= (4n)(éj I zdz = (STE)(éj =16n
2).% 2 .

4.4 Divergence Theorem of Gauss

The divergence theorem of Gauss states that the total outward flux of a vector field F
through the closed surface S equals the volume integral of the divergence of F (Sadiku,
2010, p. 76).

gj%r-.ds = j ﬂv “Edv (4.44)
S

where the closed surface S defines the volume captured inside it.

4.5 Stokes's Theorem

Stokes’s theorem states that the line integral of vector F along closed surface curve C
equals the surface integral of the curl of F.

@F-dr:j (VxF)-dS (4.45)

where the closed curve C defines the surface S as shown in Figure 4.6
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A Y
f/s wﬁ ‘ &"If'u._“—‘)
(4 /—___J ¥ ds

Figure 4.6 lllustration of Stokes’s Theorem.

4.6 EMC Applications

4.6.1 Maxwell’s Equations in an Integral Form

In Section 3.5.1 we presented Maxwell’s equations in a differential form. The equiva-
lent, integral for of these equations in simple medium is (Paul, 2006, Pgs. 899 and 901).

oH

1513011:—;1!5-515 (4.46a)

gSH-dl:j(aE+gZ—fj.dS+j]5-ds (4.46b)

C S S

35513 dS = é j o, dv (4.460)
H-dS=0 (4.46d)

$

In (4.46) E denotes electric field intensity, while H denotes magnetic field intensity.
J stands for volume current density, while p, denotes volume charge density. We will
derive and discuss these equations in Part III of this book.

4.6.2 Loop and Partial Inductance

The concept of partial inductance is very powerful in EMC, for among other phenom-
ena, allows one to explain the ground bounce and power rail collapse (Paul, 2006, p.779;
Ott, 2009, p. 770).

Consider a current flowing out of the source, through a forward path arriving at the
load, and then going back to the source through a return path, as shown in Figure 4.7.

According to the Biot-Savart’s law, current / flowing in the loop produces a magnetic
flux density B.

The surface integral of the magnetic flux density over the surface of the loop gives the
magnetic flux crossing the surface S

= j B-dS (4.47)
S

The loop self inductance is defined as the ratio of the magnetic flux (due to the current I)
crossing the surface S of this loop to the current I flowing in the same loop:
D

L= - (4.48)
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Figure 4.7 Magnetic flux as a surface integral. I — S

or
jB -dS
L=5 - (4.49)

In Part II, we will show that the magnetic flux density, B, is related to the magnetic
vector potential, A, by

B=VxA (4.50)
By using Stokes’s theorem, the surface integral in (4.47) over the surface area S can be

transformed into a line integral of the vector magnetic potential A over the circumfer-
ence C of the surface area

jB-ds:gSA-dl (4.51)
s C
and therefore the magnetic flux crossing the loop can be obtained from

D= q}A -dl (4.52)

C
Thus, the loop self inductance can alternatively be obtained from

$A-dl

L=% 4.53

7 (4.53)

The closed curve C can be broken into four line segments C;, C,, Cs, and Cy, as shown
in Figure 4.8.

Thus the line integral in Eq. (4.52) can be evaluated as the sum of the line integrals
along each segment of the loop:

<j>A-dl:IA-dI+IA~dl+IA-dI+IA~dI (4.54)
C

C, C, Cs Cy
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G, Figure 4.8 Magnetic flux as a line
| integral.
| I ] R |
Ry
R
v, 2
Cl = r C3
A
! I
T
Cy

Using (4.54) in (4.53) we obtain
jA.dl jA-dl jA-dl jA.dl
= C, " G + G + G (455)

1 1 1 1
=L1 +lQ +L3 +L4

Thus, the loop self inductance equals the sum of inductances attributed to each seg-
ment of the loop. The inductances Lj, Ly, L3, and L, are called the partial self induct-
ances (Paul, p. 780).

4.6.3 Ground Bounce and Power Rail Collapse

Let’s start our discussion with a CMOS inverter logic gate in a totem-pole configura-
tion, shown in Figure 4.9.

In a high-speed digital circuits we often encounter the cascaded CMOS configuration
shown in Figure 4.10.

A simplified model of this configuration is shown in Figure 4.11.

Let’s investigate the operation of this configuration on the low-to-high and high-to-
low transition of the input to the first inverter.

First, assume that the load capacitors Cgp and Cgy are initially uncharged. When the
input signal IN =Low, the upper transistor is ON and the lower is OFF. The current
flows though the upper transistor, signal trace, and the capacitor Cgy to ground. This is
shown in Figure 4.12.

Eventually the capacitor Cgy is charged to (approximately) V¢ and the current flow
stops, as shown in Figure 4.13.

Now, the driver inverter transitions from low-to-high. Subsequently, the upper tran-
sistor turns OFF and the lower transistor turns ON, as shown in Figure 4.14.

At this point we have two sources of current:

1) current supplied by Cgy as it discharges (dashed arrow)
2) current supplied by V¢ as it charges the upper load capacitor
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Figure 4.9 CMOS inverter logic gate.
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Figure 4.10 Cascaded CMOS configuration.
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Figure 4.11 Cascaded CMOS inverters.
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Figure 4.12 Input signal is Low.
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Figure 4.13 Current flow stops when Cgy is charged to Vcc.
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Figure 4.14 Transition from low-to-high.
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The current then flows along the trace towards the driver and through the lower
transistor to ground. Eventually the current flow stops, and the voltage across capacitor
Cgpis Ve This is shown in Figure 4.15.

Now, the driver inverter transitions from high to low. Subsequently, the upper transis-
tor turns ON and the lower transistor turns OFF, as shown in Figure 4.16.

At this point we have two sources of current:

1) current supplied by Cgp as it discharges (dashed arrow)
2) current supplied by V¢ flowing through the upper transistor, along the trace, and
through the lower load capacitor, eventually charging it to V¢

Let’s focus on the currents supplied by V¢ on both transitions. These are the cur-
rents that affect the ground bounce and power rail collapse.

Now let’s turn our attention to a more complete circuitry that shows the power distri-
bution system that includes the source, Vs, and power and ground traces. This is shown
in Figure 4.17.

Vlcc: Vee
+
Vee
E OFF —I— Cop
High IN ——— oUT Low
= ov 1
—— Con

S

Figure 4.15 Current flow stops when Cgp is charged to Vcc.

Vee Vee

,______
|
[

Jo o

B —_—

IN OUT Low-to-High

A |

High-to-Low OFF

CG N

Figure 4.16 Transition from high to low.
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Figure 4.17 Power distribution system and the current flow.

In addition to the currents previously discussed, Figure 4.17 also shows the crossover
currents which flow when both transistor are briefly ON at the same time.

When a CMOS gate switches, a current transient is drawn from the power distribu-
tion system. This current transient flows through both the power and ground traces.
Both of these traces possess (partial) inductance, as shown in Figure 4.18, for a low-to-
high transition, and in Figure 4.19 for a high-to-low transition.

Note: The models shown in Figures 4.17 and 4.18 can be applied at frequencies where
the impedance of the short PCB traces connecting the ICs is low enough compared to
the impedance of the long supply traces and thus can be neglected (Hubing et al., 1995).

The impedance of the long supply traces cannot be neglected and is modeled as the
power trace inductance Lp and the ground trace inductance Lg.

When IC, switches (and also during the crossover event) the current is drawn from
the source, resulting in the voltages Vp and Vg across the power and ground trace
inductances. These voltages are often referred to as power rail collapse, and ground
bounce, respectively.

The important consequence of these voltages is the fact that the voltage V¢ at the IC,
power and ground pins is no longer equal to Vg, potentially causing signal integrity

issues.
di(t
Vie =Vs —(L, + Lg )% (4.56)
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Figure 4.18 Partial inductance: transition from low to high.
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Figure 4.19 Partial inductance: transition from high to low.
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5

Differential Equations

Differential equations are of fundamental importance in electromagnetics because
many electromagnetic laws and EMC concepts are mathematically described in the
form of differential equations.

We will focus on a selected sample of the differential equations relevant to the subject
of EMC. We begin by discussing the first-order RC and RL circuits and their solutions,
and then focus on the second-order RLC circuits.

We conclude this chapter by presenting several EMC applications described by the
differential equations.

5.1 First Order Differential Equations - RC and RL Circuits

5.1.1 RCCircuit

A typical time-domain RC circuit configuration is shown in Figure 5.1. (In Section 9.3
we will learn how to transform any linear circuit into such a configuration using the
Thévenin theorem approach).

At ¢ =0, the switch closes and a dc voltage source, V', is connected to a capacitor with
an initial voltage of V. Ry represents the Thévenin resistance of the circuitry connected
to the capacitor.

The differential equation governing the capacitor voltage in this circuit is (Alexander &
Sadiku, 2009, p. 274).

dvc ()

RTC +vc (t):VT, Ve (O)ZV() t>0 (51)

Mathematics provides a number of approaches to solving this equation. We will solve
it using the separation of variables. Rearranging terms gives

dVC _ VT —Vc Ve —VT

=— (5.2)
dt  R,C R,C
or
dVC —_ dt (5.3)
Ve — VT RTC

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

81



82| Foundations of Electromagnetic Compatibility

Vr <+> c__ vV

Integrating both sides and using the definite integral approach we get

V‘I“) dve __j dt
Ve VC_VT ORTC
Thus
o__t[
In(ve =V )<Y = -
(C T)V" RrC|,

and subsequently

t

ln[vc (¢£)- VT:|—1n(VO ~Vr)= R
or

pre=Vr ___t

Vo=Vr RiC
Therefore
In ve=Vr _t

e VoVi _o RC
or

Ve — VT — e’%ch

Vo=Vr
leading to

Ve _VT :(VO —VT)ei%e’C

Figure 5.1 RCcircuit.

(5.8)

(5.9

(5.10)
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Figure 5.2 RC circuit step response. v

99.3%

Figure 5.3 RL circuit. =0

SO T

And finally the step response of the capacitor voltage is given by
_t
ve (£)=Ve +(Vo Vi )e /5, t=RiC, 20 (5.11)

This response is shown in Figure 5.2, where 7 = R;C is the time constant of the
circuit.

5.1.2 RL Circuit

A typical time-domain RL circuit configuration is shown in Figure 5.3.

At t =0, the switch closes and a dc current source, Iy, is connected to an inductor with
an initial current of 1. Ry represents the Norton resistance of the circuitry connected to
the inductor (discussed in Section 9.4).

The differential equation governing the inductor in this circuit is (Nilsson & Riedel,
2015, p. 225).

——L+ip=Iy, ii(0)=1, t=0 (5.12)
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We will solve it using the separation of variables, but this time we will use the indefinite
integral approach. Rearranging terms gives

dip _Iy-ip i —Iy (5.13)

‘I

or
_di _ dt (5.14)
ii—1Iy 7 '
Ry

Integrating both sides and using the indefinite integral approach we get

[ dip  _ - at (5.15)
Thus

t
In| i (t)— =— .
nlip(t)-1Iy ] 7 +A (5.16)
Ry
Therefore
ot ot
L L
ip(t)-Iy=e iz =e? =Be z (5.17)
or
_t
L

i (£)=Iy +Be R (5.18)
Evaluating Eq. (5.18) at £ =0 gives

B=1,-1Iy (5.19)

Substituting Eq. (5.19) in Eq. (5.18) and rearranging produces the final result, i.e. the
step response of the inductor current

iL(t):1N+(10—1N)e‘%, T=o 120 (5.20)
N

This response is shown in Figure 5.4, where v =L/Ry is the time constant of the
circuit.

Compare Eq. (5.20) with Eq. (5.11). They have the same mathematical form! This is
not a coincidence. Look at Eq. (5.12) and Eq. (5.1). They also have the same mathemati-
cal form!

This leads to a very important observation that we will use on several occasions.
Mathematical equations of the same form have the solutions of the same form.
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Figure 5.4 RL circuit step response. i

5t

5.2 Second-Order Differential Equations — Series
and Parallel RLC Circuits

5.2.1 Series RLC Circuit

A typical series RLC circuit configuration is shown in Figure 5.5.

At t =0, the switch closes and a dc voltage source, V7, is connected to a series LC
configuration. The capacitor has an initial voltage of V{) and the inductor has an initial
current of I.

The differential equation governing the capacitor voltage in this circuit is (Nilsson &
Riedel, 2015, p. 287)

2
dVC +R_Td£+ivczﬁ, t>0
d> L dt LC LC
176 (0) =Vo, (5.21)
dVC (0) _I_O

dt C

Ry =0 ir, Iy
L

+

Figure 5.5 Series RLC circuit.
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Note that this equation could be written as

2
d’ve +adﬁ+bvc :ﬁ, t>0
dr’ dt LC

ve (0) =V, (5.22)

dVC (0) _ 1_0
dt C

Instead of solving Eq. (5.22) directly, we will modify it by introducing two new param-
eters £ and wg, instead of @ and b. Why? Because these two new constants have a physical
meaning (unlike a and b), are very descriptive (we will see that, when looking at the
solution of Eq. (5.21)) and they are indispensable when analyzing and designing second-
order systems.

The new parameters are indirectly defined by:

26wy =a (5.23a)
we=b (5.23b)

Using these two parameters, Eq. (5.22) can be written as

dzvc ch 2 T
+200g —+0yve =——, t2
P T
v (0)=Va, (5.24)
dVC (0) _1_0
dt C

There are many ways of solving Eq. (5.24). The choice of approach strongly depends
of the functional form of the forcing function V7.

When the forcing function is identically equal to zero, V7 =0, the circuit is driven by
the initial conditions only: the initial capacitor voltage and the initial inductor current
(at least one of these two values must be non-zero for the circuit response to be
non-zero).

In this case, the Eq. (5.24) describing the series RLC circuit becomes

dZVC
dat?
ve (0)=Va, (5.25)
dVC (0) _ 1_0
dt C

+2§coo%c+co§vc —0, t>0

The response of the circuit is termed the natural response.

We will subsequently obtain the solution of Eq. (5.24) in the time domain for the case
when the forcing function is a dc (step) voltage. Also, we will set the initial conditions
to zero.
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dzvc dVC 2 VT
+200g ——+ gve =——, t=>0
dt* 5 dt ¢ LC
vc (0)=0, (5.26)
iL(O)=O

Such a response is termed the forced response.

Because the circuit is linear, we can solve for these responses separately and superim-
pose them to get the total response. (This important property is called superposition
and will be explained in Part IL.)

Natural Response of the Series RLC Circuit 'The natural response is governed by Eq. (5.26),
which requires the capacitor voltage plus a constant times its first derivative, plus another
constant times its second derivative to add to zero for all >0. The only way this can
happen is for v(#), its first derivative, and its second derivative to have the same
functional form.

There is only one such mathematical function: an exponential function. No matter
how many times we differentiate an exponential function, the result is another exponen-
tial function.

This observation plus experience with first-order circuits, suggests that we try a
solution of the form

ve (£) = Ae” (5.27)

where A and s are constants yet to be determined.

If v(2), as defined by Eq. (5.27), is to be the solution of Eq. (5.26) then it must satisfy
Eq. (5.26). Let’s see where this reasoning leads us. First, let’s obtain the first and second
derivative of v(t), so that we can substitute them in Eq. (5.26).

dvc_(t) =sAe" (5.28a)
dt
2

dve(t) oy (5.28b)
dt*

Substituting Eq. (5.27) and Eq. (5.28) into Eq. (5.26) leads to

s?Ae’ +2wosAe™ + wiAe =0 (5.29)

Ae™ (s” +2Cwps + w3 ) =0 (5.30)

The function e* cannot be zero for all £ >0. The condition A=0 is not considered
because it is a trivial solution of no interest to us. That leaves us with the requirement that

$* +2Lwys + @5 =0 (5.31)
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This quadratic equation is known as the characteristic equation of Eq. (5.24), since
the roots of the equation dictate the character of the solution.
The two roots are

S = —CCOO + @y \ICZ -1 (5323)
8y =—Cwy —wpC2 -1 (5.32b)

The two values of s in Eq. (5.32) indicate that there are two possible solutions for v(£),
each of which is in the form of the assumed solution in Eq. (5.27):

ver = Ae™ (5.33a)

Vco = Azeszt (533]))

Since Eq. (5.25) is a linear equation, any linear combination of the two distinct
solutions vcy(f) and veo(2) is also a solution of Eq. (5.25). The general solution of
Eq. (5.25), therefore, is

ve (£)= Ae™ + Ae™ (5.34)
where the constants s; and s, are given by Eq. (5.31) and the constants A; and A, are

determined from the initial capacitor voltage and inductor current, as follows.
At t =0, Eq. (5.34) becomes

Ve (O):VO :Al +A2 (535)

To use the initial condition on the inductor current, we differentiate Eq. (5.34)
to obtain

dVC (t)
dt

= Alsleslt + AzSZQSzt (5.36)

At t=0, Eq. (5.36) becomes

dve (0
dve(0) Asy + Aysy (5.37)
dt
Since
dvc (0) _ Iy (5.38)
dt
we have
IEO = Ay + Ays, (5.39)

The solution of Eq. (5.35) and Eq. (5.39) yields the constants A; and A,.
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Examining the roots of the characteristic equation (5.31) we notice that the roots can
be of three different types:

1) If £>1 we have two distinct real roots (the voltage response is said to be
overdamped).

2) If £ =1, we have two equal real roots (the voltage response is said to be critically
damped).

3) If { <1, we have two complex conjugate roots (the voltage response is said to be
underdamped).

Each type of the roots leads to a different mathematical form of the solution and
hence to a different circuit behavior identified as overdamped, critically damped, or
underdamped.

These three cases will be addressed next. (It is the underdamped case that is of most
concern to an EMC engineer, as we shall see.)

Case 1 — Overdamped Response When § >1, we have two distinct real roots, both of
which are negative and real

§1 = —éa)() + @y 4,2 -1 (5.403)

8y =—Cap —wpyC2 —1 (5.40b)

The overdamped response is given by

Ve (t) = Aleslt + Azeszt (5.41)

Case 2 - Critically Damped Response  When £ =1, we have two equal real negative roots.
8§ =8 = —C(DQ (5.42)
The critically damped response is given by
Ve (L‘) = Bie" + Byte™ (5.43)
Constants B; and B, are evaluated using the initial conditions, as follows.
Att =0, Eq. (5.43) becomes
Ve (0) =B (5.44)

Upon differentiation Eq. (5.43) produces

dve (t
% = B;se® + Bye® + B,tse* (5.45)

Evaluating Eq. (5.45) at £ =0 results in

e _pois, (5.46)
dt
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Now using Eq. (5.22) in Eq. (5.46) we arrive at

b _peis, (5.47)
C

Solving Eq. (5.44) and Eq. (5.47) simultaneously produces the unknown constants B;
and B,.

Case 3 - Underdamped Response  When £ < 1, we have two complex conjugate roots.

81 ==Gwo +o§* —1 =L +600\/(—1)(1—42) (5.482)
=G + 0o\ -1y1-¢? =~y + jooy1-¢”

Sy = —CCOO — ij Y, 1- 412 (54:8]3)

It is convenient (and practical from the design standpoint) to define a new frequency
g, called the damped natural frequency

Wy =wo\1-C2 (5.49)
Then the complex roots in Eq. (5.48) can be written as

s1=—Cwp + &2 -1 (5.50a)
8y =—Cay —wpC2 -1 (5.50b)

The underdamped circuit response is given by

Ve (t) = D,e ™ coswyt + Dye *™ sinwyt, ¢>0 (5.51)

The constants D; and D, are evaluated from the initial conditions as follows. Evaluating
Eq. (5.50) at £ =0 results in

ve (0)=Dy (5.52)

That was easy. Obtaining D, will take some work. Differentiate Eq. (5.51) to obtain

dve (t d; e di ios .
$=DIE(6 St cosa)dt)+D2 E(e cont sma)dt)
=D, [(—C @y )e ™™ coswyt +e Y (—wy sin wdt)J (5.53)

+D, [(—g’a)o Je < sinw,t +e ™" (@, cos wdt):|

Now, evaluate Eq. (5.53) at t =0 to get

dvc (0)

di = Dl (—CO)O ) + Dza)d (5.54)
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Finally, make use of Eq. (5.22) in Eq. (5.54) to arrive at

I
Dy (¢ )+ Doy = EO (5.55)

Use Eq. (5.52) in Eq. (5.55) to solve for D,.
Note: Using the trigonometric identities (or phasors), the underdamped response, as
given by Eq. (5.51), can be expressed in a much more useful from:

Ve (t):De’C“’"t(sinwdt—i-Q), t>0 (5.56)

The new constants D and 6 are determined from the knowledge of the constants D,
and D,.

Forced Response of the Series RLC Circuit Consider the series RLC Circuit, shown in
Figure 5.6 with zero initial conditions and driven by a step input.
This circuit is governed by the differential equation

2
d’ve R_Tdﬁ.FLVCZE, £>0 (5.57)
dt> L dt LC LC

Or using the damping ratio and undamped natural frequency

d2VC dVC 2 2
+2wg ——+ oyve =y Vr 20 5.58
e Cax it o Ve = o Vr ( )
where
28wy :£ (5.59a)
L
o= L (5.59b)
" =TC .
R, =0 i, 1y=0
—W—* '
L

+

O e

Figure 5.6 Series RLC circuit with zero initial conditions.
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and the initial capacitor voltage and the initial inductor current are zero.

ve (0)=Vy =0 (5.602)

i, (0)=1,=0 (5.60b)

Under these assumptions the solution of Eq. (5.58) is called the forced response.

In order to obtain the solution of Eq. (5.58) we need the value of the initial capacitor
voltage (which is zero in this case) as well as the value of the derivative of the capacitor
voltage at £=0.

The current through the capacitor is related to the voltage across the capacitor by:

dVC (t)

Since the current through the inductor is the same as the capacitor current (they are
in series), we have

d
iL(t)=C V;:t) (5.62)

Evaluating Eq. (5.62) at £ =0 results in

i dvc(0) 5.63
i (O)_C—dt ( )

Since the initial inductor current is zero, it follows that
ch (0)

=0 5.64
7 (5.64)

This the differential equation we need to solve; subject to its initial condition, it can
be alternatively stated as

d2VC’ dVC 2 2
+2Cwyg——+wgve =gV t20
P g0 dt oVc o VT
vc (0)=0 (5.65)
dve (0) _
dr

It can be shown (recall the discussion regarding the natural response) that the forced
solution of Eq. (5.65) assumes one of the following forms.
Overdamped response (C > 1)

Ve (t) =Vr + Eje¥ + Eye™ (5.66a)
Critically damped response (C = 1)

Ve (t):VT +(E1 +E2t)eSt (5.66]))
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Underdamped response (§ <1)

ve (t)=Vr + Ere " coswyt + Eye *™ sinwyt (5.66¢)

The constants E; and E, are evaluated using the initial conditions following the pro-
cedure discussed for the natural response.

Just as for the natural response, it is more desirable from the engineering standpoint
to express the underdamped case in the form

ve(t)=Vr + Ee ™" sin (w4t + 0) (5.67)

instead of the form in Eq. (5.66¢). The new constants E and 0 are determined from the
knowledge of the constants E; and E,.

The forced responses are shown in Figure 5.7.

Figure 5.8 shows the underdamped responses for different value of the damping
ratio C. It is important to note that for small values of { the response is highly oscillatory.
This fact manifests itself in the EMC phenomenon known as ringing, which will be
described at the end of this chapter.

Figure 5.7 Forced responses v (r) 4
of a series RLC circuit.

Underdamped
Critically damped

[

Overdamped

Figure 5.8 Underdamped responses v (1) 4

for different values of €.
4l 0<fi<fr<l

&
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Total Response of the Series RLC Circuit Total response of the series RLC circuit is due to
both the forcing function and the non-zero initial conditions. Based on the property of
superposition (which will be discussed in Part II) the total response is the sum of the
natural and forced responses.

The total response assumes one of the following forms.

Overdamped response ({ >1)

ve (£)=Vr + Fe™ + Fe* (5.68a)

Critically damped response (§ =1)
ve(t)=Vr +(F1 +F2t)e“ (5.68b)

Underdamped response ({ <1)

ve (£)=Vr + Fe " coswgt + Fre " sinwgyt (5.68¢)
ve (¢)=Vi + Fe " sin(w,t +0) (5.68d)

All the constants in Eq. (5.68) are evaluated in a similar manner to that discussed for
the natural response.

5.2.2 Parallel RLC Circuit

A typical parallel RLC circuit configuration is shown in Figure 5.9.

At t =0, the switch closes and a dc current source, Iy, is connected to a parallel LC
configuration. The capacitor has an initial voltage of V; and the inductor has an initial
current of I.

The differential equation governing the inductor current in this circuit is (Nilsson &
Riedel, 2015, p. 280)

d, 1 diy 1. Iy
i =

dt>* RyCdt LC LC

i (0)=1,, (5.69)

diL(O)_ﬁ

dt L

t>0

] =

AL

h
l
=
a
||
| +

I Q Ry

Figure 5.9 Parallel RLC circuit.
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or
dziL+2ga) D iy =l £20
e o dt olL oin, L=
i (0)=1o, (5.70)
diy (0) Vo
dt L
where
oo L (5.71a)
LC
1
2wy =— (5.71b)
Sy 2C

Comparing Eqgs (5.70) and (5.24) we note that they have the same mathematical form.

It follows that the solutions of these equations will have the same mathematical form.
Therefore the natural, forced, and the total responses will have the following forms.
Overdamped response (C > 1)

ip (t)=1Iy + Fe* + Fe* (5.72a)

Critically damped response (g = 1)
Underdamped response (C < 1)

i (£)=1Iy + Fe *® coswyt + Fre *™ sino,t (5.72c¢)
i, (t)=Iy + Fe™*™" cos(wt +0) (5.72d)

All the constants in Eq. (5.72) are evaluated in a similar manner to the one discussed
for the series RLC circuit.

5.3 Helmholtz Wave Equations

In Section 6.7.4 we will derive the formulas for the radiated fields of the electric
dipole of the antenna. In our derivations we will utilize the results derived in this
section.

In this section we will present the solution of the inhomogeneous Helmholtz equation
(Balanis, 2005, p. 139)

VA +k*A=—/4f (5.73)

In order to solve this equation for the vector magnetic potential A, we will proceed as
follows.

95



96 | Foundations of Electromagnetic Compatibility

z Figure 5.10 Current density source located at the origin
of the coordinate system.

(x, y,2)

Let’s assume that an infinitesimal source with current density J = (0,0, J Z) is placed at
the origin of the coordinate system as shown in Figure 5.10.

To distinguish between the location where the source exists and the location of the
observation point, we will use the prime coordinates for the source and the unprimed
coordinates for the observation point, as shown in Figure 5.10.

Since the current density vector J has only a z component, then the vector A will only
have a z component, and the Eq. (5.73) can be rewritten as

VA, +k*A, =—uJ, (5.74)
At the observation point, the current density J,=0, and Eq. (5.74) becomes
V?A, +k*A, =0 (5.75)

In the limit, the source is a point, and therefore A, is not a function of  or ¢; it will
only be a function of the distance from the origin, A, = A,(r). Due to the apparent
symmetry, we will choose spherical coordinate system for evaluation of the Laplacian in

Eq. (5.75).
The Laplacian in spherical coordinate system is given by
2
V2A, =i22(r2 04, J-i— 5 1 i(sin@ 04, )+—2 1 5 0 /iz (5.76)
ror or ) rsinf 00 00 ) r°sin“@ 0¢
Thus, Eq. (5.75) can be written as
0A
Vi, +k2A, =L O Ar) |, K*A,(r)=0 (5.77)
r* or or

Taking the derivative of the term in brackets leads to

VA, +k*A, = %aﬁ{rz %(r)} +k*A,(r)=0 (5.78)
r r r
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or

2
1 ) A, (r) L 0*A,(r)

+k*A,(r)=0 (5.79)
r? or or? (r)

Equation (5.79) has two independent solutions (Balanis, 1989, p. 277)

e—jkr

Ay =C (5.80a)

and

(5.80b)

Equation (5.80a) represents an outwardly (in the radial direction) traveling wave and
Eq. (5.80b) describes an inwardly traveling wave. Since the source is placed at the origin,
giving rise to an outwardly traveling wave, we chose the solution (5.80a) and discard the
solution (5.80b). Thus,

e—jkr
AZ = AZI = Cl (5.81)
In the static case w =0, and thus
k* =w’ue =0 (5.82)
and Eq. (5.81) simplifies to
A, = & (5.83)
r

which is the solution to Eq. (5.73) or Eq. (5.75) when k=0.

Thus, at the locations away from the source the time-varying solution (5.81) and the
static solution (5.83) differ only by the e /" factor.

Thl;(S, the time-varying solution can be obtained by multiplying the static solution
by e”".

Now, at the locations when the source is present, the Helmholtz equation is that of
Eq. (5.74), repeated here

V2A, +kK*A, =—uJ, (5.84)
which in the static case becomes

VA, =-p], (5.85)

This is a well-known Poisson’s equation. The most familiar version of Poisson’s equations
is that from electrostatics

vy =L (5.86)
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where V'is the scalar electric potential and p is the electric charge density. The solution
of Eq. (5.86) is known to be

1 cp
V=—-—|=dv 5.87
47‘58".:7 ( )

The single prime for the variable of integration indicates that we integrate over the
volume where the source is present.

Since Eqgs (5.85) and (5.86) have the same mathematical forms, their solutions have
the same mathematical forms. Thus the solution of Eq. (5.84) for the static case is

A, =Lz gy (5.88)
ar LT

By analogy to Egs (5.81) and (5.83), the time-varying solution of Eq. (5.84) can be
obtained by multiplying the static solution (5.88) by e /*".
Thus,

— jkr
_ M 5.89
A, = 475!12 —dv (5.89)

is the solution of Eq. (5.84).
If the current densities were in the x and y directions (J, and ], respectively), the wave
equation

VA +Kk*A=—4f (5.90)
for each direction would reduce to
V2A, + KA, =—u], (5.91a)

VA, +k* A, =—p], (5.91b)

with corresponding solutions of the form as in Eq. (5.89) given by

—jkr
A, =4ﬂ I 1.5 av (5.92a)
T r
U e—jkr
A, = I ], - dav (5.92b)

Thus, the solution to Eq. (5.90) is

e—jkr

A=E = —av (5.93)
4 LT
where the solution vector A has the components A,, A,, A,, given by Eqs (5.92a), (5.92b),
and (5.89), respectively.
In the discussion so far, we have assumed that an infinitesimal source with current
density J =(0,0,/, ) was placed at the origin of the coordinate system.
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Figure 5.11 Current density source located away from z
the origin.

. (x,y,2)

Let’s now place the source away from the origin, as shown in Figure 5.11.

Note that the source is represented by the primed coordinates, while the observation
point by the unprimed coordinates.

Now, the solution (5.90) can be written as

—jkR
LY (5.94)

A(x,y,z =—J'] x,y,2')

where R is the distance from any point on the source to the observation point.

The solution (5.94) was derived for the volume current density (in A/m?). If J repre-
sents surface current density (in A/m), then the solution for A is given in terms of the
surface integral
o kR

ds' (5.95)

A(x,y,2)= i'ﬁs (%,9,2")
S

and if ] represents electric current (in A), then the solution for A is given in terms of the
line integral
o kR

A xy, :—II x,y, z dal (5.96)

5.4 EMC Applications

5.4.1 Inductive Termination of a Transmission Line

In this section we will show the application of the RL circuit differential equation
discussed in Section 5.1.2 to the transmission line terminated by an inductive load. We
will discuss transmission lines in detail in Part III.

Consider the circuit shown in Figure 5.12.

A line of length d is terminated by an inductor L with zero initial current. A constant
voltage source with internal resistance equal to the characteristic impedance Z of the
line is connected to the line at £ = 0.
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Zc t=0 i
AW =
Ze,V ~ Vis i -
Vg = Vi % L
R
: !
z=0 z=d

Figure 5.12 Transmission line terminated by an inductive load.

As we will learn in Chapter 17, the moment the switch closes at ¢ =0, the voltage and
current waves (v; and i;) originate at z =0 and travel down the line to reach the load end

at time 7.

Upon arriving at the load the reflected voltage and current waves (v, and i,) are
created. The differential equation (we will derive it in Section 17.1.3) governing the

reflected voltage wave is

L av. +v ——ﬁ, v, (0)=—

r

Zc dt

Rearranging Eq. (5.97) results in
v _ VsZe

77_7L
C

dav,
—+
dt

or

_ Vs Ze
2 L
Rearranging Eq. (5.99) we get
av, v,

=—+K
dt 7

or

dav, (Vr —K‘L’)

dt T

(5.97)

(5.98)

(5.99)

(5.100a)

(5.100Db)

(5.101)

(5.102)
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Separating the variables we get

_dv, 1., (5.103)
v, — K7t T

Now, integrating Eq. (5.103) we obtain

v,(t) t
| av,  __ | 1, (5.104)
v (6=1) V" -K7 o T
resulting in
0 __1f
In(v, K7 )| n="7 . (5.105)
or
(t)-K
() =Ke L1 (5.106)
v, (T) - K7 T
and thus
(2)-K -t
v (8)-Kr _ =) (5.107)
v, (T)-Kz
leading to
L1
v, (t)=Kt+[v,(T)-Kr e © (5.108)
Utilizing (5.100) in (5.108) we obtain
Ze,,
v, (t)z[_ﬁ&j L +(ﬁ)_[_ﬁéj L e L (t=T) (5.109)
2 L Nz 2 2 L Nz
and finally
Ze,,
v (t)=-Y5 ye 17 (5.110)
More specifically, the general solution for the differential equation (5.97) is
v,(d,t)= _%+ Vee BT oy (5.111)

The total voltage across the inductor, and the total current through the inductor are
obtained by adding the incident and reflected waves.
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v(l, t):vi +v, :%+v,(d, t)
0, for t<T (5.112)
- Vsef(ZC/L)(FT), for t>T

Figure 5.13 shows a circuit schematic of a transmission line driven by a 5V CMOS,
and terminated in an inductive load.
The driver voltage and the voltage across the inductor are displayed in Figure 5.14.

,,,,,, TL1
©50.0 ohms | ‘::::Z_LI“
£500.000.ps D

) oo Simple Ll AN

ST INetoOl Dl N

SRR ER R ERRRRRRERE §1 000 E ARy

Figure 5.13 HyperLynx circuit model of a transmission line terminated by an inductive load.

izzz { f_/ = —Jw:_d_______ ‘j Driver i'ollage -X
nductor voltage l'/
3.000 ]‘ / l
__2.000 ll AN |
% 1.000 ] ][ 1
] Y
S G —

—-1.000

K
-2.000 \ /
-3.000 k,. /

~4.000 i

0.00 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000
Time (ns)

Figure 5.14 Driver voltage and the voltage across the inductor.
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5.4.2 Ringing on a Transmission Line

In this section we will the application of the series RLC circuit model to the phenomenon
of ringing on the PCB traces.

Many pulse circuits can be represented by the lumped equivalent circuit shown in
Figure 5.15.

This is our familiar series RLC circuit that we discussed in Section 5.2.1. When
ringing occurs, the voltage across the capacitors exhibits sinusoidal oscillations, i.e. the
circuit is underdamped.

The underdamped response was obtained as

Ve (t):VT + Ee ¢! sin(a)dt+0) (5.113)

This response occurs when the roots s; and s, of the characteristic equation (5.31) are
complex.

s =—Cwy + ¢ 7 -1 (5.114a)

81 =Ly —wpNJC 2 —1 (5.114b)

This occurs when § <1.
Recall: In series RLC circuit we have

28wy = R (5.115a)
L
o = (5.115b)
LC
Source
resistance
R L

trace

Pulse ¥ Cruce - — Chua
input \ T

Driver PCB trace Load

Figure 5.15 Lumped parameter model of a pulse circuit.
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Solving (5.115a) for £ we obtain

R
= 5.116
=3 Lo (5.116)
Substituting for @, from Eq. (5.115b) into Eq. (5.116), results in
‘- R R RJLC |RIC (5.117)
2Ly o5, 1 2L 4r? '
JLC
or
R*C
= 5118
4 il (5.118)
To avoid ringing we need { > 1, or equivalently
2
RC o1 (5.119)
4L
Thus the loop inductance would have to satisfy the inequality,
2
<K€ (5.120)
4

Let’s use some typical values for R and C and let R =20Q, C =10pF. Then the loop
inductance would have to satisfy

(20)* x10x 1072

L< =1nH (5.121)

It is easy to see that it is very easy to create a condition of ringing in an electronic
circuit.

Ringing Measurements The laboratory test setup to measure ringing is shown in
Figure 5.16.

The circuit diagram showing all intentional circuit components is shown in
Figure 5.17.

The function generator produces a 1 MHz trapezoidal 1 V,,, pulse train with adjusta-
ble rise and fall time.

With the rise and fall times set to 10 ns, the voltage measured at the input to the PCB
trace is shown in Figure 5.18.

There is no noticeable ringing present at the input to the trace.

Figure 5.19(a) shows the waveform when the rise time has been changed to 2.5ns,
while the fall time stayed at 10ns. In Figure 5.19(b), both the rise and fall time are at
2.5ns.

With the rise and/or fall time changed to 2.5 ns we observe a significant ringing pre-
sent in the system.
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PCB trace

Figure 5.16 Experimental setup for ringing measurements.

50Q
Zc=50Q

Wy
d=21cm

Pulse /" + 50Q
input \__

PCB trace | Load

Function generator
z=0 z=

Il mm
[N

Figure 5.17 Circuit model of the experimental setup.

t,=10ns 1y = 10ns

% <

fo=1MHz, V,,= 1V

Figure 5.18 Trapezoidal pulse train produced by a function generator.
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(a)

Ringin
o e ging

(b)

Ringing
.r-r"—-r-’

t.=2.5ns

Ringing —*

Figure 5.19 Ringing (a): with the rise time at 2.5 ns and fall time at 10 ns, (b) with both the rise and fall
time at 2.5ns.

Ringing waveform

Figure 5.20 Ringing waveform on the rising edge.

Figure 5.20 shows the expanded view of the ringing waveform on the rising edge.
It is evident from Figure 5.20 that the ringing waveform resembles an underdamped
sinusoid described by Eq. (5.113), repeated here.

Ve (t):VT + Ee ot sin(a)dt-i-e) (5.122)

At this point we may pose a question: why was the ringing not present (negligible)
with the 10ns rise/fall time but very pronounced with the 2.5ns rise/fall time? This
question can be answered when we compare the physical size of the PCB trace with the
electromagnetic wave wavelength at the highest frequency present in the signal. We will
discuss this topic in Chapter 15.
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It is very instructive and revealing to look at the current waveforms that can be
captured using an H-field probe, as shown in Figure 5.21.

These waveforms are shown in Figure 5.22 for the 10ns rise time case, and in
Figure 5.23 for the 2.5 ns rise time case.

Figure 5.21 H-field probe current measurements.

Voltage waveform

(]

. ﬁ
'W'MWHW_W

(@ _S00mv_& @B 7 00my ][;'l'—ll\.:.-- .;;..-J[?.';-'L:'.\..'.‘-..-\}[_n 7 soomv |

Figure 5.22 Voltage and current waveforms for the 10 ns rise time case.
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Voltage waveform

t,=1;=2.5ns
I

(T ) o) () (& )

Figure 5.23 Voltage and current waveforms for the 2.5 ns rise time case.

Note that the current waveform exhibits ringing in both cases, while the voltage
waveform in the 10ns case exhibits minimal or no noticeable ringing.
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6

Complex Numbers and Phasors

6.1 Definitions and Forms

A complex number z is a number that can be expressed as
z=x+jy (6.1)

where x and y are real numbers and

j=-1 6.2)

x is called a real part of z, and we write x = Re(z).
y is called an imaginary part of z, and we write y =Im(z).
jis called an imaginary unit, sometimes expressed as j =+/—1.

As we will soon see, there are several equivalent representations of complex numbers.
The representation in Eq. (6.1) is called the rectangular form.

Example 6.1 Rectangular form of a complex number
71 =3+/8, Re(z;)=3, Im(z)=8
zy =2—j5, Re(zz):Z, Im(zz) =-5
z3=—4+j0=—4, Re(z3)=-4, Im(z3)=0
z4 =0+j7=j7, Re(z4):O, Im(z4):7
u
When dealing with complex numbers, it is often expedient to represent them graphi-
cally. We can easily do that in a complex plane using a Cartesian coordinate system,

where the x axis is the real axis and the y axis is the imaginary axis, as shown in Figure 6.1.

Example 6.2 Complex plane
Let z=4-3j. Determine the location of this number in the complex plane.

Solution: The location is shown in Figure 6.2. ]

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Imz 4 Figure 6.1 Complex plane.
R o PO Y)
1
;
1
|
]
Lt :
L ! &
T >
0 1 X
Rez
Imz A Figure 6.2 Solution of Example 6.2.
14
0 1 4 Re z
- P@4,-3)
Imz 4 Figure 6.3 Complex number representation as a

directed line segment.

In electromagnetics problems, it is often practical to represent a complex number z as
a directed line segment from the origin to the point P in the complex plane, as shown in
Figure 6.3.
Note that r and 6 are the familiar polar coordinates of P defined by
x=rcosf :|z|c059

y=rsinf = |z|sin9
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r is called the magnitude of z, denoted |z| and

lz|=r=1x+y (6.4)

Geometrically, |z| is the distance of the point P from the origin, @ is called the angle
of z, and

0=tan2 (%n) (6.5)
x

Geometrically, 6 is the directed angle from the positive x axis and is positive in the
counterclockwise sense.

By substituting Eq. (6.3) into the rectangular form of z expressed by Eq. (6.1) we
obtain another form of a complex number z

zZ=x+ jy=rcosf + jrsin@

=r(cosf + jsin0)=|z|(cosf + jsin6) (6.6)
or
z= |z|(c050 + jsin@) (6.7)
The form in Eq. (6.7) is often denoted as
z= |z|49 (6.8)

The representations in Eqs (6.7) and (6.8) are called the polar form of a complex
number z.
All three forms are equivalent.

z=x+ jy=|z|cosO + j|z[sin6 = z|(cosO + jsin@) =|z| L6 (6.9)

Example 6.3 Polar form of z
Let z =1+ j. Obtain the polar form of z.

Solution: The magnitude of z is
|z|=\/x2 +y2 =J1+1=+2
while the angle of z is
2l T

0 =tan = 45°
1 4

The polar form of complex number z is, therefore:

z=\/§4E
4

6.2 Complex Conjugate

Given a complex number

z=x+jy (6.10)
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we can create another related (and very useful) complex number

2" =5 jy

This new complex number is called the complex conjugate of z.

Example 6.4 Complex conjugate
z1=3+j8, 2z =3-/8
2,=2-j5, z,=2+j5
z3=—4+j0=—4, z3=—4-j0=-4
2, =0+j7=j7, 2z4=0-j7=—j7

If z is expressed as:
z= |z|cos@ + j|z|sin0 = |z|49
then
z* = |z|c059 - j|z|sin9 = |z|cos@ + j|z|sin(—9)
=l|z|cos(—0)+ j|z[sin(-0) =|z| 26

or

If z=|z|£60 then z*=|¢z|£-0

(6.11)

(6.12)

(6.13)

(6.14)

The graphical representation of the above two complex numbers is shown in

Figure 6.4.
Imz 4 Figure 6.4 Complex number and its complex
conjugate.
P(x,y)
[ RE—
]
lzl=r |
1
1
1
i 1
! 0 |
L [l -
I T -
0 -0 1 x
. Rez
1
1
¥ =r :
1
Bt A B P*(}C, _y)
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6.3 Operations on Complex Numbers

Equality of Complex Numbers in Rectangular Form Two complex numbers

zZ1=x1+ N Zy =%y + JY2 (6.15)

are equal if their real parts are equal and their imaginary parts are equal. Thus,

z21=2y & x=x and y =y (6.16)

Equality of Complex Numbers in Polar Form 'Two complex numbers

V4l =|Z1|401, V4) =|Z2|492 (617)

are equal if their magnitudes are equal and their angles are equal. Thus,

Z21=29 <= |Zl| = |Zz| and 01 = 92 (618)

Addition of Complex Numbers Let
z1=x1+ jn Zy =%+ j)2 (6.19)
Then their sum is defined as,
Z1+ 29 =(x1 +jy1)+(x2 +jy2)=(x1 +x2)+j(y1 +y2) (6.20)

Therefore, two complex numbers in rectangular form are added by adding the real
parts and the imaginary parts separately.

Addition in polar form cannot be performed (except for the trivial cases) and therefore
is not defined.

Example 6.5 Addition of complex numbers
21:5+j2, Z2:4'+j3
Z1+2, =5+ j2+4+j3=(5+4)+j(2+3)=9+5

Multiplication by a Real Number in Rectangular Form Let z = x+ jy and a be a real number.
Then the product of 2 and z is a complex number defined as

az=a(x+ jy)=ax+ jay (6.21)
Multiplication of Complex Numbers in Rectangular Form  Let
z1=x1+jn Zy =%+ jY2 (6.22)
Then the product of z; and z; is a complex number obtained as follows

2129 = (x1 + ]yl )(xz + ]yz ) =X1Xy + jx1y2 + jy1x2 + j2y1y2 (6.23)
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Since j2 =1, we have
212y = (%1% — 3192 )+ (%102 + 71%2) (6.24)
Example 6.6 Multiplication of Complex Numbers in Rectangular Form

z2,=3+j8, z,=4-j5,
712y =(3+8)(4—j5)=12— j15+ j32— j*40 =52+ j17

|

Multiplication of Complex Numbers in Polar Form Let
zZ1=n (00591 + jsin 91) =1, cos0; + jr sin6; (6.25a)
Zy=h (c0502 + jsinf, ) =1y cos6, + jr sin6, (6.25b)

Then the product of z; and z; is a complex number that can be obtained as follows

212y = (rl costl; + jn sinf; )(r2 cosB, + jr sin 92)
=(rcosb; )(r, cosby )+ j(n cosd; )(r,sinb, )
+j(nsin6, )(r, cos6, )+ j*rir (sind; )(sin, )
=nn (cos01 cosf, —sin0; sin6, ) + jnn (sin@l cos B, +cosb, sin 92)

=nn |:COS(91 +0,)+ jsin(6; +6, )] =nnZ(6;+6,)
or
leiza|=|z1|z2|,  £(z122) = ZLz1 + 2z, (6.26)
Product of a Complex Number and Its Complex Conjugate  This is one of the most important

properties, which we will utilize often.
Let

z=x+jy, Z'=x-—jy (6.27)

then
zzt=(x+jy)(x—jy) =" — jwy+ jyx— jy* =5 + (6.28)
or

et =it 4y (6.29)

Alternatively, if the complex number and its conjugate are in polar form

z=2|£0, z*=|7£-6 (6.30)
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then

22 =(|e| £60)(|2| £~ 60) =|* £(6-0) = |2 20=|< (6.31)
or

22" = o (6.32)

Note that the product of a complex number and its complex conjugate is a real
number.

Example 6.7 Multiplication by j in rectangular form
Let z=x+ jy. Then

je=j(x+jy)=ju+ 2y =—y+jx (6.33)

Example 6.8 Multiplication by j in polar form
Let z=|¢|£6. Then since j = 0+1j =1£90°, we get

jz=(1£90°)(|2|£0) =2 £(6 +90°) (6.34)
]

Therefore, multiplication by j is equivalent to counterclockwise rotation 90°, as shown
in Figure 6.5.

Example 6.9 Negative number in polar form
Let z=-5. Then

~5=(-1)(5)=(1£180°)(5£0°) = 5£180°

Figure 6.5 Multiplication by j. Imz &

(_ys x)
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Division of Complex Numbers in Rectangular Form Let
Z1 =X+ jyl Zy =Xy + jyg (635)

Then the division of z; and z;, results in a complex number z that can be obtained as
follows

_A_ Xt (20 + 31 ) (%2 = j2)
Xty (%) (%)
_ M= s + =219 (6.36)
% + 93
_MX 1) + X Y1 —%1)s
x5+ ys x5+ 9

or

Xt XXt N1Ys XY — %)
.= 5 5 T > 3 (6.37)
Xyt JY2 X3 t)2 X3 + )2

Example 6.10 Division of complex numbers in rectangular form

z1=3+j8, z,=4-/5,
zi_3+j8 (3+/8)(4+/5) 12+15+32+,°40 —28+ 37 _ 28 .37

z, 4-j5 (4-j5)(4+)5) 4% +5% 41 TR
|
Division of Complex Numbers in Polar Form Let
zZ = |Zl|491, 2y = |Zz|é€2 (638)
The quotient z = % is the complex number satisfying zz, = z;. Therefore, we have
el=lleal=lal = =2 639
[22]
and
L(zzy)= £(2)+ L(2) = £(z1) (6.40)
= A(Z):é(zl)_é(ZZ)
Thus
a _|al<6 _@4(91_92) (6.41)

Zy - |Zz|402 - |Zz|
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Example 6.11 Division of complex numbers in polar form
z; =6£30° z,=2/45°
z _ 6£30°

= =3/£-15°
zy 2/45°
L]
Example 6.12 Division by j in rectangular form
Let z=x+ jy. Then
z_xrjy (D) _y—pm_ (6.42)
i i(=)) 1
u
Example 6.13 Division by j in polar form
Let z =|z|£6. Then
Z£0
Z_ (i )=|z|4(9—90°) (6.43)
i (1290°)
u

Therefore, division by j is equivalent to clockwise rotation by 90°, as shown in
Figure 6.6.

Powers of Complex Numbers Let z = |z| £6. Then

2 =zz2=(|2|£0)(|2| £0) =|2||c| £(6 +0) =2 226 (6.44)
More generally,
2" =(2£0)" =l|" £Zn6 (6.45)
Figure 6.6 Division by j. Imz &
y
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6.4 Properties of Complex Numbers

In this section we list some of the basic properties of complex numbers.

Z1+2y =2, +2; (6.46a)
212y = Zp2) (6.46b)
(z1+22)+23 =21 +(22 +23) (6.46¢)
(2122) 23 = 21 (2223) (6.46d)
z21(z2+23)=2120 + 2123 (6.46¢)
0+z=z+0=z2 (6.46f)
z+(-z)=(-2)+2z=0 (6.46g)
z-1=z (6.46h)

Complex Conjugate Properties

(Zl + 29 )1‘ = Z; + Z; (64:73)

(21-2,) =21 -2 (6.47b)

(z1-22 ) =2z 2 (6.47¢)
Z_j _a (6.47d)
Z9 Zy

() =2 (6.47¢)

Useful Identity

1

—== (6.48)

]

Let’s prove it.
1_(1 —jj - _ = .
j (1)(—1 -2 =(-1)

6.5 Complex Exponential Function

Let z = x+ jy be a complex number. The complex exponential function, € is defined as
(Kreyszig, 1999, p. 679)

e” =e"(cosy+/siny) (6.50)

where e”, cos y, and sin y are real functions.
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Since x and y can be any real numbers, let us set x=0. Then,
e? =" — @Ol — o (6.51)
On the other hand, using Eq. (6.50)
e’ =e*(cosy+/siny)= e’ (cosy+jsiny)=cosy+jsiny (6.52)
Comparing Egs (6.50) and (6.52) we obtain the Euler formula
e” =cosy+ jsiny (6.53)
or in terms of 0

9 = cosO + jsinf (6.54)

e
Now, since a complex number z can be expressed as
z=|z|(cos6 + jsin0) (6.55)
using Eq. (6.54), it can also be expresses as
z=|z]e” (6.56)

This form of a complex number is called an exponential form. This form, perhaps, is
the most useful form of a complex number in electromagnetic compatibility literature.
Euler formula expressed by Eq. (6.54) leads to two very useful results, as shown next.

e ¥ =/ = Cos(—9)+ jsin(—@) =cos6f — jsinfO (6.57)

Thus, we have,

e’ =cosO + jsinf (6.58a)
e =cosh —jsin6 (6.58b)
Adding both sides we get
o , —jo
cosO = £ re’ (6.59)
2
Subtracting both sides we get
jO _ o=J0
sing=""%" (6.60)
2j

6.6 Sinusoids and Phasors

6.6.1 Sinusoids

Consider a single frequency sinusoidal signal

v(t)=V coswt (6.61)
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where V is the amplitude of the sinusoid and w is the angular frequency in radians per
second, rad/s.
The period T and the angular frequency w are related by

[0

- (6.62)
The reciprocal of the period is the (cyclic) frequency (in Hz)
1

f= T (6.63)
The angular frequency w and the cyclic frequency fare obviously related by

o =27f (6.64)
Let us now consider a more general expression for a sinusoid,

v(t)=Vcos(cot+¢) (6.65)

where (wt + @) is called the argument of the cosine function, and ¢ is its phase.

The sinusoidal functions may, in general, be expressed in any of the four different
forms: either as a sine or a cosine function, with either positive or negative
amplitude.

For example,

vi(t)= 2cos<a)t + 30°) (6.66a)
Vy (t) = —SCos(a)t - 60°) (6.66b)
v3(t) = 4sin( ot +45°) (6.66¢)
va (£)=-5sin(wt -15°) (6.66d)

As we will see in the next section, we often need the sinusoid to be expressed as a
cosine function with positive amplitude, as shown in Eq. (6.66a).

Therefore, we need to be able to transform the other three forms into the positive
cosine form. To accomplish that, we could use the following trigonometric identities:

—cos(a)t+9) =cos(a)t+9 1180") (6.67a)

sin|wt+6 ) =cos| ot +0 —90° (6.67b)
(t-+6)=cos )

—sin(a)t+9):cos(a)t+9+90°) (6.67¢)

Therefore, Eqns. (5.64b—d) can be expressed as

vy ()= —3cos(a)t—60°) =3cos(a)t+120°) (6.68a)
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Figure 6.7 Trigonometric relations. —sin wt
+180° | +90°
—cos wt _180° | —90° +c0s ot
v
+sin wt
vs(£)= 4-sin(a)t+45°) - 4cos(cot —450) (6.68b)
vy (t):—55in<a)t—15°):5cos(a)t+75°) (6.68¢)

Alternatively, we may use the graphical approach (Alexander and Sadiku, 2009, p. 374)
as follows.

Consider the set of axis shown in Figure 6.7. The horizontal axis represents the cosine,
while the vertical axis (pointing down) denotes the sine. Angles are measured positively
counterclockwise from the horizontal, as usual in polar coordinates.

This figure can be used to obtain positive cosine out of the other three forms, as
follows.

Negative cosine is equivalent to positive cosine plus or minus 180°. Positive sine is
equivalent to positive cosine minus 90°. Negative sine is equivalent to positive cosine
plus 90°.

6.6.2 Phasors

Consider a positive cosine function of the form
v(t):Vcos(a)t+9) (6.69)

We could use its amplitude and phase to create a related complex number
V0 =Ve" (6.70)

Obviously, the complex number in expression (6.70) is related to the sinusoid in
expression (6.69). We often say that this complex number represents the respective
sinusoid.

Is this representation useful? Extremely! Instead of performing mathematical opera-
tions on sinusoids in the time domain (which is often difficult to do), we can perform
the operations on complex numbers related to these sinusoids, in the complex domain
(which is relatively easy to do).
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Note that the sinusoid exists in the time domain, while the complex number repre-
senting it exists in the complex domain. Therefore, they are not equal; they correspond
to each other.

Vcos(a)t+9)<—)Vej9 (6.71)

When a complex number represents a sinusoid, we call it a phasor. By representing
the sinusoid as a phasor we transform the sinusoid from the time domain to the phasor
or frequency domain.

So what is the difference between a phasor and a complex number? Every phasor is a
complex number, but not every complex number is a phasor. Only when the complex
number represents a sinusoid is it referred to as a phasor.

In electromagnetic compatibility we often deal with complex voltages and currents.
These complex expressions represent sinusoids in the time domain, and therefore
they are phasors. We also encounter complex impedance, but the impedance does
not represent a time-domain sinusoid, so it is not a phasor, but just a complex
expression.

To distinguish between the time domain variables and the complex variables, we will
adopt the notation from Paul (2006, p. 261). A complex variable will always have a “hat”
above it.

V=V/0=Ve" (6.72)

In the above expression, the magnitude V and the angle 6 are real, thus they do not
have “hats’, but the phasor is complex.

Given a phasor, in polar or exponential form, we can easily determine the time-
domain sinusoid corresponding to it. For instance, if the phasor is given by

I=1e" (6.73)
then the sinusoid corresponding to it is simply

I=1" < i(t):Icos(a)t+6’) (6.74)

Alternatively, the time-domain form of phasor quantities may be obtained by multi-
plying the phasor form by ¢“* and taking the real part of the result.

Relle/} =Icos(wt+0)=i(t) (6.75)

We will show this operation in the next section, when presenting the phasor form of
Maxwell’s equations.

Derivative in the Phasor Domain Let the time-domain sinusoid be expressed as
v(t):Vcos(wt+9) (6.76)

Its corresponding phasor is

vV =Vel (6.77)
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If we take the derivative of v(£) in expression (6.76), we will obtain another sinusoid; a
negative sine function, to be exact. That negative sine function can be expressed as a
positive cosine using the transformations discussed earlier.

Therefore, we could create a phasor representing it. The question we pose is as fol-
lows: what is the relationship between the original phasor representing v(¢) and the
phasor representing its derivative?

To answer this questions let’s take the derivative of v(¢):

dv(t)

7=—a)Vsin(a)t+9)=chos(a)t+9+90°) (6.78)

Thus the phasor representing the derivative of v(¢) is

a)Vcos(a)t +0+ 90°) o Ve (6.79)

Let’s have a closer look at this phasor.

Ve 0% — Vel e/%° (6.80)
However,
e/ = 0s90°+ jsin90° = j (6.81)

and therefore
Vel = ja)\/ej‘9 = ja)V (6.82)

We have arrived at a very important observation.

v(t) oV
dv(t) . (6.83)
— & joV

dt

That is, to obtain the phasor representing the derivative of a (sinusoidal) function, we
simply take the phasor representing that function and multiply it by jw.

6.7 EMC Applications

6.7.1 Maxwell’s Equations in a Phasor Form

Of major interest in EMC are the sinusoidal electromagnetic fields and current and
charge densities. That is, the time-domain vectors and scalar expressions are sinusoidal
functions of time and space.

For instance, the electric field intensity vector E in the time domain is given by

E(x,5,2,t)=[ E.(x,9,2,t),E,(%,9,2,t),E.(%,9, 2, )] (6.84)

where each of its components is a sinusoidal function

E.(%,9,2,t)=E,,cos(wt+0,) (6.85a)
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Ey(%,9,2,t)=E,, cos(wt+9y) (6.85b)
E, (x, ¥, 2, t) =E,, cos(cot +0, ) (6.85¢)
The corresponding phasors are
E(%9,2)= Eyp 20, = Eype/™ (6.862)
Ey (%,y,2)=E,, 20, :Eyme"ey (6.86b)
E,(%,9,2)=Ey, 20, = Epe’™ (6.86¢)

Thus, the phasor form of the E vector in Eq. (6.84) is
ﬁ(x, ¥, 2)= [Ex (%9, z),éy (%9, z),EAZ (%5, z)} (6.87)

The time-domain form of phasor quantities may be obtained by multiplying the pha-
sor form by e/ and taking the real part of the result. For example

E, (x, Vs 2, t) = Re{ﬁx (x, ¥, z)ejwt} = Re{Exme’B* ejwt}

= Re{Exmej(mgx)} = Re{Exm cos( ot + 0, )+ jEy, sin(wt + 0, )} (6.88)

=E,, cos(a)t+¢9x)

The phasor form of the derivative of the E field in (5.84) is

OE B

— & jowE 6.89

ot / (6.89)
Thus, in order to obtain Maxwell’s equations for sinusoidal excitation, we replace the

field vectors and functions with their phasor forms, and their time derivatives with the

phasor forms multiplied by jw. In a simple medium these equations in a phasor form

become (Paul, 2006, p. 908) the following

Differential form of Maxwell’s equations

VxE = —ja),ul:[ (6.90a)

VxH=(o+ joe)E+]s (6.90b)

V.E=2 (6.90¢)
&

V- -H=0 (6.90d)

Integral form of Maxwell’s equations

gSlé-dl:—jwyjH-ds (6.91a)
C S

$H-dl = (o + joc) [E-dS+ [Js - dS (6.91b)
C N S
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%Sfa dS :é j oy (6.910)

d}H-ds -0 (6.91d)

6.7.2 Transmission Line Equations in a Phasor Form

In Section 3.5.1 we obtained the transmission line equations (for a lossless line) as
oV (z,t) B l@](z, t)

5 o (6.92a)

Z

I ) )

o(zt) V(a1 (6.92b)
0z ot

The phasor transmission line equations are obtained by replacing the circuit variables
with the corresponding phasors, and replacing the time derivatives with jw.

dV(z)__, .
— joll (z) (6.93a)
di(z)__, .

6.7.3 Magnetic Vector Potential

We are now ready to utilize the knowledge gained in these first six chapters to study the
vector magnetic potential vector. This is one of the most useful concepts in the study of
radiation from antennas and the concept of the partial inductance.

We will begin with Maxwell’s divergence equation for magnetic fields:

V.B=0 (6.94)
Now, let’s recall the following vector identity (true for any vector):
V. VxA=0 (6.95)

Thus, we could define the new vector A, called the magnetic vector potential, as a
vector related to the magnetic flux density vector B by

B=VxA (6.96)

Even though the concept of a magnetic vector potential is a purely mathematical

invention, it proves to be very useful, as we shall see.
Since

B=uH (6.97)

then, in terms of the magnetic field intensity H, the vector magnetic potential A is
defined as

uH=VxA (6.98)
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or, alternatively

lillexA
Y7,

Now, recall Maxwell’s curl equation
VxE=— ja),uﬂ
Substituting Eq. (6.98) into Eq. (6.100) we obtain
VxE=—joVxA
which can be written as
V x (E + /a)A) =0

Now, we will use another vector identity

Vx(-VV)=0

(6.99)

(6.100)

(6.101)

(6.102)

(6.103)

This identity holds for any arbitrary scalar function V. Comparing Eqs (6.102) and

(6.103) we get
E+joA=-VV
or

E=-VV-jwA

The scalar function Vin Eq. (6.102) represents electric scalar potential.
Now, let’s take the curl of both sides of Eq. (6.99) to get

VXI:[:VX(lVXAJ
Y2

The right-hand side of (6.106) can be written as

vx(lw[\):l(ww[\)
H H
Comparing (6.106) and (6.107) we can write
WV xH=VxVxA
Next, we will use another vector identity
VxVxA=V(V-A)-V’A
Combining Eq. (6.108) and Eq. (6.109) we arrive at
WV xH=V(V-A)-V’A

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

Using Maxwell’s curl equation for magnetic field in the region away from a conduc-

tion current (¢ =0)
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VxH = jocE+]s (6.111)
We rewrite Eq. (6.111) as

jousE+u) =v(V-A)-V2A (6.112)

Now, we will make use of Eq. (6.105) to obtain

joue(~VV - joA )+ uf =v(v-A)-V?A (6.113a)
Thus
1 —VjoueV + o’ usA =v(v-A)-V2A (6.113b)
or
V2A+(o2,ugA:—yi+V(V'A)+ijygV (6.113c¢)
or
(6.113d)

VZ A+ ueA =—pj +V (V- A+ jousV)

Introducing a new constant,

k* = w*ue (6.114)

Eq. (6.113d) can be rewritten as
V2A+k2A =1 +V(V-A+ jousV) (5.115)
In Eq. (6.98), repeated here, we implicitly defined the vector magnetic potential A by
its curl:

uH=VxA (6.116)

In order to uniquely define a vector, we need to define it by both the curl and the
divergence. The definition of the divergence of A is independent of its curl. Thus, we are
free to choose a convenient definition.

In order to simplify Eq. (6.115) we choose

V-A=—jousV = V=—’1 V-A (6.117)
joue

which is known as the Lorentz condition (Balanis, 2005, p. 136)
Substituting Eq. (6.117) into Eq. (6.115) leads to

VA +K2A =—4) (6.118)
Additionally, Eq. (6.105), repeated here,

E=-VV-joA (6.119)
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reduces to

E=-V4, —ja)A:—ja)A—V{—

| v.A]
JoHe (6.120)
=—ja)A+v(,1 V-A]

jous

or

E-—joA-j—1 v(v.A) (6.121)
wue

Thus, once A is known, E can be obtained from Eq. (6.121) and H from

f-lvxi (6.122)
U
Alternatively, E can be found form Maxwell’s equation
VxH = joeE+Js (6.123)
with J = 0:
VxH = josE (6.124)

That is, E can be obtained from

E-—L vxH (6.125)
jwe

6.7.4 Radiated Fields of an Electric Dipole

Electric dipole, often referred to as Hertzian dipole, shown in Figure 6.8, consists of a
short thin wire of length /, carrying a phasor current , positioned symmetrically at the
origin of the coordinate system and oriented along the z axis.

Ideally the wire is infinitely short, and practically a wire of the length /< 4/50
(A=wavelength) can be considered a Hertzian dipole. Although Hertzian dipoles are
not very practical, they are utilized as building blocks of more complex geometries.

Since the current element is very short, we may assume the current to be constant

i(z’) =1Iya,, I,=const (6.126)

To find the fields radiated by the current element, we will use the two-step procedure.
First, we will determine A from the solution of the Helmholtz equation (see Eq. (5.96))

- /kR

A(x, 7,2 ”jl X, y,2 ) —adl' (6.127)

Note that R is the distance from the source location to the observation point, and
r is the distance from the origin to the observation point. Since the source is at the
origin, r=R.
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Figure 6.8 Hertzian dipole. z 4

y
The next step is to determine H and E from
a=lvA (6.128)
Yz,
E-—joh-j—v(v.A) (6.129)

wpE
or alternatively, once H is computed from A by Eq. (6.128), E can be obtained from H as

E-—L vxi (6.130)
jwe

For the Hertzian dipole shown, we have

L(x,y,2")=1oa, (6.131)
Since

R=r=1x*+y*+2* (6.132)

dl'=dz (6.133)

we rewrite Eq. (6.127) as

—jkR
(x, Y2 ):—II %y, z dl'= .[Ioaz r dz'
) A (6.134)

/
— ﬂlo e—jkr J‘ dz' a, = :UIOZ e—jkraZ
4mr Yy 4mr
/2

l
—jkr
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or

A(x,y, z):%e’ﬂ”az

(6.135)

The next step is to determine H, using Eq. (6.128). We will perform this operation in

spherical coordinates.

The transformation between rectangular and spherical components is given by:

A, sinfcos¢ sinfsing cosO || A,
Ay |=|cosOcosp cosOsing —sin0 || A,
Ay —sing cos¢ 0 A,
For this problem A, =4, =0, thus,
A, sinfcosp sinfsing cos6O
Ay |=| cosOcosp cosOsing —sinf
A, —sing cosQ 0 ulyl s
4mr
or
—jkr
A, 4mr .
jir
Ay |= _plole 7 sin6@
4mr
Ay 0
The curl of A in spherical coordinates is
VxA= 1 i(@sin@)—% a,
rsin@| 00 o¢

00

r

Since A, =0 and there are no ¢ variations in A, we have

1] 0 0A
VxA==| — -
) r{ar(me) 00 }a(ﬁ

and thus

ﬁleXA=L[ 9 rAg)—aA’}a(ﬁ

5( 20

AL 2 o) o[ ea)- L

(6.136)

(6.137)

(6.138)

(6.139)

(6.140)

(6.141)
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Now, we use Eq. (6.138) in Eq. (6.141) to produce

. 1] o 0A
H=—| —(r4y)——— |a
,ur_8r( Ag) 86} ’
r ke ~jkr
:i i —r%siHQ _i %cosé’ a,
ur| or 4mr 00 4mr
r . ) —jkr
:i _ylolsmé’g(e,}k,)_ylole i(cos@) a,
ur| 4m  or 4nr 00 (6.142)
1) Llsin® o ey ole M
_;{—T(—]ke )+W(sm0) a,
10[81119 v — ik Iole_jkr .
=| ——(jke’* |+ ———(sin@) |a
{ 47r (1 ) 4mr? ( ) ’
:jklolsmc9 1+i e_jk’aw
4mr jkr

Thus, the components of the magnetic field intensity H at a distance r from a Hertzian
dipole are

H,=0 (6.143a)

Hy=0 (6.143b)

H, = jw{1+$}e—ikr (6.143c)
4nr jkr

The electric field E can now be found using Eq. (6.129) or Eq. (6.130). Let’s use the
latter approach first. That is, let’s calculate E from

E-—L vxi
joe

(6.144)

The curl of H in spherical coordinates is

VxH=—1 i(H¢sin0)—% a,+l L%—ﬁ(ﬂ%) ag
rsin@| 00 oo r|sin@ 0¢ Or (6.145)

[ oH,
+—|:5(VH9)— 20 :|a¢

r
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Since H, = Hy =0 and there are no ¢ variations in H, we have
E:LVXH:L 1 {i(Hq, sinQ):la,+l|:—£(rH¢)]ag
joe joe | rsin@| 00 ri or
11 9 j—klolsme 1+ 1 e " sin6 ||a, (6.146)
joe rsin@| 00 4mr jkr
+Ll 0 1 klylsin@ 1+‘i | |ag
jogr| Or 4mr jkr
Let’s evaluate the r component first:
E, =; 1 2 ],—ldolsme 1+,L e X sing
joe rsinf | 00 4mr jkr

_ 11 1+ 1| kil e {ﬂ(sin2 9)}
e sinf jkr | 4mr? 00

_ 11 [1+ 1 }Lolzejk’%inecose

(6.147)

" @e sinf ]E 4mr

_ ik]olCOZSQ 1+‘L s
we  2mr jkr

and now the #-component:

E, :Ll _ﬁ rj—klolsme 1+L ek
joer| oOr 4mr jkr
_ 1 1) OfkKolsin®) 1| i (6.148)
wer| Or 4n jkr

=L/dolsin9 _2 1+i e,]'kr
we  4mr or jkr

Let’s evaluate the derivative term:

) ) — jkr
2 1+L eilkr :ﬂ eijkr +e_
or jkr or Jjkr

(—jke‘jk’ )(jkr) —e M jk

= —jke " +
(jkr )2
] (ke_jkr)(kr)—jke_jk'
=—jke " ~ 14
(kr)2 (6 9)

_‘_M etk — —'—i—i-;' o Ik
{’ (1) ]k [’ v <kr>2]k

1 1 ok
:{1+%— (kr)2 ](—/ke )
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Substitute Eq. (6.149) into Eq. (6.148):

E, =L 1 klylsinf o
we  4nr ar
_ 1 klplsing o
wg  4mr ar ]kr

_ 1 klylsin@ 1+.L_ (—jkefjkr)
we  4mr jkr (kr)z

=ildolsm9 1+‘i_ 12 jke
we  4mr jkr (kr)

(6.150)

Thus, the electric field intensity at a distance » from a Hertzian dipole is given by

g - L Kolcosbl, | 1 | i (6.151a)
we  2mr? jkr

Fy =L Molsinb), 1 1 | ke (6.151b)
we 4nr jkr (kr)

E, =0 (6.151c)

Whereas the magnetic field intensity at a distance r form a Hertzian dipole was
derived earlier, and is repeated here:

H,=0 (6.152a)

Hy=0 (6.152b)

H, = jw[l N ,L}e’k’ (6.152¢)
4mr jkr

Note that these two sets of equations (6.151) and (6.152) are equivalent to the set of
equations (7.1) on page 423 of Paul 2006.

We will show this equivalence using the alternative approach to computing the
electric field intensity from Eq. (6.129), repeated here:

fz:—/mA—ij(v.A) (6.153)
e

Recall that the vector magnetic potential in spherical coordinates was given by
Eq. (6.138), repeated here:

I Jjkr

wcos@

A, dmr . (6.154)
Lyle™™

Ay |= H Z; sinf
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134
First, we need to compute the divergence of A. In spherical coordinates we have
0.
V. A=i£(r2A,)+ L9 (4 sin0) L (6.155)
r2 or rsinf 00 rsin® O¢

Since A, =0 and there are no ¢ variations in A, we have

! 8(r2A,)+ 1 %(AgsinO)

V- -A=——
r2 or rsin@
—jkr —jkr
=i2£ FZ%COSG + 1 i _,ulole sin@sin @
r® or 47r rsinf 00 4nr
— jkr —jkr
12 0 r—ulole cosf |+ 10 _plole sin® 6
or 47 rsin@ 06 47r
_ 1 plolcosd 8 1 ulle™ 6,
——|re -———————(sin“ 0
r2  4m 8}"( ) rsin@ 4mr 60( ) (6.156)
1 ulylcosO o i 1 ulle™™
_r_24—7[( J r]ke / )—me(ZSIHQCOSQ)

‘ ‘ — jkr
_ M(e_”" — rjke % ) _ %(2C059)

4mr? 4rr
,ulolcose o _jk.UIOICOS@e_/kr 3 2,1101?59 o T
4mr? 4mr 4nr
_ ,Ulol( ]k) K 056
4n \r* r
Now, the gradient of the scalar function fin spherical coordinates is
vieZa 19 g L T, (6.157)
r r 00 rsin@ 6¢
Thus,
viv-a)=Za 19,
6r r 06
_90 _ﬂ(_ﬂ_kje—ikrcosg a, (6.158)
or| 4n\s* r
10 _,ulol( L ]kJe Ik cos |ag
ré0| 4an \r* r
Let’s start with the r component.
O _phlf1 ]k e " cos 'uIOlCOSQQ i+£ ek
or| 4m r2 r 4n or|\r* r
———’UIOZCOSO 2[i+i)e_"kr +[i+i)i(e_’h) (6.157)
4n or\r* r P r)or

N

4r r’
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= %COSQ[(E + KJ gy (% + %j(jk)(e"kr )}

ror r
. . 2 . 2
=—’ulolc059 %+%+J—/§—k— e /& =—‘u101c059 %+¥—k— e /&
47 r°oreor r 47 r r r
Next, the 8-component
10]_phl i+£ e cosO
ro0| an 2
_ 1 ,1101( 2 /kj ke [cose] (6.158)
r 4n \r r
L
an \ 2 2

Next, substitute Eqs (6.154), (6.157), and (6.158) in (6.153), repeated here:
E=_ij—ij(v-A) (6.159)
e

Again, let’s start with the r component.

]kr
ol Iole 0s6 — l cos6

1 ;uo {2 2]k kz},k,

(6.160)
]kr . )
:—j ﬂ]ole 050 — 1 /l Ol 50|: 2 +2]2k:|e_}kr

wus 4r roor

1 Il
+j—u 9 cos@{k—} Ead
oue 4n r

Let’s look at the sum of the first and the last term:

Iole ™ 1 ulyl 2
—ja)&cos0+j 20 coso| k ek
4nr oue 4n r

Jjkr
( jo+ j— K ]&cose (6.161)

wue 4nr
Il jkr
[ ]w+]w ”g]ucosezo
wpE 4mr

thus,

E, = —j—1 Lol cosO [% + %}e‘jk’
rPoor

= —jililcosé?[l—/;+i3}eﬂ"

(6.162)
1 — jkr
3 e
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Let’s introduce a different notation (to conform to the formulas in Paul, pp. 422-423):

k=P (6.163a)
I=di (6.163b)
1. (6.163¢)
we P

Then Eq. (6.162) can be written as

_2[31710‘” 9i+ 1 e B
B 4n _r2 jﬁr3

3 (6.164)
—210—0”77,3 cos6 %+% e /P
LB B

£ =228 g2 cos0| L ;L | (6165)
4r | B°r Br’ |

Now, the 8-component

Iole™ ™ 1 ull( 1
Ey=—jo —%sinG —j—//l Ol( ]kJe A sin@
4nr ous 4n \r®  r?

, (6.166)
—jkr )
:]w—ulole sinf — 1 101( 3 lkje"’k’ sin@
r

4nr Ve e 41 r?

In Part III of this book, we will define the intrinsic impedance of a medium as

= e (6.167a)
( m J_g H=MVE

and express the angular frequency as

B (6.167b)

then, the following holds
N ue =pn (6.167c)

= =

Il
5
=

(6.167d)

n
we ﬁ\/y_sﬁ
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thus,
—jkr
E, = jorloe sine—jii’[i KJ " 5in@
4nr we 4n\r*
~jpr :
=stin9+ilil(_L E) RS,
dmr Ban\ i (6.168)
IOle] ind ﬂ—jL-F 12 _lﬁr
ﬂr r
10 2 . ] . 1 1 _‘ﬂ
=—""—"nB*sin0| =—— + e /™
an P (ﬁr s ﬁzrz}
or
E, Iodlnﬂ sm@(l; ﬂzl > jﬁa.l Sje/ﬂ” (6.169)
r

Equations (6.165) and (6.169) correspond to Equations (7.1d) and (7.1e) in Paul (2006,
p. 422-423).

6.7.5 Electric Dipole Antenna Radiated Power

Electric dipole radiated power can be computed from (Paul, 2006, p. 425)
R 1(» .
$(r) :E{E(r)xH (r)} (6.170)

where the electric and magnetic fields were derived earlier as

i (E i o) (6.171a)
- (0, 0, H¢) (6.171b)
where
E-L 1 ldolcose i ok
we  2mrt ]kr (6.172a)
:UkIOZC(;se 1+‘L ok
2mr jkr
E, :L—klllsm@{l+%_ L 5 ]jke_jkr
ws  4mnr r
Jkr (kr) (6.172b)

ke

4y jkr( kr)z

jnklolsmﬁ 1 1
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f, = jHolsing| 1 e (6.172¢)
4mr jkr

Substitution of Eq. (6.172) into Eq. (6.170) produces

A

$(r) zé(égﬁ;a, ~EHja0)=(5., 55, 0) (6.173)

Let’s calculate the r component of the radiated power.

S | [ Motsinol 1] ‘
jkr (kr)z 4mr jkr
1( klsingY | | Ll I
o\ a7 +%‘(kr)z N (6.174a)
CI(Klolsing ') |1 1 |[f [ 1
_2( 4nr j{m{hrjkr (kr)zi}{ ][1+]kr}}
1+L— 1 {1+L}
jkr (kr)2 kr
or

N2 , ) ,
§r:ln(klols1n9j 1+L+L+ 1 1 1 j
2 4y ke jkr jkr ke ( kr)z ( kr)2 kr

A A

Sr = gH(/,

1
2
1| . klylsin@
— jn—1
2{]77 Anr

[\~

1 (k[olsinﬁj
77 —

- 5 4nr

1 (klylsin@Y i1 1 1 j
2N anr Y T T (0 (o7 6.174b
(kr) (kr) (kr) (6. )
2 g
_Q(klolsinﬁjz 1— j _n 71015“10 1- J k_2_n
2\ 4nr (ke || 2] dnr (kr) || A
leading to

2

1., .
o Elolsmé’ 1_ j _Z(ILIT sin2 6 - j
"2 2r (kr)* | 8\ 2 r? (kr)’

2 .9 .
=120n(lilj s1n249 1— ]3 . n=120m
8 A r (kr)

(6.174c)




Complex Numbers and Phasors

or

2 .2 .
S, :151:(ILIJ sinbr,_J (KJ (6.174d)
y) r2 (kr)?) m2

Equation (6.174d) describes the r component of the complex power density vector.
To calculate the total average power radiated by the electric dipole antenna we evaluate

the following surface integral

ﬁ:(ﬁé(r)dS
= T JTE (S‘,ar +§,9ag)r2 sinfdOdpa,

»=00=0
2n m

= j j S,r*sin0dOde
(6.175a)

9=00=0

2T W 2 .2 .
= j I ISn(ﬂj w 1-—1 3 r*sinfdOdg
9=00=0 A r (kr)

= zj T {157{%1)2[1—(10{ )3]}sin3 0d0dg

=06=0

or

. Iol 2 j 2n 3
P=15n| — | |[1-—— J. Ism 0dodg

(k")3 9=00=0

2 . I
=30n2(ﬂj {1— / ] j sin® 8dOd g, j sin® 9019:%
6=0 6=0 (6.175b)

and thus

2 ,
pzlgonﬁ[ﬂJ - (6.175¢)
3\ 4 (kr)

The real radiated power is just the real part of the complex power in Eq. (6.175c).

2 2 .9
Py :772 Ll =80m> ) Io (6.176)
304 r) 2
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7

Basic Laws and Methods of Circuit Analysis

7.1 Fundamental Concepts

7.1.1 Current

The motion of electric charges constitutes an electric current, denoted by the letters i
or /. As a matter of vocabulary, we say that a current flows along a path, from A to B, or
through an element, as shown in Figure 7.1.

Note that a complete description of current requires both a value and a reference
direction, as shown in Figure 7.1.

By definition, current is the time rate of change of charge, or

dq C
S [A——} 7.1)

We consider the network elements to be electrically neutral. That is, no net charge
can accumulate in the element. Charges may not accumulate or be depleted at any
point. Any charge entering the element must be accompanied by an equal charge
leaving the element.

7.1.2 Voltage

Charges in a conductor may move in a random manner. To move the charges in a con-
ductor in a particular direction requires some work or energy transfer.

We define the voltage v4p between two points A and B in an electric circuit as the
energy (work) needed to move a unit of charge from A to B.

Mathematically,
dw ]
12 = —_— V = — 7.2
= [ C} (7.2)

As a matter of vocabulary, we say that a voltage exists across an element, or between
two points or nodes, as shown in Figure 7.2.

Note that a complete description of voltage requires both a value and a reference
direction, as shown in Figure 7.2.

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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A B A B
o I:l -
i 2 mA
Figure 7.1 Current designation.
+ v _ A Figure 7.2 Voltage designation.
4 1 5 +
| I
3.6 mV
—«B
(a) (b) Figure 7.3 Passive sign
convention: (a) satisfied, (b) not
satisfied.
i + % _
A » — B
| I

B

Passive Sign Convention For any electrical element, if the current reference direction,
upon entering the element, points into the positive voltage reference direction, the
current and voltage so defined are said to satisfy the passive sign convention (Alexander
and Sadiku, 2009, p.11).

In Figure 7.3(a) the passive sign convention is satisfied, while in Figure 7.3(b) it is not.

7.1.3 Power

Voltage and current are useful variables in the analysis and design of electrical circuits.
The circuit specifications, in addition to voltage and current, often include the require-
ment on power that the circuit needs to deliver to a load.
In transferring charge through an element, work is being done, or energy is being
transferred. We define power p, as the rate at which energy w is being transferred.
Mathematically,

_aw _J
p= 7 {\X/ J (7.3)

In the circuit analysis, it is more convenient to work with the circuit variables (voltage
and current) than the field variables (energy or vector quantities). It is, therefore, pre-
ferred to express power in term of voltage and current.

Note that (7.3) can be written as

_dw_dw dq

it dq dt (7:4)
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and thus
p=vi [W=VA] (7.5)

When the passive sign convention is satisfied, the power calculated according to (7.5)
is called the power absorbed or dissipated by the element.

If the current and voltage direction do not satisfy the passive sign convention,
the power calculated using (7.5) is called the power delivered by the element.

7.1.4 Average Power in Sinusoidal Steady State

Average Power in the Time Domain When voltage and current in Eq. (7.5) are time
varying, then the power that is obtained from

p(t)=v(t)i(t) (7.6)

is often referred to as the instantaneous power.

Of special interest to us is the case when both voltage and current are sinusoidal
function of time. Sinusoidal steady state analysis is of paramount importance in EMC
engineering.

Let the voltage and current at the terminals of the circuit be

v(t):Vm cos(cot—i—@v) (7.7)

i(t)z[m cos(a)t+9i) (7.8)

where V,,, [, are the amplitudes, and 6, and 0; are the phase angles of the voltage and
current, respectively.

Since we are operating in the sinusoidal steady state, we may choose any convenient
reference for zero time. It is convenient to use a zero reference time corresponding to
the instant the current is passing through a positive maximum.

This reference system requires a shift of both the voltage and current by 6,. Thus,
Eqs (7.7) and (7.8) become

v(t):Vm cos(cot—i—@v —Qi) (7.9)
i(t)=1,, cos(wt) (7.10)

When we substitute Eqs (7.9) and (7.10) into Eq. (7.6), the instantaneous power
absorbed by the element is

p(t)=v(t)i(t)=V,1,, cos(wt +06, —6; )cos(wt) (7.11)

Let’s make use of the trigonometric identity

cosa cos 3 =%[cos(a—ﬁ)+cos(a+ﬁ)] (7.12)
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Then Eq. (7.11) can be expressed as

p(t)= sz]m cos(6, —6; )+ szlm cos (2wt+9v —9,-) (7.13)

Note that p(t) is periodic with a period T, =T/2 since its frequency is twice that of
voltage or current.

The instantaneous power may be positive, negative, or zero, depending on the time ¢
at which it is evaluated, and thus does not convey much information about the element
or system. Of much more use is the average power which, as we shall see, is not a
function of time.

The average power is the average of the instantaneous power over one period. Thus,
the average power is given by

Py =— | p(t)dt (7.14)

where T is the period of p(¢), and the instantaneous power is expressed by (7.13).
We would get the same result is we performed the integration in (7.14) over the time
interval of two periods, T = 2Tj; that is, the average power can also be computed from

T
1
P, == [p(t)dt 7.15
- !p( ) (7.15)
Substituting (7.13) into (7.15) results in

151 171
P, = —I—lem cos(@v -0, )dt+—j—lem Cos(2a)t +0, —Qi)dt
T2 T2

, (7.16)

= leIm cos(@v —Gi)+lelmiJ‘cos(2a)t+0v —Qi)dt
2 2 " T

Note that the second term contains the integral of the sinusoid over its period.
This integral is zero because the area under the sinusoid during a positive half-cycle is
cancelled by the area under it during the following negative half-cycle.

Thus, the second term in (7.16) vanishes and the average power becomes

1
Py :Evmlm COS(QV _01') (7.17)
Average Power in the Phasor Form  The phasor forms of v(¢) and i(¢) are

V=V,/0, (7.18a)

1=1,/6 (7.18b)
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Let’s evaluate the following expression

s :%lemz(ﬁv -6)

1
2 2 (7.19)
:EVW,IW, [cos(@v —0;)+ jsin(6, —6’,«)}

Comparing (7.19) with (7.17) reveals that the average power can be computed from
the phasor forms as

P, = Re{%l}i*} (7.20)

Average Power Delivered to a Resistive Load In the next section we will show that the
voltage current relationship for a resistor in phasor domain is

V =RI (7.21)
Since
1=1,/6 (7.22)

it follows that
V =RI, /0, (7.23)

Now, utilizing Eq. (7.20), we obtain the average power delivered to a resistive load as
P, = Re{lvr}
2
= Re{%(leLHi )Ll —6; )} (7.24)
1
- Re{E(RIm,» (L )}

or
2

A

P,.=—R (7.25)
2

7.2 Laplace Transform Basics

7.2.1 Definition of Laplace Transform

Consider a time function f{£) defined for ¢>0. The Laplace transform operates on a
time function and creates a new function that exists in a new domain, called the Laplace
or s domain.

F(s)=L{f(t)} (7.26)
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The formal definition of the Laplace transform is (Nilsson and Riedel, 2015, p. 428)
L{f(¢)}= [ f(t)e " dt (7.27)
o

Is this useful in EMC? Extremely! As we shall see, the Laplace transform will lead to
the concept of impedance, transfer function, and frequency transfer function, which
will allow us to carry the sinusoidal steady state frequency domain analysis. It is the
frequency domain analysis that is of utmost importance to an EMC engineer.

To get the feel for this definition let’s calculate the Laplace transform of a constant
and an exponential functions.

t=00

© © —st
L{A} = [Ae™dt=Afe™dt= A = _A (7.28)
0 0 o 8
w o e—(s+a)t (= 1
L{e“”} = je"‘”e"“dt = J.ef(””)tdt =- = (7.29)
o 0 sta |  s+a

Obtaining the Laplace transform of a time function using the definition is often time-
consuming and cumbersome. In practice, we often use the tables of Laplace transform
pairs, together with the properties of Laplace transforms to obtain the transform of a
given function which might not be tabulated.

The most common transform pairs that we might encounter in EMC problems are

(=1 o F(s):% (7.302)
f(t)=t = F(s):si2 (7.30)
f(t)=e" < 1—"(5):“1&Z (7.300)
f()=te" F(s):(s+la)2 (7.30d)
f(t)=sinot < F():sszz (7.30€)
f(t)=cosot < F(s):szjwz (7.30f)
f(t)=e“sinot < P(s)=(8+d)L2+w2 (7.30g)
f(t)=e“cosot = F(s)=—5—— (7.30h)

(s+a) +o°
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7.2.2 Properties of Laplace Transform

Next, we will present a few selected properties of Laplace transform that we will subse-
quently use in this book when discussing EMC applications.
Let

F(s)=£{f(t)} (7.31a)
G(s)=2{g(t)} (7.31b)
Then (linearity property)

B{af(t)+bg(t)}=aF(s)+bG(s) (7.32)

Before we present the next property, let’s define the unit step and time-shifted unit
step functions.
The unit step function is defined as

1, t20
u(t)=10 4<o (7.33)

Similarly, the time-shifted unit step function is defined as

1, t2a
u(t—a): 0, t<a (7.33b)

Both functions are shown in Figure 7.4.
The time shift property of the Laplace transform can be stated as

B{f(t—a)u(t—a)}ze_“sl-"(s) (7.34)

We will use this property when discussing the capacitive termination of a transmis-
sion line in the EMC application section of this chapter.

Figure 7.4 Unit step function. u(t) Unit step

u(t—a)y  Shifted unit step

1

(e}
[N P—
~
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The final very important property is the time differentiation:

B{df—(t)}:slf(s)— £(0) (735)

dt
B{%}ZSZF(S)—SJF(O)—%&O) (7.36)

When the initial value of the time function is zero, Eq. (7.33) becomes

B{df—(t)} =sF(s) (7.37)

dt

We will utilize this property later in this chapter when introducing deriving the
voltage—current relationships of inductors and capacitors in the s domain.

7.2.3 Inverse Laplace Transform

Often, we are given an expression for a function in the s domain, and we need to
determine the corresponding time-domain function. This is accomplished by perform-
ing the inverse Laplace transform operation.

In order to obtain f{¢) in the time domain from F(s) in the Laplace domain we may try
to use the Laplace transform tables. The tables, however, have a limited number of
transform pairs and many functions are not in them.

In many instances we can use an abbreviated version of Laplace transform pairs,
together with the properties of Laplace transforms, and apply partial fraction expansion.

For linear, lumped-parameter circuits, the s domain expressions (functions) for
the unknown voltages or currents are always rational functions of s. That is, F(s) can be
expressed as a ratio of two polynomials in s, such that the powers of s are non-negative
integers.

Thus, in general, F(s) has the form

F(s)= N(s) _ a,,s™ +am_1im’l +etas+ag (7.38)
D(s) §"+b, 18" -+ bis+by
where a and b are real constants, and m and # are positive integers. We will consider
proper rational functions, where m < n.
A proper rational function can be expressed as the sum of partial fractions with
constant coefficients. In order to apply partial fraction expansion, we express the
denominator of F(s) in the factor form:

LNG N |
F(s) D(s) (s+p1)(s+p2).(s+pc) 73

Since the order of the denominator is #, it follows that the polynomial D(s) will have »
roots, or poles, which may be real or complex, and distinct or repeated. In the following,
we will discuss distinct real roots.
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When the denominator D(s) has only distinct real roots then Eq. (7.39) can be
written as

F(s)=N6) N(s) (7.40)
D(s) (s+p)(s+p2)...(s+pn)
and s=—p;,—ps,...,—p, are real distinct roots. Then, F(s) can be expressed as
F(S):N(s): A A A (7.41)

D(s) (s+p1) (s+p) (s+pn)

The coefficients Ay are known as the residues of F(s). One way to obtain these residues
is to apply Heaviside’s theorem as follows.

To evaluate a typical coefficient Ay, multiply both sides of Eq. (7.41) by (s+ Pk ) The
result is

s)(s+ pr _NG) s+pi)= N(s)(s+2e)
F(s)(s+px) D((s)( ;9) Es+p1))(s+p2)...(s+pk)..(.(s+p3,) (7.42)
PN CE I N Cid 29 I R s+ pr
BT S N S

Equation (7.42) is valid for all values of s. We choose the values of s that lead to useful
results. Thus, we let = — p;. Then each term on the right-hand side of Eq. (7.42) vanishes,
except A.

Thus,

A=)

N(s)
(S)ka (7.43)

Example 7.1 Inverse Laplace transform — distinct real roots
Determine the inverse Laplace transform of

s+4
F(s)=——F7—
( 2 +45%+3s
Solution:
F(S) S+4 S+4 _ﬁ_’_ A2 " A3

s+4
(s+1)(s+3) 3

s=0
s+4 3

_s(s+3)87 2
s+4 l

3 = =

s(s-i—l)s

:s3+452+352s(s+1)(s+3) s s+1 s+3
4
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Therefore, using the table of transforms and the linearity property, the inverse Laplace
transform is

41 31 11 (4 3, 1
t =L_1 F = L_l 222 - p- - 224t — T3 )
F(E)=LHEG) {SS 23+1+6s+3} (3 2% T6° )

7.3 Fundamental Laws

We have, thus far, introduced the fundamental concepts such as current, voltage, and
power in an electric circuit. To determine the values of these variables in a given circuit
requires an understanding of some fundamental laws that govern electric circuits.

These laws, known as Ohm’s law and Kirchhoff’s laws, form the foundation upon
which electric circuit analysis is built. We will present these laws in the time domain, as
well as in the phasor and s domains.

7.3.1 Resistors and Ohm’s Law

The physical property of material, the ability to resist the flow of current, is known as
resistance. The circuit element used to model this behavior is the resistor.

The circuit symbol of a resistor and the voltage and current designations in the time
domain are shown in Figure 7.5.

The resistor R, is a two-terminal device, connected between two nodes A and B, has a
current i flowing through it, and a voltage v across it.

The relationship between current and voltage for a resistor is known as Ohmi’s law.

Ohm’s law states that the voltage across a resistor is directly proportional to the
current flowing through it. The constant of proportionality is the resistance value of
the resistor.

When the passive sign convention is satisfied, the Ohm’s law is expressed as

v=Ri (7.44a)
or alternatively,

.V
i=—

(7.44b)
Equations (7.44) constitute the voltage—current relationship for ,'(;)l

a resistor. We often refer to such a relationship as an element
constraint.

R is measured in units called ohms that can be obtained from R b )
Eq. (7.44):
R=" [Xﬂ!} (7.45) -
i A

When the passive sign convention is not satisfied, Ohm’s law is
expressed as Figure 7.5 Resistor
; symbol and circuit
v=—Ri (7.46a)  variables.
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or alternatively,

=Y (7.46b)
R

Conductance Ohm’s law can also be written as

i= lv =Gv (7.47)
R

where G denotes the conductance in siemens (S) and is the reciprocal of R.

G=L {S=l=é} (7.48)
R Q Vv

The concept of conductance not only simplifies circuit analysis (by avoiding the
division by R) but also has a physical meaning.
Conductance is a measure of how well an element would conduct electric current.

Power Dissipated by a Resistor Using Ohm’s law, the power dissipated by the resistor can
be expressed as

2
p=vi=R*=" WoVA=0QA2=_L (7.49)
R Q?

where v and i have been assumed to satisfy the passive sign convention.
Let’s calculate the power dissipated by the resistor, when the passive sign convention
is not satisfied. In this case, the power dissipated by the resistor is

p= —vi (750)
Now according to the Ohm’s law
v=—Ri (7.51)
Substituting Eq. (7.51) into Eq. (7.50) produces
p=-vi=—(-Ri)i=Ri’ (7.52)
Alternatively, substituting
=Y (7.53)
R
into Eq. (7.50) results in
v v
p = —Vi = —V(——j = — (7.54)
R) R

Results (7.52) and (7.54) agree with the result (7.49), and confirm the fact that the
resistors always dissipate power.
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Using the definition of conductance, the
power dissipated by the resistor can
alternatively be expressed as

p = Vi = = G]/2 (7.55)

Q™

Open and Short Circuit The value of a
resistance R can range from zero to infinity.
Two important extreme cases arise when
the resistance is zero or infinite.

When the resistance is zero, the resulting
circuit, shown in Figure 7.6, is called a
short circuit.

According to Ohm’s law

v=Ri=0i=0 (7.56)

showing that the voltage across a short
circuit is zero.

When the resistance of a resistor is
infinite, the resulting circuit, shown in
Figure 7.7, is called an open circuit.

According to Ohm’s law

Y_Y_ o (7.57)
R
showing that a current through an open

circuit is zero.

Ideal Switch The ideal switch can be
modeled as a combination of an open- and
short-circuit elements. Figure 7.8 shows the
circuit symbol of an ideal switch.

7.3.2 Inductors and Capacitors

B

Figure 7.7 Open circuit.

(@)

A
|
i
* o
V= R=0
[
.—
B
A
li:O
+
V R =0
B
()
A
.—
Vi
+
L
v=0
_ "
—
B

Figure 7.8 Ideal switch: (a) open (b) closed.

Inductor The circuit symbol of an inductor and voltage—current designations in the

time domain are shown in Figure 7.9.

When the passive sign convention is satisfied, the voltage—current relationships are

v(t):L%

(7.58a)
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1§ 17
i(t) -7 v(t)dt = i(0)+z.([v(t)dt (7.580) ) l
The unit of inductance is henry (H). Eq. (7.58a) can be used to
determine its equivalence. L v (t)
vepgd o v (7.59)
s A

In many EMC problems, we are concerned about the parasitic
inductances present in the circuit. These inductances are usually
in the range of a few to a few tens of nH.

Energy stored in the magnetic field of an inductor can be Figure 7.9 Inductor
calculated from symbol and circuit
; ; variables.
W, = [ p(t)de= [v(2)i(t)at
o e N
- (1)
Logi t(t=t) ! l
=L ;(tt)i(t)dt:L [ i(t)di (7.60)
e " i(t=e0) c T v
PO 1,
:LI:T =§L|:l (t)—0:|
i(foo)
or -
W, :lLl’Z (t) (7.61) Figure7.10 Capacitor
2 symbol and circuit

variables.

Capacitors The circuit symbol of a capacitor and the voltage current designations in
the time domain are shown in Figure 7.10.
When the passive sign convention is satisfied the voltage—current relationships are

i(t) :Cle(tt) (7.62a)
v(t):% ji(t)dt - v(0)+%ji(t)dt (7.62b)

The unit of capacitance is farad (F). Equation (7.62a) can be used to determine its
equivalence.
Vo A

A=F— = F
S \Y4

(7.63)

In many EMC problems we are concerned about the parasitic capacitance present in
the circuit. These capacitances are usually in the range of a few to a few tens of pF.
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Energy stored in the electric field of a capacitor can be calculated from

t

W, = jp(t)dtz Iv(t)i(t)dt

—©

¢ =t)
—_[v t)dt C j (7.64)

. v(-)

vz(t)}” 1,
:C{— :—c[v (t)—o]
2 |y 2
or

W, = %Cvz (¢) (7.65)

7.3.3 Phasor Relationships for Circuit Elements

Recall the time domain voltage—current relationships for resistors, inductors, and
capacitors (when passive sign convention is satisfied):

VR (t)ZRlR (t) (7.663)
i

vy (t)= Ll;—it) (7.66b)

ic(t)=C dV;t(t) (7.660)

We will transform the voltage—current relationship from the time domain to the
phasor domain for each element. Since we are concerned with the sinusoidal steady
state, all voltages and currents in the time domain are expressed as sinusoids.

Resistor In the time domain, if the current through a resistor R is
i=1I, Cos(a)t+9) (7.67)
then, according to the Ohm’s law, the voltage across it is
v=Ri=RI, cos(cot—i—@) (7.68)
The phasor form of the current is
1=1,/0=1I,¢" (7.69)
while the phasor form of the voltage is
V =RI,/6=RI,e" (7.70)
Therefore,

V=RI (7.71)
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Figure 7.11 Resistor symbol and circuit variables (a) (b)
in the (a) time domain, (b) phasor domain. A
i) IGon |
+ +
R v (1) R V(jw)

Thus, the voltage—current relationship for the resistor in the phasor domain
continues to be Ohm’s law, as in the time domain.

Figure 7.11 shows the resistor symbol and the circuit variables in both the time and
phasor domains.

Inductor In the time domain, let the current through an inductor L be

i=1I, Cos(a)t+0) (7.72)

The phasor form of this current is
1=1,/0=1I,¢" (7.73)

The voltage across the inductor, in the time domain, is

di(t) d
v(t)=L——==L—| I, cos(wt+6
( ) dt dt [ ( )} (7.74)
=—wLl,, sin(t +0)=wLl,, cos(wt +6 +90°)
and the phasor form of this voltage is
V =wLl, ") = LI,/ = jwLl, e/ = joLl, /0 (7.75)
Since
e/*” =c0s90° + jsin90° =0+ j1 = j (7.76)
we have
V =joll,e = joLl, /0 (7.77)

Therefore, utilizing Eq. (7.73), we arrive at the voltage—current relationship for an
inductor in the phasor domain as

V=jwLl (7.78)

Figure 7.12 shows the inductor symbol and the circuit variables in both the time and
phasor domains.
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(a) (b) Figure 7.12 Inductor symbol and circuit variables

in the (a) time domain, (b) phasor domain.

;ml * i(jw)l -

L v(7) L V(jw)

Capacitor In the time domain, let the voltage across a capacitor C be
v=V,,cos(wt+0)
The phasor form of this voltage is
V=V,£0=V,e"

The current through the capacitor, in the time domain, is

d
i(t): Zi(t) Cc— [V COS a)t+9)]
=—a)CVmsm((ut+9) wCV,, cos(wt +6 +90°)

and the phasor form of this current is

1= CV, /%) = oCV, e/
= joCV,e” = joCV,, 20

(7.79)

(7.80)

(7.81)

(7.82)

Therefore, utilizing Eq. (7.72), we arrive at the voltage—current relationship for a

capacitor in the phasor domain as

I=joCV

(7.83)

Figure 7.13 shows the capacitor symbol and circuit variables in both the time and

phasor domains.

7.3.4 sDomain Relationships for Circuit Elements

Resistor In the time domain, voltage and current are related by Ohm’s law:

v(t)=Ri(t)

Taking the Laplace transform of both side of Eq. (7.84) we get

£{v(0)}=£{Ri(0)

(7.84)

(7.85)
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Figure 7.13 Capacitor symbol and circuit (a) (b)
variables in the (a) time domain, (b) phasor
d i . + ~ +
emain i(t)l i jm)l
c ___ v C _ V(o
(@) (b) ©
i(r)l i (jw)l i (s)l
+ + +
R V(1) R V(jw) R V(s)
Figure 7.14 Resistor symbol and circuit variables in the (a) time domain, (b) phasor domain,
(c) s domain.
or
V(s)=RI(s) (7.86)

Thus, the voltage—current relationship for the resistor in the s domain continues to
be Ohm’s law, as in the time domain.

Figure 7.14 shows the resistor symbol and the circuit variables in the time domain,
phasor domain, and s domain.

Inductor In the time domain, the current—voltage relationship is

v(t):L? (7.87)

Taking the Laplace transform of both side of Eq. (7.87) we get

di(t)

L{v(t)} :B{LW} (7.88)
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(a) (b) (©)
i (r)l * i(jru)l * i(s)l *
L v (1) L V(jo) L V(s)

Figure 7.15 Inductor symbol and circuit variables in the (a) time domain, (b) phasor domain,
(c) s domain.

When the initial inductor current is zero, we obtain
V(s) = st(s) (7.89)

Figure 7.15 shows the inductor symbol and the circuit variables in the time domain,
phasor domain, and s domain.

Capacitor In the time domain, the current—voltage relationship is

i(t) :cd;—(tt) (7.90)

Taking the Laplace transform of both side of Eq. (7.90) we get
dv(t)
Lli(t) =L C——= 791
ey -fe ) 7o
When the initial inductor current is zero, we obtain
f(s)zsCV(s) (7.92)

Figure 7.16 shows the inductor symbol and the circuit variables in the time domain,
phasor domain and s domain.

7.3.5 Impedance in Phasor Domain

In the previous section, we obtained the voltage—current relations for the three passive
elements as

V =RI (7.93a)
V =jwLl (7.93b)

[=joCV (7.93c)
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(a) (b) (©)
+ R + R +
i (t)l 1(_/(,))l is) l
c - v (1) C _: V(jw) c - V(s)

Figure 7.16 Capacitor symbol and circuit variables in the (a) time domain, (b) phasor domain,
(c) s domain.

These equations may be written in terms of the ratio of the phasor voltage to the
phasor current as

% _R (7.94a)
% _ jol (7.94b)
% _ j;c (7.94¢)

From these three expressions, we obtain Ohm’s law in phasor form for any type of
element as

Y_; (7.952)
i

or
V=21 (7.95b)

7 is a frequency-dependent quantity known as impedance, measured in ohms.

The impedance 7 of a circuit element is the ratio of the phasor voltage V, across it, to
the phasor current [, through it.

The impedance represents the frequency-dependent opposition to the sinusoidal
current flow.

Although the impedance is the ratio of two phasors, it is not a phasor, because it does
not have a corresponding sinusoid in the time domain.

The impedances of a resistor, inductor, and capacitor are, respectively,

Zp=R (7.96a)
Z, = jol (7.96b)
So=d / (7.96¢)

“TjeC” wC
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Let’s consider two extreme cases of frequency: dc circuits (@ = 0) and high frequency
circuits (@ — o).
Under dc conditions

Z,=0 (7.97a)
Ze=o (7.97b)

confirming that, at dc, the inductor acts like a short circuit, while the capacitor acts like
an open circuit.
At very high frequencies

7, = (7.98a)
Ze=0 (7.98b)

verifying that, at very high frequencies, the inductor acts like an open circuit, while the
capacitor acts like a short circuit.
Since the impedance is a complex quantity, it can be expressed as

Z=R+jX (7.99)

where R = Re{Z} is the resistance, and X :Im{Z} is the reactance. The impedance,

resistance, and reactance are all measured in ohms.

For passive circuits, resistance R is always positive. The reactance X may be positive
or negative. When the reactance X is positive, we say that the reactance is inductive.
When the reactance X is negative, we say that the reactance is capacitive.

In some applications, it is convenient to work with the reciprocal of impedance,
known as admittance.

1

Y== (7.100)
Z

The admittances of a resistor, inductor, and capacitor are, respectively,

1

Yi=—=G (7.101a)
R
A (7.101b)
joL
Y = joC (7.101c)
Since the admittance Yis a complex quantity, it can be expressed as
Y=G+/B (7.102)

where G = Re{Y } is the conductance, and B = Im{Y } is the susceptance. The admittance,
conductance, and susceptance are all measured in siemens.

Often, when drawing circuit elements in phasor domain, we replace the component
values with the corresponding impedance, as shown in Figure 7.17.
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io) | + i(jw)l + i(jw)l +

1 ——
R V(jw) joL % V(jw) ~joC T V(o)

Figure 7.17 Circuit elements and theirimpedances.

7.3.6 Impedancein the s Domain

Recall the voltage—current relationships for the circuit elements under the zero initial
conditions assumption:

V(s)=RI(s) (7.103a)
V(s)=sLi(s) (7.103b)
i(s)zsCV(s) (7.103c)

These relationships may be written in terms of the ratio of the Laplace transform of
the voltage across the element to the Laplace transform of the current through the

element, as

V() (7.104a)
1(s)

Vi) (7.104b)
1(s)

‘%(S) -1 (7.104c)
I(s) sC

From these three expressions, we obtain Ohwmi’s law in the s domain for any type of
element as

V(s) _, (7.105a)

or
V(s)=ZI(s) (7.105b)

Where Z is a complex quantity known as impedance, measured in ohms.
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I (S)l + i (s)l - i (s)l +

R V(s) sL V(s) — — V()

Figure 7.18 Circuit elements and theirimpedances.

The impedance 2(s) of a circuit element in the s domain, is the ratio of the Laplace
transform of the voltage V(s), across it, to the Laplace transform of the current I(s),
through it.

The impedances of a resistor, inductor, and capacitor are, respectively,

Zp=R (7.106a)

2, =L (7.106b)

Zo=L (7.106¢)
sC

Often, when drawing circuit elements in the s domain, we replace the component
values with the corresponding impedance, as shown in Figure 7.18.

7.3.7 Kirchhoff’s Laws in the Time Domain

There are two fundamental laws governing electric circuit behavior: Kirchhoff’s current
law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff’s laws can be regarded as the connection constraints, since they impose con-
straints the voltages and currents when different elements are connected to form an
electric circuit.

Kirchhoff’s laws, when coupled with Ohm’s law, provide us with a set of tools for
systematic analysis of a large variety of electric circuits. Virtually, all circuit laws to be
discussed in the following chapters are based or can be derived from Kirchhoff’s laws
and the element constraints.

Kirchhoff's Current Law (KCL) Kirchhoff’s current law (KCL) is based on the law of
conservation of charge and is a consequence of the fact that charge cannot accumulate
or be depleted at a node.

KCL states that the sum of the currents entering a node must be equal to the sum of
the currents leaving the node.

To illustrate KCL, let’s consider the node shown in Figure 7.19.

Currents i3 and i, enter the node, while the currents iy, i», and i5 leave the node. Thus

iy +iy =i +iy +is (7.107a)
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Note that KCL in Eq. (7.107) can also be written as
—iy—ly—i5+i3+iy =0 (7.107b)

In general, KCL can stated as the algebraic sum

N
zik =0 (7.108)
k=1

Where N is the number of branches (wires) con-
nected to the node and i is the kth current entering or
leaving the node.

The term algebraic implies the dependency on
the current reference direction, that is, whether the
current “enters” or “leaves” the node. We will adopt
the following convention:

Current entering a node will have a “+1” multiplier preceding its value, whereas current
leaving a node will have a “~1” multiplier preceding its value.

Note that Eq. (7.107b) conforms to this notation.

Figure 7.19 lllustration of the
Kirchhoff’s current law.

Example 7.2 KCL
Let the currents in Figure 7.19 have the values: 4§ =—8A,i, =3A4,i3 =24,i; =4A
Determine i,.

Solution: Applying KCL at the node results in
2+i, =—8+3+4

Thus i, =—-3A.

Example 7.3 Current sources in parallel

A simple application of KCL is combining current sources in parallel. For example, the

current sources shown in Figure 7.20(a) can be combined as shown in Figure 7.20(b).
Applying KCL at node A:

L+L=L+I; = Ir=L-L+1; (7.109)

When the current sources are connected in parallel, the equivalent current is the alge-
braic sum of the currents supplied by the individual sources.
u

Note that a circuit cannot have two different current sources in series, unless their
currents are equal, otherwise the law of conservation of charge is violated.

Kirchhoff’s Voltage Law (KVL) ~ Kirchhoff’s voltage law (KVL) states that the algebraic sum
of all voltages around any loop in a circuit is identically zero at all times.
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(a) I Figure 7.20 Combining current sources in
T parallel.
A
@ « (D

B

(b)
I
ol

R, R, Figure 7.21 lllustration of the Kirchhoff’s

AN AN voltage law.

The term algebraic implies the dependency on the voltage polarity encountered as the
closed path is traversed. We will adopt the following convention:

“« »

In traversing the element, when going from (+) to (-), we assign a “~” sign to the voltage,
whereas, when going from (=) to (+), we assign a “+” sign to the voltage.

When traversing the loop, we can start with any element and go around the loop
either clockwise or counterclockwise. To illustrate KVL, let us consider a circuit shown
in Figure 7.21.

Suppose, we start with the voltage source v and traverse the loop in the clockwise

direction. Applying KVL yields
Vg~V +Vy + Vg +v3=0 (7.110)

In traversing the element, when going from+to —, we refer to the voltage as the
voltage drop, whereas when going from — to +, we talk about a voltage rise.
In general, KVL can be expressed as the algebraic sum

N
S =0 (7.111)
k=1

where N is the number of voltages in the loop and v is the kth voltage.
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Figure 7.22 Combining voltage sources in

: @
series. : :
A @
+
Vi £ V3

Vas
B
(b

A —

+

+

Vig ) Vap=Vi=Vat Vs

Y s

Example 7.4 Voltage sources in series

A simple application of KVL is combining voltage sources in series. For example, the

voltage sources shown in Figure 7.22(a) can be combined as shown in Figure 7.22(b).
The equivalent voltage source in Figure 7.22(b) is obtained by applying KVL:

Vg +V1-Vo+V3=0 (7.112a)
or equivalently
Vap=V1-Vo+V; (7.112b)

When the voltage sources are in series, the equivalent voltage is the algebraic sum of
the voltages of the individual sources.
| |

Note: A circuit cannot contain two different voltage sources in parallel, unless they are
equal, otherwise the law of conservation of energy is violated.
7.3.8 Kirchhoff’s Laws in the Phasor Domain

Kirchhoff's Current Law Let the KCL in the time domain be stated as
N
D=0 (7.113)
k=1
or, equivalently
i (t)+iy(¢)+---+in(£)=0 (7.114)

KCL holds for any time function of currents. Let each current in Eq. (7.113) be sinu-
soidal of the form

i (t)zlmk COS(COt-i—Ok) (7115)
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Then the corresponding phasor is

I, = 1,426, = I/ (7.116)
It follows that Eq. (7.114) can be written in the phasor form as

I+l +-Iy=0 (7.117)
Eq. (7.117) represents KCL in the phasor domain.

Kirchhoff’s Voltage Law Let the KVL in the time domain be stated as
Dvi(t)=0 (7.118)

or, equivalently
vl(t)+v2(t)+---+vN(t):0 (7.119)
Let each voltage in Eq. (7.119) be sinusoidal of the form
Vi (£) =V, cos(ot +06y ) (7.120)
and each corresponding phasor be
Vi =V,u 26, =V, e (7.121)
Then, the KVL in phasor domain holds, and has the form

‘}1+‘}2+"'+‘}N:0 (7122)

7.3.9 Kirchhoff’s Laws in the s Domain

Kirchhoff’s Current Law Let the KCL in the time domain be stated as
i (t)+i(¢)++in(£)=0 (7.123)
Taking Laplace transform of Eq. (7.123) gives
L1iy () +ip () +-+in (£)] = £{0} (7.124)
By the linearity property, we have
Ly (t)}+ L{i ()} +--+ L{iy (£)} =0 (7.125)
or

Li(s)+ Ly (s)++-+1y(s)=0 (7.126)

Equation (7.126) represents KCL in the s domain.
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Kirchhoff's Voltage Law  Let the KVL in the time domain be stated as
vi(£)+vy(t)+---+vy(£)=0 (7.127)
Taking Laplace transform of Eq. (7.127) gives

L{v(£)+va(t)++vy ()} =0 (7.128)

By the linearity property, we have

L{vi (¢)}+L{n (£)}+-+L{vy(£)} =0 (7.129)
\}l(s)+V2(s)+---+VN(s):O (7.130)

Equation (7.130) represents the KVL in the s domain.

7.3.10 Resistors in Series and the Voltage Divider

The analysis of an electric circuit can often be made easier by replacing a part of the
circuit with one that is equivalent but simpler. This leads us to the definition of the
equivalence.

Equivalence of Two Circuits Two circuits are said to be equivalent, with respect to the
same two nodes, if they have identical i—v characteristics at these nodes.

Consider the circuits shown in Figure 7.23(a) and 7.23(b).

In order for these two circuits to be equivalent with respect to nodes A and B, the i—v
characteristics with respect to these two nodes must be the same. Thus V43 and [ in
circuit 7.23(a) must be equal to V43 and [ in circuit 7.23(b).

Resistors in Series Resistors R, R,, and R; in Figure 7.23(a) are connected in series
because each two resistors exclusively share a single node; resistors R; and R, share
node C, whereas resistors R, and Rz share node D.

This is the topological definition of a connection in series. Two or more elements are
connected in series when each two exclusively share one common node.

Figure 7.23 lllustration of the (a) (b)
circuit equivalence. Ji R, C R, 1
A e = AN—e— N, Ae——y
+ V] + + V') — +
Vap D Vag g Rpo
_ R, _
B NATAY Be——
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On the other hand, elements connected in series have the same current flowing
through them. This is the circuit-variable definition of the connection in series.

Series Equivalent Resistance Looking at the two circuits in Figure 7.23 we may pose the
following question:

Under what condition are the two circuits equivalent? That is, what is the relationship
between R;, Ry, R3, and R which results in the voltage V5 and the current I being the
same in both circuits?

We will answer this question by applying basic circuit laws. Let’s use the KVL
(connection constraint) around the loop in the circuit shown in Figure 7.23(a):

Vg -Vi+V2+V3=0 (7.131)
Using Ohm’s law for each resistor (element constraint) we get

Vi=-RI (7.132a)

Vo =Ry (7.132b)

Vs =Rl (7.132¢)

Substituting Eq. (7.132) into Eq. (7.131) we get
_VAB —(—R11)+R21+R3 =O (7.133)

or

(Rl +R2 +R3)I:VAB (7134)

On the other hand, writing Ohm’s for the circuit shown in Figure 7.23(b) results in
REQI = VAB (7135)

For the two circuits shown in Figure 7.23 to be equivalent, the following condition
must be met:

REQ :Rl +R2 +R3 (7.136)
In general, the equivalent resistance Rgq of a series of N resistors is
N
Req =R +Ry+--+Ry =D Ry (7.137)
k=1

Voltage Divider Let’s return to the circuit shown in Figure 7.23(a), redrawn as

Figure 7.24.
From Eq. (7.126) we get
o Vas (7.138)
R+ Ry + Ry
Substituting this result back into (7.132) produces
Vi= LVAB (7.139a)

TR AR 4R
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R, I R R
V=2 Vv (7.139b) — 1 2
PTRAR R Ae AN A
+ - Vl + + V2 -
Vs ZLVAB (7.139¢)
Rl + R2 + R3 VAB
Thus the magnitude of the voltage appear-
ing across each resistor connected in series is - R,
equal to the ratio of its resistance to the total p o VaYLY
resistance in the path formed, from the begin- A

ning of the string of the resistors (node A) to
the end of the string of the resistors (node B)  Figure 7.24 lllustration of the voltage
multiplied by the voltage between nodes divider.
A and B.

In general, if we had N resistors connected in series, the voltage across the nth resistor
would be

Vet B (7.140)
Rl +R2 +"‘+RN

This circuit demonstrates the principle of voltage division, and this rule is called a
voltage divider.

The natural question arises: when do we put a plus or a minus sign in this formula?

We put the plus sign in the voltage divider formula when the following takes place:

When we traverse the loop moving through V5, we move through the minus to plus
of its reference direction and when we move through a particular resistor, we encounter
the plus of its reference direction first.

Any change to the reference directions results in a sign reversal. The following exam-
ples will test our understanding of the voltage divider.

Example 7.5 Voltage divider
Consider the circuit shown in Figure 7.25.

Use the voltage divider to express V) in R,
terms of V. > W
Answer:
+
Rl §
Vi= V- R
! R1+R5 3 > V3§R3 §R6
| R, _
. VWL —e—— W
Example 7.6 Voltage divider + v, - R,
Consider the circuit shown in Figure 7.26.
Use the voltage divider to express V7 in
terms of V.
Answer: 4%
R
R 4
y ==V

Rs+ R, Figure 7.25 Circuit for Example 7.5.
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R, Rs Figure 7.26 Circuit for Example 7.6.
— — WA
+ _
R
6 R3 V? V7 R7
- +
-— WL
Ry
(@ , (b) ,
A
A Ae—

B B

Figure 7.27 Resistors in parallel and circuit equivalence.

7.3.11 Resistors in Parallel and the Current Divider

Resistors in Parallel Consider the circuit shown in Figure 7.27(a).

Resistors Ry, R,, and R; in Figure 7.27(a) are connected in parallel because they all are
connected between the same two nodes, A and B (any parts of the circuit connected
with a wire, or a short circuit, electrically constitute the same node).

This is the topological definition of the connection in parallel. Two or more elements
are connected in parallel when they are connected between the same two nodes.

On the other hand, if the elements are connected in parallel, then they have the
same voltage across them. This is the circuit-variable definition of the connection in
parallel.

Parallel Equivalent Resistance Looking at the two circuits in Figure 7.27 we may pose the
following question:

Under what condition are the two circuits equivalent? That is, what is the relationship
between Ry, Ry, Rs and Rrq which results in the voltage V and the current I being the
same in both circuits?

Let’s use the KCL at node A in the circuit shown in Figure 7.27(a):

I+L=1+1; (7.141)
Using Ohm’s law for each resistor we get

L=Y (7.142a)
R



Basic Laws and Methods of Circuit Analysis

LoV 7.142b
S ( )
L= (7.1420)
Rs

o v,V (7.143)
R R K
or
i+L+i 1=V (7.144)
R R, R

On the other hand, writing Ohm’s for the circuit shown in Figure 7.27(b) results in
1
— =V (7.145)
REQ

For the two circuits shown in Figure 7.26 to be equivalent, the following condition
must be met:

1 1. 1.1 (7.146)

Reg R R, Rs

In general, the equivalent resistance R of N resistors connected in parallel is

N
1 1. 1. ,1._s1 (7.147)
Rq R R Ry SR
In terms of conductance, Eq. (7.147) becomes
N
GEQ:GI +G2 +"'+GN :ZG]( (7.148)

k=1

It is useful to derive the formula for two resistors connected in parallel, shown in
Figure 7.28.

Figure 7.28 Equivalentresistance  (a) (b)
of two resistors in parallel.
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(a) (b) Figure 7.29 Equivalent resistance
of a resistor in parallel with a short.
A Ae——
% R Ry =0 Rpp=0
B Be—— 1

According to Eq. (7.147) we have

1 1.1 (7.149)
Reg R Ry

or
L = M (7.150)
Rpg  RiRy

thus
Rpg = RiR (7.151)

R+ R

We arrived at a very useful result: the equivalent resistance of two resistors in parallel
is equal to their product divided by their sum.

Using this result we can easily determine the equivalent resistance of a resistor paral-
lel to a short circuit (R =0), shown in Figure 7.29.

According to Eq. (7.151) we have

R1R2 _ R1><0 -0

— (7.152)
Ri+R, R +0

REQ =

Thus, the equivalent resistance of a resistor parallel to a short circuit is zero, the same
as a short circuit itself. Therefore, when a resistor is bypassed by short circuit we can
replace it by a short, as shown in Figure 7.29(b).

CurrentDivider Let’s return to the circuit shown in Figure 7.27(a), redrawn as Figure 7.30.
Equation (7.144) repeated here

i+i+i 1=V (7.153)
R R R

leads to

1

= (7.154)
G, +G,+G;



Substituting this result back into Eq. (7.142)
produces

L=Y_gve—9 (7.155a)
R G, +G,+G;
Le-Y o Gve—5 | (7155
R, G, +Gy+Gs
I :K:GSV:LI (7.155¢)
Rs G +G,+G3

A

B

Basic Laws and Methods of Circuit Analysis

I/
—

+

14

L

Se 2

22

gRa

Figure 7.30 lllustration of the current

divider.

Thus, the magnitude of the current flowing out of the node through each resistor
connected in parallel is equal to the ratio of its conductance to the total conductance of
the resistors in parallel multiplied by the current flowing into the node.

In general, if we had N resistors connected in parallel, the current through the nth

resistor would be

Gk

L=t——%
G1+G2 +"'+GN

(7.156)

This circuit demonstrates the principle of current division, and this rule is called a

current divider.

The natural question arises: when do we put a plus or a minus sign in this formula?
We put the plus sign in the current divider formula when the following takes place:
The total current flows into the node and the individual current flows out of the node.
Any change to the reference directions results in a sign reversal.
It is useful to derive the formula for the current divider when two resistors are con-

nected in parallel, shown in Figure 7.31.
According to formula (7.156) we have

1
11 = Gl Rl 1
G, +G, 1 1
R R
or
1
Ry
= 7.1
I R+R 1 (7.158)
RiR,
resulting in
I = R, (7.159)
R+ R,

(7.157)

X

ém

U

ém

Figure 7.31 Current divider
rule for two resistors in parallel.
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Similarly,
1
I, = G R (7.160)
Gl +G2 1 +i
R R
or
1
Ry
= 7.161
L &+&I (7.161)
RiR,
resulting in
I, = R (7.162)
R +R,

This is a very useful result: when we have two resistors in parallel, the current
flowing in one path equals the resistance in the other path divided by the sum of both
resistances in parallel, times the current flowing into the node.

The following examples will test our understanding of the current divider.

Example 7.7 Current divider
Consider the circuit shown in Figure 7.32.
Use the current divider to express I; in terms of .

Solution:

_ R
R, +R,

7 I

Example 7.8 Current divider
Consider the circuit shown in Figure 7.33.

R
Use the current divider to express I; in terms of . /W'f”l/
Solution: )é
Ry 2,
I = M I W
T R AR AR
Rs
§ R; Rg
7.3.12 Impedance Combinations and Divider Rules (]L
in Phasor Domain 4
R, R,

Impedances in Series Consider the N impedances
connected in series as shown in Figure 7.34. Figure 7.32 Circuit for Example 7.7.
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Figure 7.33 Circuit for Example 7.8. R, Rs
— W 4%

I
. ——YMN
R,
Figure 7.34 Impedancesin R Z 7 7
: i 1 2 N
series. _LA — — 1
L |:|
+ V- o+ - + Vy -
O
Zo
B
Applying KVL around the loop gives
V:\%+V2+---+VN (7.163)
Since the same current I flows through all impedances, we have
The equivalent impedance at the input terminals is
ZEQ:7:21+Z2+”'+ZN (7.165)
leading to
ZAEszAl +Z2+"‘+ZN (7.166)

Showing that the equivalent impedance of series-connected impedances is the sum of

the individual impedances.
This relationship has the same mathematical form as that for the resistors in series.

Voltage Divider Consider the circuit shown in Figure 7.35.
Combing the impedances in series and using Ohm’s law we can express the current as

[ (7.167)
i+ 27,
Now,
V=21 (7.168a)
‘}2 _ sz (7.168b)
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A

7 Figure 7.35 Voltage divider circuit.

i
—_—

+ V-

Figure 7.36 Impedances in parallel.

I a
e
+ |1 |7, Ly
VC:)[—) 14 A Z, ZN
Zyg -
B

Using Eq. (7.167) in Eq. (7.168) produces the voltage divider relationships.

A

Vi=— 4y (7.169a)
Z1+2Z,
VAR

Impedances in Parallel Consider the N impedances connected in parallel as shown in
Figure 7.36.
Applying KCL at the upper node gives

I=l+1++1y (7.170)

Since the voltage V' across each impedance is the same, we have

A R (7.171)
Zy 2y Zn
The equivalent impedance at the input terminals is
=ty (7.172)
Zgg
leading to
Al = 1 +AL+~-+AL (7.173)
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Figure 7.37 Current divider circuit. i
—

of +
© i ||

showing that the reciprocal of the equivalent impedance of parallel-connected imped-
ances is the sum of the reciprocals of the individual impedances.
This relationship has the same mathematical form as that for the resistors in parallel.
In terms of admittances, Eq. (7.173) can be written as

Yeo =Yi+Y, +-+Yy (7.174)

Current Divider Consider the circuit shown in Figure 7.37.
The equivalent impedance of the two impedances in parallel is obtained as

1L _ 1.1 _Zi+2 7.175)
Zeg Ly 2y VAVZ) )

thus

Zpg =2 (7.176)

The voltage across each impedance is

A A

AV,
V=Zpol =22 (7.177)
Zi+2Z,
Now,
I = v (7.178a)
Z
I = 4 (7.178b)
Zy
Using Eq. (7.177) in Eq. (7.178) produces the current divider relationships.
=2 _j (7.179a)
i+ 27,
I 4 (7.179b)

2 == ~
Z,+2Z,
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Example 7.9 Impedance combinations
Determine the input impedance of the circuit shown in Figure 7.38. Assume that the

circuit operates at @ =1000rad/s.

Solution: Combine the components in series, and redraw the circuit as shown in

Figure 7.39.
Where
A S —=-j250 [Q]
joC;  ”1000x4x10"
s 1 1
Zy=Zp +Z¢c, =Ry + =5-j———  =5-j5 [Q
2o e R e T  To00x200x10° 7 (€]

Zs=Z, +Zp = joL+ R = j1000x0.1+4 =4+ j100 [Q]

The input impedance is thus

A

. 7 5—j5)(4+ j100
Zs=2, +—AZZZ?1 :—j250+( / )( i )
22 +

Zm=2n+ 2.
e Z 5— j5+4+ j100

20+ j500 - j2 20+ j4
— 250+ 0+ ;500 ‘] 0+500 — 250+ 5 O+‘] 80
9+7j95 9+ 595
520+ 7480
=—j250+ 220 55016 j254.95
Ci=4uF L=100 mH Figure 7.38 Circuit for Example 7.8.
|| 000"
) Ry=5Q é R =4Q
Zin
—_—
C, =200 uF
Zl 23 Figure 7.39 Circuit for Example 7.9.
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Example 7.10 Voltage divider
Consider the circuit shown in Figure 7.40. Let V =100V.
Use the voltage divider to determine the voltage across the resistor.

Solution:

‘}R: 3_] (100): 3—{' (IOO)ZM(IOO)
3_j+/5 3+ j4 (3+/4)(3-j4)
9-j12-/3 4{1()() _>-J15 100)=20- 60

916 (100)= 55 (100) ]

Example 7.11 Current divider
Consider the circuit shown in Figure 7.41. Let

1=0.12+j0.16A

Use current divider to determine the capacitor current

Solution:

i Zn_j__ 3000

fe=s2R j= S (0.12+0.16)=0.06 + j0.18 =0.19.£71.6° A

Figure 7.40 Circuit for Example 7.10. j5Q
+ +
v Ve 3-jQ

Figure 7.41 Circuit for Example 7.10. i 7500 Q

—leOOQ:_ 3000 Q
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Example 7.12 s domain analysis

The initial conditions are zero in the circuit shown in Figure 7.42. Determine the equiv-
alent impedance between nodes A and B. Use the voltage divider to determine V((s).
Use the current divider to determine Ig(s).

Solution: Transform the circuit to the s domain (Figure 7.43).
The impedance of the parallel configuration of R and Cis

rL <
Rlc=—3C _
R+i SRC +1
sC

Thus, the input impedance is

ZiVI =sL+

sRC+1
Using the voltage divider we get
R

Ve(s)=—SRCEL v (s)
sL+

SRC +1

Using the current divider we get

1
Ie(s)=—5C1(s)
R+—
sC
i(1) L Figure 7.42 Circuit for Example 7.12.
A ——00"
+
l ig()
+ V-
V() C_) R ; C__Ve®
5 _
I(s) sL Eigure|7.¢;3] 2s-domain circuit for
A > W Xample /.12.
+
(WG

V(s) CD R % 1/5C _— Vel(s)
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(@)

Generator Receptor

Ground plane

(b)

Ry I5(z1)  Generator conductor

Receptor conductor
+ J + +
170) Ve(z0) Ir(z0) § Ry
Rng VNE Ve Vg Rpg
I5(z,0) + Ip(z,0) _

Z=0 Reference conductor Z=1L

Figure 7.44 Three-conductor transmission line: (a) PCB arrangement; (b) circuit model.

7.4 EMC Applications

In this section we will present two EMC examples illustrating the applicability of the
material covered in this chapter.

The first example will illustrate the use of a voltage and current divider as applied
to a time-domain circuit model of crosstalk between PCB traces. The second example
will show the applicability of the s domain analysis to describing the reflections on a
transmission line terminated by a capacitive load.

7.4.1 Crosstalk between PCB Traces

Recall the crosstalk circuit model described in Section 1.10.1, and shown in Figure 7.44
(Adamczyk and Teune, 2009)

The current on the generator line, I, creates a magnetic field that results in a magnetic
flux yg crossing the loop of the receptor circuit, as shown in Figure 7.45(a).

If this flux is time varying, then according to Faraday’s law, it induces a voltage Vz in
the receptor circuit. The circuit model of this field phenomenon is represented by a
mutual inductance and is shown in Figure 7.45(b). (We will describe this model in detail
in Chapter 17.)

Using the current divider, we obtain the induced near- and far-end voltages as

Ve (£)=—NE__ 26 (7.1804a)
e (£) Rup + R " dt
Vie (t)=— Rer als (7.180b)

Ryg +Ree | dt
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(@) () m

Vo Rue § VNE VrE R
I

o L |

Figure 7.45 Inductive coupling between the circuits: (a) field model, (b) circuit model.

@ g N (b)

46 _ —

Figure 7.46 Capacitive coupling between the circuits: (a) field model, (b) circuit model.

Similarly, the voltage between the two conductors of the generator circuit, Vg, has
associated with it a charge separation that creates the electric field lines, some of which
terminate on the conductors of the receptor circuit as shown in Figure 7.46(a).

If this charge (voltage) varies with time, it induces a current in the receptor circuit.
The circuit model of this field phenomenon is represented by a mutual capacitance and
is shown in Figure 7.46(b).

Using the voltage divider, we obtain the induced near- and far-end voltages as

RNERFE C dVG

Vi (£) = ; 7.181a
e (£) Rye +Ree " dt (7.1812)
Vi (1) = SeRne ¢ Vs (7.181b)

7.4.2 Capacitive Termination of a Transmission Line

In this section we will show the application of the s domain analysis to the transmission
line terminated by a capacitive load. (We will discuss transmission lines in detail in
Chapter 17.)

Consider the circuit shown in Figure 7.47.

A line of length d is terminated by a capacitor C with zero initial voltage. A constant
voltage source with internal resistance equal to the characteristic impedance Z¢ of the
line is connected to the line at £ =0.
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Z, -
C t=0 ic
—
Ze V ~ Vil
Vs e __ €
-[ Vi, _
: !
z=0 z=d
Figure 7.47 Transmission line terminated by a capacitive load.
Zc
Zen Tp *
Vs Vet —— L
K —‘7 sC
! :
z=0 z=d

Figure 7.48 s domain circuit model.

As we will learn in Part III, the moment the switch closes at ¢t =0, the voltage and
current waves (v; and i;) originate at z = 0 and travel down the line to reach the load end
at time 7.

Upon arriving at the load the reflected voltage and current waves (v, and i,) are
created.

In order to determine the reflected waves, the circuit is transformed to the s domain,
as shown in Figure 7.48.

The time-domain voltage at the capacitive load is given by (Paul, 2006, p. 235)

ve(t)=(1+4T, )%Vou(t 1) (7.182)
Taking Laplace transform of Eq. (7.182) we obtain
Ve (s):(1+FL (s))%\/s (s)e™™ (7.183)

Where I'; is the load reflection coefficient given by
1

_ ZL — ZC _ sC
Zy+Zc % + Ze (7.184)

-1 (5

Zc

L

S
_ l—SZCC _ I—STC
1+SZCC 1+STC
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Figure 7.49 HyperlLynx circuit model of a transmission line terminated by a capacitive load.

Voltage (V)

—2.000

6.000
/Dr er voltage
5.000 f\/ — \ \
4.000
z X Capacifor voltage \
3.000
2.000

il RW

-1.000

U1.20 Rl TL 1
50.0 ohms 50.0 ohms %
MODvsEZBIS 290.000 ps Cl
CMOS,5V,ULTRA,... Simple
Net003 Net001
5.0 pF

0.00 1.000 2.000 3.000 4.000 5.000 6.000 7.000
Time (ns)

Figure 7.50 Driver voltage and the voltage across the capacitor.

Substituting Eq. (7.184) into Eq. (7.183) gives

1 _ 1-sT- 1V, _
Ve (s)=(1+FL (s))EVS (s)e”™ =(l+ﬁj5%e sTo

(7.185)
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Rearranging and using partial fraction expansion (see Section 7.2.3) we get

VC(S)_(Hﬁjmeﬂ _LesTe+1-sTe 1Yo o,

1+sT- )2 s 1+sT 2s
1 (7.186)
— 1 ﬁe*STD — TC ﬁe*STu — l_ 1 Voe*STD
1+sT¢ s s+i s s oL
TIc Tc

Using inverse Laplace transform yields (Paul, 2006, p. 238)

t=Tp
Ve (t):\/ou(t—TD)—e Te Vou(t—TD) (7.187)

Figure 7.49 shows a circuit schematic of a transmission line driven by a 5V CMOS
and terminated in a capacitive load.
The driver voltage and the voltage across the capacitor are displayed in Figure 7.50.
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8.1 Node Voltage Analysis

8.1.1 Node Analysis for the Resistive Circuits

In Chapter 7 we discussed the basic circuit laws that impose constraints on voltages and
currents in the circuit. To be more precise, the voltages and currents we referred to
were the element voltages and element currents.

Using KCL, KVL, and Ohm’s law to solve for the element voltages and currents can be
quite cumbersome, except for the very simple circuits.

In this section we present a systematic method of circuit analysis in which node
voltages are the circuit variables to be found. As we shall see, choosing node voltages
instead of the element voltages as circuit variables allows us to develop a systematic
method of circuit analysis that is applicable to more complex circuits.

We will use the circuit shown in Figure 8.1 to define node voltages and explain the
node voltage analysis method.

To define a set of node voltages we first select one node in the network to be a
reference node — node D, shown in Figure 8.2. By definition, the node voltage at
the reference node is equal to zero (Nilsson and Riedel, 2015, p. 93).

Vb =0 (8.1)

The node voltages are then defined as the voltages between the remaining nodes and
the selected reference node; voltages V4, V3, and V. By default, the node voltage polari-
ties are such that the () is always at the reference node.

Before proceeding with the node voltage analysis method, let’s establish the relation-
ship between the node voltages and the element voltage and element current.

Writing KVL for the loop containing resistors R;, Ry, and R;, we get

_VA + V2 + VB =0 (8.23)
or

V2 = VA - VB (8'2b)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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(D #n E On

Figure 8.1 Node voltage analysis circuit.

Rs
W
Al + V2 -p c
M YW Ve=Vs
+ | L Ry R
./"“\
(1) MER REV M2
Dw Vy=0

Figure 8.2 Node voltage assignments.

This example illustrates the following fundamental relationship between the node
voltages and the element voltage:

If the two-terminal element is connected between two non-reference nodes, then the
element voltage is equal to the difference of the two node voltages; we take the node
voltage on the (+) side of the element voltage reference direction and subtract from it the
node voltage on the (-) side.

If the two-terminal element is connected to the reference node, then the element voltage
is equal to the node voltage (provided that the reference directions are the same).

According to the Ohm’s law we have

Y

I, =
2 Rz

(8.3)

Now, utilizing Eq. (8.2) in Eq. (8.1) we obtain the relationship between the node volt-
ages and the resistor current.

V4 -Vp

I
2 R,

(8.4)
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Figure 8.3 Current assignments.

Thus, once the reference direction of the current is assigned, we take the node voltage
at the node from which the current flows and subtract from it the node voltage at the
node towards which the current flows; then we divide the result by the resistance value.

We are now ready to proceed with the node voltage analysis method.

After having chosen the reference, the next step is to write KCL at the nodes, where
the node voltage is unknown. Since at node C we have V= Vg, there is no need to write
KCL at that node.

To write KCL at nodes A and B, we assign currents and their reference directions; one
such assignment is shown in Figure 8.3

KCL at node A produces

13211"1‘12'1‘[5 (8.5)

In terms of node voltages, Eq. (8.5) can be written as

rg=Ya~Vp Va~Va Va-Vc (8.6)
R R, R

Now, Vp=0and V= Vgand Eq. (8.6) becomes

15=ﬁ+VA_VB+VA_VS (8.7)

R’y Ry Rs

or in terms of conductances

IS :leA +G2(VA—VB)+G5(VA—V5) (88)
Similarly, KCL at node B produces

12 =13 +I4 (8.9)
In terms of node voltages, Eq. (8.8) can be written as

Va—Vs Vs Va—Vs (8.10)

R, Ry R
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or in terms of conductances
Gy (Va=Vp)=GsVs +Ga (Vs —Vs) (8.11)
Rearranging Eqns. (8.7) and (8.10), we can rewrite them as
(G1+Gy+G5)Vu =GV =I5 +G5Vs (8.12a)
—GyVa +(Gy +G3+Gy )V =G, Vs (8.12b)

Which in a matrix form become
G, +G, +Gs -G, Vi I +GsVs

We will obtain the solution using the Cramer’s rule (see Section 1.8).
The determinant of the conductance matrix is:

G, +Gy+G; -G,
-G, Gy +G3+Gy (8.14)
=(G1+G,+G;5)(G, +G3 +G,)—Gj
and

A 15 + G5VS —G2

Y7l Gy Gy+Gy+G, (8.15)
= (IS +G5VS)(G2 +G3 +G4)+G2G4VS

A G, +Gy +Gs 15+G5VS

2= -G, G4Vin (8.16)

Z(Gl +Gz +G5)(G4,V5)+G2(15 +G5VS)

Now, using Cramer’s rule, the node voltages are:

V.= A _ (IS +G5Vg)(G2 +G3 +G4)+G2G4VS
a==L= - (8.17)
A (Gi+Gy+Gs) (G +G3+Gy ) -G

Ay _ (G1+Ga+G5)(GaVs ) +G, (Is +GsVs)
A (Gi1+G,+Gs5)(Gy+G3+Gy)-G3

Vg = (8.18)

8.2 Mesh Current Analysis

8.2.1 Mesh Analysis for the Resistive Circuits

Mesh analysis provides another systematic procedure for analyzing circuits, using
so-called mesh currents as circuit variables (Alexander and Sadiku, 2009, p. 93).
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Figure 8.4 Mesh current analysis circuit.

of

Figure 8.5 Mesh current assignments.

ia=1lc
Wi W
13\[’ +
§R1 i Rﬁg‘% ; f?\vs
D

We will use the circuit shown in Figure 8.4 to define mesh currents and explain the
method.

First let’s define a mesh: a mesh is a loop that does not contain any other loops within
it. Thus, a loop containing R, Ry, and Rj is a mesh; so is the loop containing R3, R4, and
Vs. But the loop obtained by combining the two meshes is not.

We define a mesh current as the current that flows through the elements constituting
the mesh.

Three mesh currents iy, iy, and i3 are shown in Figure 8.5.
Before proceeding with the mesh current analysis method, let’s establish the

relationship between the mesh currents and the element voltage and the element
current.

Writing KCL at node D we get

13 +’b =i1 (8.19)

or

Ii=i—i (8.20)
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This example illustrates the following fundamental relation between the mesh
currents and the element current:

Ifthe two-terminal element is connected between two meshes, then the element current
is equal to the difference of the two mesh currents; we take the mesh current flowing in the
same direction as the element current and subtract from it the mesh current flowing in
the opposite direction.

Ifthe two-terminal element is not being shared by two meshes, then the element current
is equal to the mesh current (provided the reference directions are the same).

According to the Ohm’s law we have

Va=Rsl3 (8.21)

Now, utilizing Eq. (8.20) in Eq. (8.21) we obtain the relationship between the mesh
currents and the resistor voltage.

V3 = R3 (ll - i2 ) (8.22)

Thus, once the reference direction of the voltage is assigned, we take the mesh current
flowing from the (+) to the (-) and subtract from it the mesh current flowing in the
opposite direction; then we multiply the result by the resistance value.

We are now ready to proceed with the mesh current analysis method.

After having assigned the mesh current, the next step is to write KVL around the
meshes, where the mesh current is unknown. Since in mesh 3 we have i3 = I, there is no
need to write KVL around that mesh.

To write KVL around meshes 1 and 2 we assign voltages and their reference
directions; one such assignment is shown in Figure 8.6.

KVL around mesh 1 produces

Vi+Vo+V3=0 (8.23)
In terms of mesh currents, Eq. (8.24) can be written as

—(—R1i1)+R2(i1 —i3)+R3 (ll_lz):() (824)

Figure 8.6 Current assignments.

+ ¥ + Ve =
Wil W
+ R2 l3l + R4

i 7+
Vi § Ry 1| R § V3 i . Vs
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Now, i3 =15 and Eq. (8.24) becomes

Riiy + Ry (i =I5 )+ Ry (i —i, ) =0 (8.25)
Similarly, KVL around mesh 2 produces

-V3+Vy+Vs=0 (8.26)
In terms of mesh currents, Eq. (8.26) can be written as

—Rs(iy—ip )+ Ry (i —Is)+Vs =0 (8.27)
Rearranging Eqs (8.25) and (8.27), we can rewrite them as

(Rl +R2 +R3)i1 —Rgiz =R215 (8.28)
—Rgil +(R3 +R4)i2 :R4[5 _VS (8.29)

The above system of equations can be written in matrix form as
Ri+Ry+R —-R |4 Ry
.= (8.30)
—R3 R3 + R4 b R4IS - VS

and it can easily be solved for the mesh currents using matrix algebra.

8.3 EMC Applications

8.3.1 Power Supply Filters - Common- and Differential-Mode Current
Circuit Model

Virtually all electronic products need some form of internal power supply filter. A typi-
cal power supply filter topology is shown in Figure 8.7 (Paul, 2006, p. 389).

The common- and differential-mode currents at the output of the product (at the
input to the filter) are denoted as I and Ip, respectively. The common- and differential-
mode currents at the input to the line impedance stabilization network (LISN), at the
output of the filter, are denoted with primes as I’ and I'p, respectively.

The object of the filter is to reduce the unprimed current levels to the primed current
levels, which result in the LISN-measured voltages

Vp =50(1”C +1})) (8.31a)
Vi =50(Ic —Ip) (8.31b)

that are below the allowable conducted emission limits over the required fre-
quency range.

To study the effect of the filter components on the common- and differential-mode
noise currents, we need to obtain a circuit model for the filter and LISN.
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Figure 8.7 Generic power supply filter topology.
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Figure 8.7 Generic power supply filter topology.

Common-Mode Currents Circuit Model Let’s redraw the circuit shown in Figure 8.7, as
shown in Figure 8.8. The common-mode currents are simulated with the current
sources.

With the nodes labeled, it is easy to verify that the circuit shown in Figure 8.7 is
equivalent to the circuit shown in Figure 8.8.

Now, we will write mesh equations for this circuit.

For mesh D-A-C-D (on the far left side) we have

In +50(iDL +i2)+50(iDL —i2)=0 (8.32)

Jwlpr

or

Ip, +1001,, =0 (8.33)

jaoCpr
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Figure 8.8 Equivalent circuit to that shown in Figure 8.7.

Figure 8.9 Equivalent mesh E-F-B-E. E
Cer __J__
N e =C
\ | - T “DR
R JjoCcg
B
A (7
Cen T DR
A e
I"-x.+ I JjoCep
F
or
1 .
( - + IOOJIDL =0 (8’34)
jaoCpr
showing that the differential-mode current Ip; is zero:
Ip; =0 (8.35)

Before writing the mesh equations for mesh E-F-B-E (on the far right side) let’s apply
source transformations to the current sources in parallel to Ccy resulting in the circuit
shown in Figure 8.9.

; 1 jDR+ ’IC + ; 1 iDR_ ’IC + ; 1 iDR:O (8.36)
JjoCpr joCer  jCcr joCcr  joCcr
or
( , ! , ! ; ! JjDR =0 (8.37)
joCpr  jaCcr  jaCcr
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showing that the differential-mode current Iy is zero:
Ipg =0 (8.38)

Thus, the line capacitors Cp; and Cpp have no effect on common-mode currents,
since no current flows through them, and they are thus effectively acting as open
circuits.

Let’s write the mesh equation for the remaining meshes and see what conclusions can
be drawn.

Mesh A-B-C-A or mesh A-D-B-A:

jokcr
or
A A 1 A A
5012 +j(02LGw/12 +-= 12 —11 =0 (8.40)
]a)CCL( )
Mesh B-C-F-B or mesh B-D-E-B:
A A A A 1 A A
; Il_IC +]0)L]1 +]0)M11+ - 11—12 :O (84:].)
]a)CCR( ) ]a)CCL( )
or
1 A A R 1 PN
" Il_IC +]C() L+M 11+ - 11—12 =0 (842)
]wCCR( ) ( ) ]a)CCL( )

Now, let’s write mesh equations for the circuit shown in Figure 8.10.
For the left-most mesh we have:

A A 1 A A
jw2LGwl2 + 50[2 + = 12 - Il =0 (8.43)
jaCer ( )

For the center mesh we write

jwéCR (jl—jc)-i-jwéa (fl—f2)+jw(L+M)f1:0 (8.44)

Compare Eq. (8.43) with Eq. (8.40), and Eq. (8.44) with Eq. (8.42). They are the same
equations!

Thus, the circuit in Figure 8.10 is an equivalent circuit for common-mode currents
for the filter and LISN for the phase-ground or neutral-ground configurations.

Differential-Mode Current Circuit Model Let’s redraw the circuit shown in Figure 8.7, as
shown in Figure 8.11. The differential-mode currents are represented by a current
source.

With the nodes labeled, it is easy to verify that the circuit shown in Figure 8.11 is
equivalent to the circuit shown in Figure 8.12.
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Figure 8.10 Equivalent circuit to that shown in Figure 8.8.
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Figure 8.11 Power supply filter with the differential mode current.
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Figure 8.12 Equivalent circuit to that shown in Figure 8.11.

Furthermore, the circuit shown in Figure 8.13 is equivalent to that shown in
Figure 8.12.

Let’s write mesh equations for this circuit. For mesh D-A-C-D (on the far left side)
we have

e I +50(1?3 —i2)+5o(i3 —iz) =0 (8.45)
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D L E
vyémi h Ca CaT D ‘
CpL = Lo M // L = Cpr
DL A LGW B B
§m9“2 i :kyb
FWY"
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Figure 8.13 Equivalent circuit to that shown in Figure 8.12.
E Figure 8.14 Equivalent mesh E-F-B-E.
Cer
I
JoCcg
Bl
Cer T l
- Ip
@ JjoCcg
F
or
I3 +10015 —1001, =0 (8.46)
Jol pr
or
1 . PO
— +50(13 —12) =0 (8.47)
]CUZCDL

Let’s apply source transformations to the current sources in parallel to Ccg.
The resulting circuit is shown in Figure 8.14.
For mesh E-F-B-E we have

L fye——(L+h)+

I,+1,)=0 8.48
jaCpr jaCer ja)CCR(4 1) ( )
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or

2 (I di)=0 (8.49)
jaCpg joCcr

and thus

j2Cpp joCcr

Let’s write mesh equations for the remaining meshes and see what conclusions can

be drawn.
Mesh A-B-C-A or mesh A-D-B-A:

5o(i2—i3)+j ICL(iz—il)JrijGW(iz—i2)=0 (8.51)
or
NN 1 PN
50(12—13)+jwca(12—11)=0 (8.52)

Mesh B-C-F-B or mesh B-D-E-B:

(L + 1, )+ joLL - joMi, +

o o (11 —12) -0 (8.53)

or

1
JoCcr

(f1+f4)+ja)(L—M)f1+jw2CL(fl—f2):O (8.54)

Now, let’s write mesh equations for the circuit shown in Figure 8.15.
For the left-most mesh we have:

A

i =0 (8.55)

50(i3 iy ) + e

For the second mesh we write

50( 1, —I5 )+— I,—1,)=0 (8.56)
(e (i)
L-M
i i

+
X 50Q - " R
2Cp 18 Vp CoL=r { 1 CorT \L, = 2Cc (_‘D I
L
I —

Figure 8.15 Equivalent circuit to that shown in Figure 8.13.
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Mesh one produces

s . 1 P
- ]1+I4 +]a) L-M Il+ X 11—12 =0 (8.57)
}COCCR( ) ( ) ]COCCL( )
and for the fourth mesh we write
; : i4 +- :
]CUZCDR ]Cl)CCR

(La+1)=0 (8.58)

Compare Eq. (8.47) with Eq. (8.55); Eq. (8.50) with Eq. (8.58); Eq. (8.52) with Eq. (8.56);
and Eq. (8.54) with Eq. (8.57). They are the same equations!

Thus, the circuit in Figure 8.15 is an equivalent circuit for differential-mode currents
for the filter and LISN for the phase-ground or neutral-ground configurations.
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Circuit Theorems and Techniques

9.1 Superposition

Consider a linear circuit with several independent voltage or current sources, like the
one shown in Figure 9.1.

Say, we want to calculate the voltage or current somewhere in the circuit; voltage V'
across R, in this case. We could, of course, solve this circuit using the node voltage or
mesh current methods discussed previously in Chapter 7.

However, we could also solve this circuit using the principle of superposition (Nilsson
and Riedel, 2015, p. 122) which states then whenever a linear circuit is driven by more
than one independent source, the response of the circuit can be obtained as the sum of
the individual responses due to each independent source acting alone.

We can think of each independent source as the input to the circuit, and the voltage
or current somewhere in the circuit as the output. Then the principle of superposition
can be illustrated in block diagram form as shown in Figure 9.2.

In Figure 9.2(a) the circuit is driven by several inputs u; to uy. The output of the sys-
tem is equal to y. In Figures 8.2(b)—(d), the circuit is driven by one input at time ,
resulting in the corresponding output y;.

According to the principle of superposition, the total output y, when all inputs are
present, can be obtained by summing the individual outputs y, due to each input acting
alone. That is,

Yy=r+)y2+t...+JIn (9.1)

When an individual source is acting alone, the other sources are deactivated, or sup-
pressed: the voltage sources are replaced by a short circuit, while the current sources are
replaced by an open circuit.

Let’s apply the principle of superposition to the circuit shown in Figure 9.1. First, let’s
drive the circuit by a voltage source Vg;, as shown in Figure 9.3.

When the circuit is driven by a voltage source Vs,, we obtain the circuit shown in
Figure 9.4.

And finally, when the circuit is driven by a current source, we have the configuration
shown in Figure 9.5.

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure 9.1 Linear circuit driven by several

I '
r/»\‘ independent sources.
N
W WL
+
R, Rs
R, § 1%
+
Vg, _JVs
(a) (b)
iy
Uy —
— —
Linear y Uy ——3 Linear Y1
circuit circuit
Uy ——
(c) (@)
H H
Uy ——> Linear 2 Uy —— Linear YN
circuit circuit

Figure 9.2 The principle of superposition.

R, R,
WA WL
+
Ry
Rs § Vi
Vs
W V-
+
Ry

Vsa

Figure 9.3 Circuit driven by the voltage
source Vs;.

Figure 9.4 Circuit driven by the voltage
source Vs,.
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Figure 9.5 Circuit driven by the current source Is. I
()
N
R, R,
WM Wi
+

According to the principle of superposition we have

V=V+V,+V; (9.2)

Example 9.1 Superposition
Verify the principle of superposition for the circuit shown in Figure 9.6.

We will first solve for the output voltage V; using the node voltage method. Then, we
will solve for it using the superposition approach.

Applying KCL at the upper node we have

VsVo  f Yo 9.3)
R R,

Moving the inputs to the left side of this equation yields

Ys + 1= Yo + Yo (9.4)
R’y R’y 2
or
ﬁ+18 :MVO (9.5)
R RiR,
Figure 9.6 Circuit for Example 9.1. R,
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R, Figure 9.7 Circuit with the current source

W/ deactivated.

Cf\ Vs R, § Vor

R, Figure 9.8 Circuit with the voltage source

/VVM/ deactivated.

resulting in

R, V. RR,

- + I 96
R+R ° RAR 5.6)

[

We will now find V, using the superposition method. We will first deactivate the
current source and replace it with an open circuit as shown in Figure 9.7.
Using the voltage divider we get

R,

- V. 9.7
R+R 6.

Vou

Next, we deactivate the voltage source leaving the current source turned on, as shown
in Figure 9.8.
Using Ohm’s law and the current divider we obtain

R
Voo =Ry——1I 9.8
02 2 R1+R2 N ( )

Applying the superposition principle, we find the response with both sources active by
adding the two responses Vp; and Vg,

R R R
Vo=V +Vp=——Vs +———1I (9.9)
R +R, R +R,
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9.2 Source Transformation

The analysis of complex circuits can usually be accomplished by either the node voltage
or the mesh current method. In both the node and the mesh methods, it is often desir-
able to have the sources of the same kind: current sources in the node voltage method,
and voltage sources in the mesh current method.

If a circuit, however, has both current sources and voltage sources, it is desirable to
make adjustments to the circuit so that all the sources are of the same type.

A source transformation (Alexander and Sadiku, 2009, p. 135), shown in Figure 9.9
allows a voltage source in series with a resistor to be replaced by a current source in
parallel with a resistor, or vice versa.

The fundamental concept behind this technique is the concept of equivalence. We
recall that two circuits are equivalent with respect to the same two nodes if they have
the same v—i characteristics at those nodes.

Let’s determine the required relationships between the sources and the resistances, so
that they are equivalent with respect to nodes A and B.

Since the two circuits are to be equivalent, we require that both circuits have the same
v—i characteristic for all values of an external resistor R connected between terminals A
and B as shown in Figure 9.10.

Vs CD — CT 5o Sw

Figure 9.9 Source transformations.

Figure 9.10 Equivalent circuits.
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() Ry (b)
W, A A

IJ/ ! l{
Vs CD Vy5=0 — T) Is § Rp | v,z=0

Figure 9.11 Equivalence for R=0.

1=0
(@) Ry 1=0 (b) =)
— W ——— 14 A
+ +
+
Vs C_) Vap=Vs <:> T) Is § Rp Vag
- B - B

Figure 9.12 Equivalence for R=co.

First, let’s try the extreme values of R first, namely R =0 and R = co. With R=0, we have
a short circuit across the terminals A and B, as shown in Figure 9.11.

Equivalence requires that the currents in both circuits are the same. For the circuit in
Figure 9.11(a) we have

Vs

I R (9.10)
While for the circuit in Figure 9.11(b) we write

I=1 (9.11)
Comparison of Egs (9.10) and (9.11) leads to

Is = I‘;_z (9.12)

With R=c0, we have an open circuit across the terminals A and B, as shown in
Figure 9.12.

Equivalence requires that the voltages in both circuits are the same. For the circuit in
Figure 9.12(a) we have

VAB =Vg (913)



while for the circuit in Figure 9.12(b) we write
Vap =Rpls
Comparison of Egs (9.13) and (9.14) leads to
Vs =Rpl;
At the same time, according to Eq. (9.12) we have
Vs =Rsl;
Thus, for two circuits to be equivalent,
Ry =Rp
and

Vs =Rsls

Circuit Theorems and Techniques

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)

We have shown the equivalence under the conditions (9.17) and (9.18) for the extreme
values of R=0 and R = . Next, using the circuit shown in Figure 9.13, we will show that
the equivalence under these conditions holds for any value of R.

For the circuit in Figure 9.13(a) we use KVL to obtain

Vg =Rgl +Vyp (919)
or
Vs Yas (9.20)
Ry Rg
For the circuit 9.13(b) we use KCL to obtain
L=+ Y8 (9.21)
P
(@) Ry (b)
YN A A
+

Figure 9.13 Equivalence for any R.
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3Q 4Q 3.6Q
MWW 4%

12v-.'/i> 6Q§ 24 4Q§ 129§

Figure 9.14 Circuit for Example 9.2.

Now, if
Is = ﬁ (9.22)
Rg
and
RS = Rp (9.23)

the two circuits are equivalent.

Example 9.2 Source transformations
In the circuit shown in Figure 9.14, use a series of source transformations to determine
the current I.

Solution: Applying the source transformation to the 12V voltage source and 3 Q resistor
produces the circuit shown in Figure 9.15.

The combination of 3 in parallel with 6 Q results in an equivalent resistance of 2 Q,
being in parallel with the 4 A current source. Applying source transformation to that
configuration results in the circuit shown in Figure 9.16.

4Q 3.6Q Figure 9.15 Source
A AL —— transformations - Example 9.2.

4A CDm §69§ 23A Q)m § Q=




Figure 9.16 Source 2Q

transformations - Example 9.2.

Circuit Theorems and Techniques

3.6Q

Figure 9.17 Source
transformations — Example 9.2.

3.6Q

4B A CT) 6Q

§ 2/3A<D 40 §

WMN—

129§

Next, we apply source transformation to the
8V source in series with 6 Q resistance, result-
ing in the circuit shown in Figure 9.17.

Combining current sources in parallel and
resistor 6 Q) and 4 in parallel results in the
circuit shown in Figure 9.18.

Now applying the current divider rule we get

24

= x2=0.3 [A]
24+3.6+12

9.3 Thévenin Equivalent Circuit

Consider a linear circuit driving a load, as shown
in Figure 9.19.

The driving circuit, with the load disconnected
is shown in Figure 9.20.

According to the Thévenin theorem (Nilsson
and Riedel, 2015, p. 113), the circuit shown in
Figure 9.20(a) is equivalent (with respect to
nodes A and B) to a circuit consisting of an inde-
pendent voltage source in series with resistor, as
shown in Figure 9.21(b).

3.6Q

2A CT) 240 §

WIL—

12Q §

Figure 9.18 Source

transformations - Example 9.2.

|

|

Linear
circuit

Figure 9.19 Linear circuit driving a load.
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I Figure 9.20 Driving circuit with the load disconnected.
—s A
+
Linear
.o Vap
circuit
B
(@ (b)
I R 1
A T 5 A
—>
W
N :
: +
—
circuit

Figure 9.21 Thévenin equivalent circuit.

The equivalence, of course, means that the
circuits shown in Figures 9.21(a) and (b) have %
; o : I i, +
the same i—v characteristics with respect to N
+

nodes A and B.

Vr | I R, § v,

Since these are equivalent, we could replace -/
the driving circuit in Figure 9.19 with its
Thévenin equivalent, to obtain the circuit shown

in Figure 9.22.

It should be obvious that calculating the voltage

Figure 9.22 Thévenin equivalent circuit.

or current associated with the load is trivial for this

circuit, whereas such calculations for the circuit A
shown in Figure 9.19 might be quite involved.
The question, of course, remains: How do we +
determine the values of Vi and Ry? Linear Vi=Voe
According to the Thévenin theorem, the cureut
value of Vr is just the value of the voltage _
between nodes A and B, V5 when the load is B

not connected. This voltage is often referred to

as an open-circuit voltage, V,, and is shown in

Figure 9.23.

Figure 9.23 Thévenin voltage.

Thévenin resistance, Ry, can be obtained in a number of ways, depending on the cir-
cuit complexity and the types of sources present in the driving circuitry.

When the circuit consists of independent sources and resistors, we deactivate the
sources and simply calculate the resistance between nodes A and B. The following

example illustrates this approach.
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Example 9.3 Thévenin equivalent circuit
Determine the Thévenin equivalent with respect to nodes A and B, for the circuit shown
in Figure 9.24.

The Thévenin voltage is the voltage V,. between nodes A and B when the load is
disconnected (or not present), and is shown in Figure 9.25.

To calculate this voltage we can use any appropriate circuit analysis method. Let’s
use the principle of superposition, discussed earlier in this chapter. Let’s suppress the
current source first, as shown in Figure 9.26(a).

Since no current flows through the 2 Q and 5 Q) resistors, the open circuit voltage V,
is the voltage across the 6 Q) resistor.

Using the voltage divider

6
Voer=——12=4V
1T 846+4
Figure 9.24 Circuit for Example 9.3. 30 5Q A
— A1 AL
I/":|.“\.
12V '\__:_./'I 60 §
4Q § Ry
—— WA —
~
24 ij} 202
B
Figure 9.25 Open-circuit voltage. 8Q 5Q A
— 1. WA
+
:[.“‘\
: |
2v( _) 60 §
,]4,19,[1 Vr=Voc
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@ 80 50
WA WA
+
1 +
7+
12V L\,:_ 60 § Voct
4Q
oy Voci

2Q§

(b)

8Q 5Q
W
lle +
+
6Q§V]
4Q
A Voca
2AL
+
2Q§v2

Figure 9.26 Circuits for calculation of open-circuit voltage.

Next, let’s suppress the voltage source, as shown in Figure 9.26(b). Note that

Voer =V1+V,

where

V,=(2)(2)=4V

and V; can be obtained using the current divider and Ohm’s law, as follows

Vi=61

I, can be obtained using current divider as

P
4+6+8

and thus

24
Vi=6 I,="-=26667 V

thus

Vier =V +Vy =4 +2.6667 = 6.6667 V

2a
9

Therefore, the Thévenin voltage is

Vi = Vi1 +Viey =4+ 6.6667 =10.6667 V
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Thévenin resistance is the resistance between nodes A and B when the load is discon-
nected and the independent sources are deactivated. The resulting circuit is shown in
Figure 9.27.

Thus the Thévenin resistance is

Ry =5+[(8+4)6]+2=11 Q

The Thévenin equivalent circuit is shown in 84 15_.1,%, A
Figure 9.28.

When the circuit consists of independent and
dependent sources and resistors, we use another 6Q §

approach to determine the Thévenin resistance. We
deactivate the independent sources and drive the 40
circuit with an external voltage or current source Ry
connected between nodes A and B. (We will use
this approach later in this chapter when discussing
the two-port networks.) 2Q §
This approach is based on the following discus-
sion. Consider a linear circuit with no independent
sources (or the independent sources suppressed)
and/or dependent sources, as shown in Figure 9.29(a).
Figure 9.29(b) shows its Thévenin equivalent  Figure9.27 Circuit for calculation of
resistance. The Thévenin resistance of this circuit  Thévenin Resistance.
can be obtained by applying an external voltage or
current source as shown in Figures 9.30 (a) and (b).
Now consider the circuits shown in Figure 9.31. 110
Since the circuits to the left of nodes A and B AN
are equivalent, it follows that in order to obtain 1
the Thévenin resistance of an arbitrary linear ;667 v/ (
circuit, we first deactivate the independent
sources (if present). Then we drive the circuit W
with an arbitrary voltage Vs and calculate the B
resulting current I, or alternatively we drive the
circuit with an arbitrary current /s and calculate ~ Figure 9.28 Thévenin equivalent for
the resulting voltage V. Example 9.3.
The following example illustrates this approach.

B

Figure 9.29 Thévenin equivalent (a) (b)
resistance.
A A
Linear
circuit _L
w/o Rr=
independent T
sources
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(@) I (b)
A, A
/l )
+'\ V.
Ry - Vs RT=I—; RT§ Vg Is Ry
B B
Figure 9.30 Calculation of Thévenin resistance
(@) A ls (b)

B
(©
A Is
. —
Linear
circuit -~
e V.
w/o (7 )V Rp==2
. NS AL T,
independent
sources
B

Figure 9.31 Calculation of Thévenin resistance.

=
_/M%l!_

(d)

Linear
circuit

w/o
independent
sources

A
+
V
Vs Iy Rp=3>
s
B

Example 9.4 Calculation of Thévenin resistance
Determine the Thévenin resistance of the circuit shown in Figure 9.32 by energizing it
with an external voltage source.

10Q 120 A
Wi Wi
i l
509§ 50 o §
6.5i,
B

Figure 9.32 Calculation of Thévenin resistance.
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Figure 9.33 Calculation of Thévenin resistance.

Solution: Since the value of the external voltage source does not matter, we often energize
the circuit with a 1V source, as shown in Figure 9.33.
Next, we write the mesh equations

Mesh 1:50i; +5(i; —iy ) —6.5i, =0

ix :iz _ig

Mesh 2: 6.5(l2 —i3)+5(i2 —i1)+10i2 +25(l2 —ig) =0
Mesh 3:25(i3 —iy ) +12i3 +1=0

The solution to these equation is

i =—0.0012
i, =—0.0340
i3 =-0.05 [A]

The Thévenin resistance is, therefore,

Rp=Ys_ 1 _ 1 _
Is —i; 0.05

9.4 Norton Equivalent Circuit

Norton equivalent circuit provides an alternative to the Thévenin equivalent (Alexander
and Sadiku, 2009, p. 145). The underlying concepts leading to that equivalent are
the same.

Consider a linear two- terminal circuit driving a load and shown in Figure 9.34(a).
The same driving circuit with the load disconnected is shown in Figure 9.34(b).

According to Norton’s theorem, the circuit shown in Figure 9.34(b) is equivalent (with
respect to nodes A and B) to a circuit consisting of an independent current source in
parallel with resistor, as shown in Figure 9.35.
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(a)

Linear
circuit

A

[le +
RL§ VL

B

Figure 9.34 Driving circuit with and without the load.

(a)

Linear
circuit

Iy 4
+

Vap

B

Figure 9.35 Norton equivalent circuit.

Linear
circuit

A

.J, IN =1.\‘('

CE = () g

(b)
1A
+
Linear
L Vas
circult
B
(b)
—
+
— Iy Ry Vap

Figure 9.36 Short-circuit current.

Figure 9.37 Thévenin and Norton Equivalence.

The Norton resistance, Ry, in Figure 9.35 (b), is the same as the Thévenin resistance.
The Norton current, Iy, is obtained by placing a short circuit across nodes A and B, as
shown in Figure 9.36, and calculating the so-called short-circuit current flowing from

A to B.

Note that the Norton equivalent can of course be obtained from the Thévenin

equivalent by a source transformation, as shown in Figure 9.37.
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Therefore,
Vr
Iy =—— (9.24)
N R
or
Vr =RyIy (9.25)
It also follows that the Thévenin or Norton resistance can be obtained from
Ry = ﬁ = Voc (9.26)
IN Isc

The following example illustrates the application of Norton’s theorem.

Example 9.5 Norton equivalent circuit
Determine the Norton equivalent with respect to nodes A and B, for the circuit shown
in Figure 9.38. (This is the same circuit as we used for the Thévenin equivalent in
Example 9.3.)

Norton resistance is the same as the Thévenin resistance calculated in Example 9.3:

RN :RT =11 Q

The Norton current is the current flowing through a short circuit from A to B when
the load is disconnected (or not present), and is shown in Figure 9.39.

To calculate the short-circuit current we could use any appropriate method of circuit
analysis. For this particular circuit, mesh analysis would be well suited.

Let’s assign mesh currents, as shown in Figure 9.39. Note that

i3 =2A
Figure 9.38 Circuit for Example 9.4. 8Q 50
WL~ W A
+
12V C) 60 §
4Q § Ry
W
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8Q 5Q Figure 9.39 Short-circuit current.
WL~ WA A

12v<_) 6Q§ @

4Q

and the Norton current is
Iy =i,
Writing KVL around the first mesh results in
~12+8iy +6(iy —iy ) +4(i —2) =0
Writing KVL around the second mesh results in
5iy +2(iy —2)—6(iy —i ) =0
This system of equations yields:

i =1.4343 A
i, =0.9697 A

and thus

Iy =0.9697 A

The Norton resistance can be now calculated from

Ve 10.6667
RN = —=
Iy 0.9697

=11 Q

which, of course agrees with the result of Example 9.3.

9.5 Maximum Power Transfer

9.5.1 Maximum Power Transfer - Resistive Circuits

When interfacing the driving circuitry to the load, it is important to consider the
voltage, current, and power available at an interface between a fixed source and an
adjustable load.
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Figure 9.40 Thévenin equivalent of the driving circuitry. Ry A
4%
i i +
+
Vr C) R, § 1%

For simplicity we will consider the case in which both the source and the load are
linear resistive circuits. The source can be represented by a Thévenin equivalent, and
the load by an equivalent resistance R;, as shown in Figure 9.40.

For a fixed source, the parameters V7 and Ry are given and the interface signal levels
are functions of the load resistance R;. By voltage division, the interface voltage is

R,

y=—L_y. 9.27
R +Ry 6.27)

This relation can be rewritten as

Vr (9.28)

For a fixed source (Rr=const), and a variable load R;, the voltage v will be at maxi-
mum when R is made very large compared with Ry. Ideally, R; should be made infinite
(an open circuit), in which case

Vaax =Vr =V (9.29)

Therefore, the maximum voltage available at the interface is the source open-circuit
voltage V..
The current delivered at the interface is

Vr

j=——
R; + Ry

(9.30)

For a fixed source and a variable load, the current will be a maximum if R; is made
very small compared with Ryr. Ideally, R; should be zero (a short circuit), in which case

iax =—=1Iy =1, (9.31)

Therefore, the maximum current available at the interface is the source short-circuit
current [,.
The power delivered to the load is

p=v-i (9.32)
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Using Eqs (9.27) and (9.30), the power delivered to the load is

2
p=Be_y Ve [ Vr g (9.33)
R; + Ry R; + Ry

For a given source, the parameters V7 and Ry are fixed, and the delivered power is a
function of a single variable R;. We wish to find the value of the load R, such that the
maximum power is delivered to it.

The condition for maximum voltage (R; = ) and the condition for maximum current
(R, =0) both produce zero power. The value of R; that maximizes the power lies
somewhere between these two extrema.

To find the value of R; that maximizes the power, we differentiate Eq. (9.33) with
respect to Ry and solve for the value of R; for which the derivative dp/dR; = 0.

dp _VZ d { R; ]_ 21'(RL+RT)2_RL2(RL+RT)'1
< = TE - s

=V (9.34)
dRL (RL "rRT )2 ! (RL +RT )4

Equating this derivative to zero gives

(R, +Ry )’ —2R, (R, +Ry)=0 (9.35a)
or
(Ry+ Ry )(Ry + Ry —2R;)=0 (9.35b)
Solving for R; gives

R, =Ry (9.36)

This is the value of R; at which the extremum of power p happens. To determine
whether it is a maximum or minimum, the second derivative of p with respect to R;
needs to be evaluated at R; = Ry. If the value of that derivative is negative, the extremum
corresponds to the maximum.

One way to determine whether it is a maximum or minimum is to evaluate the second
derivative of p (at R; = Ry) with respect to R;.

The maximum power delivered to R; is then

2 2
vr 2 R VT
= R = R = =V = 9.37
Pmax P( L T) (RT+RTJ T T4R% 4R, ( )
Since
VT = RTIN (9.38)

the above result can also be written as

RrI}
4

(9.39)

Pmax =
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or

TIN Voc isc
_ V — 9.40
Pumax 4 ( 5 j( 9 j ( )

9.5.2 Maximum Power Transfer - Sinusoidal Steady State

To address the maximum power transfer in the sinusoidal steady state, we use the circuit
shown in Figure 9.41.

The source is represented by a Thévenin equivalent with a phasor voltage Vi and the
source impedance Z7, where

Zr =Ry + jXr (9.41)

The load circuit is represented by an equivalent impedance Z;, where
Z, =R, +jX, (9.42)
In the maximum power transfer problem, the driving circuitry, Vr, Ry, and X, is fixed,
and the objective is to adjust the load impedance R; and X; so that the average power

delivered to the load is at its maximum.
The average power delivered to the load is

1 (a2
P=—R;|I (9.43)
2
The magnitude of the load current is
i v | Vr |
| +7Z | RT+RL +] XT+XL)|
9.44
v (9.4)
- 2 2
\/(RT +Ry) +(Xr+X,)
Figure 9.41 Source-load interface in the sinusoidal 2
steady state. T A

~o
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Substituting Eq. (9.44) into Eq. (9.43) produces

2

A

Vr
2(Rp+R,) +(Xr+X,)

1 Ry

P=

(9.45)

Since the driving circuitry is fixed, we can only adjust X; and X; to maximize the
power delivered to the load.
Clearly, the power is maximized when

X, =—Xr (9.46)

Under this condition, the expression for average power reduces to

A |2
RL‘VT‘
P=

— (9.47)
2(Rr +Ry)

This equation has the same form as Eq. (9.33) in the previous section. From the deri-
vation in the previous section we know that the power is maximized when

RL = RT (9.4:8)

The conditions in Eqs (9.46) and (9.48) can be combined as

Z, =Zr (9.49)

Thus, the maximum power transfer occurs under a conjugate match condition.
Under the conjugate match condition, the maximum power available from the
source equals

po R | Repr| | 050
2R +R,) . 2(2R; )8R

9.6 Two-Port Networks

So far we have discussed several circuit analysis techniques including Kirchhoff’s laws,
node-voltage or mesh-current analysis, and Thévenin or Norton theorems.

Using Kirchhoff’s laws or node-voltage/mesh current methods we can calculate
voltages and current anywhere in the circuit. Thévenin or Norton theorems allow us
to obtain an equivalent circuit model with respect to the specified pair of terminals
(usually the output terminals, or the output port) of the network.

Another way of describing the circuit with respect to the two terminals is by treating
the network as a two-port circuit. In many electrical circuits obtaining voltages and
currents at the input and output ports, instead of any point in the circuit, is more
convenient and practical.
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Figure 9.42 Two-port network. i i
it I «—2
_. ._
+ +
v, Circuit v,
_ ., o _

Thus, the fundamental principle underlying the two-port circuit analysis is that
only the terminal variables (input voltage/current and output voltage/current) are of
interest. We are not interested in calculating voltages and current inside the circuit.

The most general description of the two-port network is carried in the s domain
(sinusoidal steady state is a special case of s domain analysis). Figure 9.42 shows the
basic building block in terms of the s domain variables.

The voltage and current reference directions at each port are symmetric with respect
to each other; that is, at each port the current flows into the upper terminal and the
voltage at that terminal has a plus for its reference direction. This symmetry makes it
easier to generalize the analysis of two-port networks.

Of the four terminal variables only two are independent. Thus, for any two-port
network, once we specify two of the four variables, the other two can be obtained. It
follows that the description of a two-port network requires only two simultaneous
equations.

There are six different ways of writing the two equation involving the four variables:

Vi=zuli +z121,

. . . (9.51)
Vo =21y + 20015
21 = )’11‘}1 +)’12V2 (9.52)
jz = )’21‘}1 +)’22‘}2
‘}1 = ﬂu‘}z —ﬂujz (9.53)
j1 = ﬂzl‘}z —ﬂzziz
‘}2 =b11‘}1—b12i1 (9.54)
jz = bZl‘}l _b22j1
‘}1 :hlljl +h12‘}2 (9.55)
I, =y + Vs
j1=g11\71 +g12i2 (9.56)

Vz = gzﬂ}l + gzziz
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In matrix notation, equations (9.51)—(9.56) may be written as

‘}1 B 211 Z12_ jl
\}2 REZEEZ jz (9:57)

jl B Y 2 ‘}1 (9.58)
fz RESEE \72 )
‘}1 _ _ﬂu —dip Vz (9.59)
fl Clan —ax iz '
Va| [bn ~bo | Wi 0:60)
iz a b21 _b22 jl '
Vi| [ mo| hh o61)
iz a h21 h22 Vz '
j1 __gn ng_ Vl 062)
\}2 _gm &£22 f2 )

The coefficients in the square matrices in Eqs (9.57)—(9.62) are called the parameters
of the two-port network. We refer to them as the z parameters, y parameters, a param-
eters, b parameters, s parameters, or ¢ parameters of the network.

All parameter sets contain the same information about a network, and it is always
possible to calculate any set in terms of any other set.

Consider Eq. (9.51), repeated here,

Vi=zuli +zio0y (9.63)
‘}2 = Zlel +222i2

The z parameters can be obtained as

211 = ‘IA/I (Q) (9.643)

=t (Q) (9.64b)

Zy == (Q) (9.64¢)

1lf,=0

211 == (Q) (964(1)
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Thus, the z parameters can be obtained from the voltage and current measurements
when each port, one at a time, is open-circuited.

Example 9.6 Calculation of z parameters

Determine the z parameters of the circuit shown in Figure 9.43.
When port 2 is open, I, =0, and we have a circuit shown in Figure 9.44.
The z parameters for this circuit are obtained as

6+8)[4]1
= _Lerol]n naxa g
A L 1414
8 v,
V1
=2 —8x6 05TV, ooe g
Ll T v "

(6+8)]4 3.1111

When port 1 is open, we have a circuit shown in Figure 9.45.

Figure 9.43 Resistive circuit for Example 9.6. I 60
4’ 47

W

14 § 4Q 8Q § v,

Figure 9.44 Port 2 open-circuited. I

Figure 9.45 Port 1 open-circuited.
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The z parameters for this circuit are obtained as

6+4)|8 |1
iy =2 _L(E+9)8]n _ 108 44a44 o
L, I, 10+8
4
2y
=il 46’ 04V, o0
: 211,=0 Vs Va ‘

(6+4)8 4.4444

L]
To determine the y parameters we reconsider Eq. (9.52), repeated here
I =y Vi + V.,
A1 Ju A1 J12 Az (9.65)
L =ynVi+ynVs
The y parameters can be obtained as
I
Y= (S) (9.66a)
Vil
L
Y12 == (S) (9.66b)
Valy
I
Y1 =7 (S) (9.66¢)
Vily o
L
Vo == (S) (9.66d)
Va 1,=0

Thus, the y parameters can be obtained from the voltage and current measurements
when each port, one at a time, is short-circuited.
The remaining port parameters are obtained in a similar manner. For instance, since

Vi=anVy —al,

. R R (9.67)
I = ayVy —axnl,

we have
- (9.68a)

21f,=0
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a =2 (Q) (9.68b)
[2 ‘}2:0
dy = L (S) (9.68¢)
Vs 1,=0
| (9.68d)
12 \}2:0

Thus, to obtain the a parameters, both the open-circuit and short-circuit measure-
ments at port 2 are needed.

Example 9.7 Calculation of a parameters
The circuit operates in sinusoidal steady state. When the voltage of v; =160co0s4000¢ is
applied to port 1 of the two-port network, the following measurements are taken with
port 2 open circuited:

i =10cos(wt—30°)

v, =80cos(wt +20°)

With port 2 short circuited when the voltage of v; = 60cos4000¢ is applied to port 1 the
following measurements are taken:

i =6cos(wt+10°)
= 4cos(a)t—40°)

Determine the a parameters that describe the sinusoidal steady state operation of
the circuit.

Solution: The first set of measurements is described by
Vi=16020° V
1,=10/-30° A
V, =80/20° V
IAZ = O A

From Eq. (9.68) we get

a; = ﬁ = 160400 =2/- 200
Val;_, 80420
I 10/ -30°

dy = _102=30° ) 195500
Vali 80.£20°
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The second set of measurements is described by

Vi=6020° V
1,=3/10° A
V,=0 V

I,=4/-40° A

Thus,
wo= A L6020 e 1500
L, , 4£-40°
iy = = 340 6755002 0.75.4230°
2, 4z-a0°

In the typical application of a two-port network, the circuit is driven at port 1 and
terminated by a load at port 2, as shown in Figure 9.46.

In this case, we are usually interested in determining the port 2 voltage and current
V2,12 in terms of the two-port parameters and V5, Zg and Z;. These terminal currents
and voltages give rise to six characteristics describing this two-port network:

input impedance Zin = \;}/fl, or the input admittance Y},, = jl/ Vl
output current I,

Thévenin voltage and impedance with respect to port 2, VTH,ZTH
current gain IAZ/IL

voltage gain V,/V;

voltage gain V,/ Vg

To illustrate the approach we will use the z parameter set (Nielson and Riedel, 2015,
p. 687). We begin with the two defining equations (9.51), repeated here,

Vl :lejl +Z12j2 (9.69)
‘}2 = zlel + Zzzjz (970)
i I
Zal— | =
=G | + +
VG \7] Circuit \72 ZAL

Figure 9.46 Typical two-port circuit.
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The circuit shown in Figure 9.46 produces two additional equations:

Vi =V - Zl, (9.71)
‘}2 = _ZLjZ (9.72)

Determining the input impedance Z;,,=V,/i; Using Eq. (9.72) in Eq. (9.70) we obtain

_ZLj2 = Z21j1 + Zzzjz (9.73)
and thus
L=—"22_| (9.74)
Zyo + ZL

Using Eq. (9.74) in Eq. (9.69) we get

‘}1 =lei1 —ZIZ—ZZ}jl (9.75)
Z9o +ZL

thus, the input impedance is

- 21221
Lip =211 ————
e iz (9.76)
Determining the currentl, From Eq. (9.69)
. Vi—zl
[ Vimmelh (9.77)
Zn
Using Eq. (9.71) in Eq. (9.77) produces
o Vo Zoh -zl
I = Vs Gl1 — 21242 (9.78)
211
or
Zujl = VG _ZGjl —Zujz
I \ (9.79)
(Zu +Zg )11 =Vs —z121,
and
I = M (9.80)
zZ; + ZG
Now, we substitute Eq. (9.80) into Eq. (9.74) to obtain
1‘2 _ zn Ve -zl (9.81)

Z99 +ZL Z11 +ZG
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or
(222 +Zp )(211 +Zg )12 =—znVs +2zn12121»

and therefore

-2z Vg

b (222 +ZL)(Z11 +ZG)—221212

(9.82)

(9.83)

Determining the Thévenin voltage with respecttoport2  The Thévenin voltage with respect
to port 2 is equal to V, with the imposed condition of I, = 0. Setting I, =0 in Eqs (9.69)

and (9.70) produces
‘}1 =an1 (iz :0)
Vz :ZZIjl (jz :0)
Utilizing Eq. (9.84) in Eq. (9.85) gives
A Z A A
V=22V, (L,=0)
211
Using Eq. (9.71) in Eq. (9.86) results in
A Z A A A A
V2 =Z—21(VG—ZG11) (12 20)
11

Setting fz =0 in Eqgs (9.80) produces
h=—2— (I,=0)
Z1 + ZG

Substituting Eq. (9.88) into Eq. (9.87) gives

Vo =21V - 26— | (i, =0)
Zn zZi1+Zg

(21 + 26 )V — 2oV

z11 zZn+Zg

_Z z1uVs
zZu\zn +Zg

and thus the Thévenin voltage with respect to port 2 is given by

(9.84)

(9.85)

(9.86)

(9.87)

(9.88)

(9.89)

(9.90)
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The Thévenin, or output impedance, can be obtained from

Zoy ===, (VG =0) (9.91)

2

When Vg =0, Eq, (9.71), repeated here

Vi =Vs - Zly (9.92)
reduces to
Vi =—Zcl, (9.93)

Using Eq. (9.93) in Eq. (9.69), repeated here,

‘}1 =zZn jl +lei2 (9.94)
gives

~Zeh =z 1) + 2151 (9.95)
or

(zu +ZG)f1 :—zlzfz (9.96)

resulting in
h=—22-, (Vs=0) (9.97)

Using Eq. (9.97) in Eq. (9.70), repeated here

\}2 = Z21i1 + 222j2 (9.98)
produces

. 71 .

Vs =231 [ﬂJ + 2z (9.99)

Zn t4g

or

Vo= o - 2221y, (Ve =0) (9.100)

Z;1 + ZG

resulting in Thévenin impedance of

a Va 221212
Zy = A =Z . : (9.101)
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Determining the current gain I/l The current gain can be obtained directly from Eq.
(9.74), repeated here

L=—2 ] (9.102)
Zyo + ZL
Thus,
Az 221

A —

I o + ZL (9.103)

Determining the voltage gain V,/V; We start with Eq. (9.70) and (9.72), repeated here,

Vz = Z21j1 + Zzziz (9.104)
Vo=—Z,1, (9.105)

Solving Eq. (9.105) for i » and substituting it in Eq. (9.104) produces

5 . -V

Vy =211y + 29y | — (9.106)
Zy

Now, solving Eq. (9.69), repeated here
Vl :lejl +212j2 (9.107)
for I, gives
L =—1—Z£12 (9.108)
Zu 2

Solving Eq. (9.105) for I, and substituting it in Eq. (9.108) produces

=Yzl Ve (9.109)
zin zn\ Zp

Substituting Eq. (9.109) into Eq. (9.106) results in

[V [V X
Vy—zy | 22 22, | 22 (9.110)
Zu i\ Z; Z
or
zn \ Z; Zy ) zZn
[1_ 12201 +{£j1}2 Ay (9.111)
zZy Zp Z1

zZ1Zy — Z12201 + 211222 V 221 1%
=
Zn

x —W
znZr



and thus
Va _ znZy
VI zuZp —zuzn —Zinza
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(9.112)

Determining the voltage gain V,/V; We start with Egqs (9.69), (9.71), and (9.72),

repeated here,

‘}1 :lejl +212j2
Vi =Ve - Zgl
Vy=—2,1,
From Eq. (9.115) we obtain
L=-2
Zy

Using Eqgs (9.114) and (9.116) in Eq. (9.113) results in

Vo —Zch =zuli + 21, (— 2 J
Z;
or

Z1111 "rZ(.;Il :VG +Z19 (ZA—ZJ

L
S ovs o V.

(Zn +ZG)11 =V + 21 [Z_ZJ
L

resulting in

. v, z1,V:
i = 6, 2l
m+Zc Zp (Zn + ZG)

(9.113)
(9.114)
(9.115)

(9.116)

(9.117)

(9.118)

(9.119)

We now use Eq. (9.119) together with Eqs (9.70) and (9.72), repeated here

Vo =zo11y + 2901y
V2 :_ZLIZ

to obtain,

A v, Vv v
Vo =2y & —+ - 227 x +222( Azj
Z1 t+ ZG ZL (le + ZG) ZL

(9.120)
(9.121)

(9.122)
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or
L) Zi(m+Zs) mtZs
T I L PR (7 21Vs (9.123)
ZL ZL(zll +Zg) le+ZG
ZL (Zn + ZG ) + 2 (Zn + ZG ) —Z21212 v ZZIVG
A = 2= A
Z (Zn +ZG) zn+Zg
or
ZL (Zn +ZG)+ZZZ (Zn +ZG)_Z21212 .
x ‘/2 :Z21VG (9.124)
Z
and thus
\}2 _ ZzlzL (9.125)
Ve (ZL +2Zp )(Zn +Zg ) — 221212 '

9.7 EMC Applications

9.7.1 Fourier Series Representation of Signals

Fourier series representation of periodic signals is perhaps the greatest example of an
application of the superposition principle in EMC. (We will devote the entire Chapter 12
to this important topic.)

A periodic signal x(f) can be represented as an infinite series of the form

x()= ic,,@ (£)=coth (¢) + 1 (£) + coh (1) + (9.126)

where the ¢, are called the expansion coefficients and the ¢,(f) are called the basis
functions — they are periodic with the same period as x().

If we know the response of a linear system, y,(£), to each basis function, @;(t), as
illustrated in Figure 9.47, then the response of the system, y(¢), to the original signal
x(t), as shown in Figure 9.48, can be obtained as a weighted sum of the individual

responses

Figure 9.47 Response of a linear system to a basis
(Z20) Linear YD function.
— SEEEEEE—

system
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Figure 9.48 Response of a linear system to the

signal x(t). x(1) Linear ()
system
y(t) = chyn (t) =coYo (t) +ay (t) +Co ¥, (t) 4. (9.127)
n=0

Not only are the individual responses easier to obtain or analyze, but they also give us
an insight into the nature of the system.

There are infinitely many representations of the form in Eq. (9.126). One extremely
useful form in EMC is the Fourier series representation (Kreyszig, 1999, p. 528) which,
in the time domain, can be expressed as

x(t)=ao +Z(a,, cosnwot + b, sinnwgt),  tH <t<t;+T (9.128)

n=1

where the Fourier coefficients are given by

1 H+T
ay=— I x(t)dt (9.129a)
T ;
2 H+T
a, :? I x(t)cosna)otdt (9.129b)
5]
2 H+T
b, :? J- x(t)sinncootdt (9.129¢)

15t

In Chapter 12, we will show that the time-domain representation (9.128) is equivalent
to the complex Fourier series representation

x(t):co +z2c,, cos(na)ot+9m) (9.130a)
n=1
€y =20, =cpe’ (9.130b)

We will use this representation to analyze the spectrum of a digital signal, like the one
shown in Figure 9.49.

x(1) 3

A N

Y

Figure 9.49 Trapezoidal clock signal.

237



238 | Foundations of Electromagnetic Compatibility

That analysis will allow us to determine spectral bounds on clock signals and estimate
the bandwidth of such signals.

9.7.2 Maximum Power Radiated by an Antenna

In Chapter 18 we will discuss the radiation mechanism from the typical EMC antennas.
A physical model of an antenna in a transmitting mode is shown in Figure 9.50.

A circuit model of such an antenna is shown in Figure 9.51.

Z;,is the input impedance of the antenna, i.e. the impedance presented by the antenna
to the generator circuit at the antenna’s input terminals A-B. Figure 9.52 shows the
details of the two impedances shown in Figure 9.51.

The antenna and generator impedances are given by

A

Zin =Ry + JXin (9131)
Ry = Rypgs + Rypg (9132)
Zy =Ry +jX, (9.133)
Zg
’A—/
L | NN
‘7 + W
N TN
Generator B Antenna in Radiated
circuit transmitting mode wave

Figure 9.50 Physical model of an antenna in a transmitting mode.

Figure 9.51 Circuit model of an antenna in

Ze
|—5| A a transmitting mode.
|
Vg t) Zin
I
Generator B Antenna in
circuit transmitting mode
R, f(g )gm Figture 9.52 tDetailef:ittc.ircuit n;odel of an
¢ ‘ antenna in a transmitting mode.
o A g
Vg’ f\\ Rrad
Rlom
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Figure 9.53 Antenna current. R, f(g )2

'—/V‘.-"JL/—
Q Rmd
ﬁ/ Rloss

Here R;, is the antenna resistance at terminals A-B, X, is the antenna reactance at
terminals A-B, Ry, is the loss resistance of the antenna, R,,; is the radiation resistance
of the antenna, R, is the generator resistance, and X, is the generator reactance.

In order to determine the maximum power transfer to the antenna, we first obtain an
expression for the current flowing in the circuit, as shown in Figure 9.53.

The magnitude of the antenna current is

Vg
|| : a (9.134)
\/(Rmd + Rips + Ry ) +(Xin + Xy )
The power supplied by the generator is
1o~ 1 v,
P ==V, ==V, £ (9.135)
2 2 (Ryad + Rioss + Ry )+ j( Xin + X, )
The power dissipated in the generator as heat is
‘} 2
11 12 R
P ==|I,| R, =2 2 ~ [W] (9.136)
2 2 (Ruad + Rioss + Ry ) +( X + Xy
The power dissipated in the antenna as heat is
‘} 2
1ys 2 g Ripss
Ploss =_‘Ig‘ Rloss = - ) ) [W] (9137)
2 2 (R + Rigss + Ry ) +( Xy + Xy
Finally, the power radiated by the antenna is
" 2
11, 2 g R,
P :_‘Ig‘ R.a = é 2 [W] (9.138)
2 2 (Ruud + Ross + Ry ) +( X + Xy
The maximum power delivered to the antenna for radiation occurs when
Ziw =2, (9.139)
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and thus
Rmd + Rloss = Rg (91403)
Xin =—X, (9.140D)

Under the conditions in Eq. (9.140) the maximum power radiated by the antenna is

A

Vv
Pr = g Rmd _ Rmd

14
2 [2(Rmd + Rloss )]2 8 (Rmd + RIOSS )2

2 2

N

(9.141)

9.7.3 sParameters

The two-port parameter sets described in this chapter require the input and output
terminals of the network to be either open- or short-circuited. This can be hard to do at
high frequencies where lead inductance and capacitance make short and open circuits
difficult to obtain.

To characterize high-frequency circuits using s parameters, we use matched termina-
tions instead of the open or short circuits.

Just like the other sets of parameters, s parameters completely describe the perfor-
mance of a two-port network.

Unlike the other sets of parameters, s parameters do not make use of open-circuit or
short-circuit measurements voltage or current measurements, but rather relate the
traveling waves that are incident, reflected, and transmitted when a two-port network
in inserted into a transmission line. This is depicted in Figure 9.54.

Travelling waves, unlike terminal voltages and currents, do not vary in magnitude at
points along a lossless transmission line (waves and transmission lines will be discussed
in Chapters 16 and 17, respectively). This means that the s parameters can be measured
with the device at some distance from the measurement ports, provided that the line is
a low-loss transmission line.

s Parameters are usually measured with the device embedded between a 50 Q load
and a 50 Q source.

The incident waves (a3, a,) and reflected waves (b1, by) used to define s parameters for
a two-port network are shown in Figure 9.55.

Port 1 Port2
Incident wave o _/‘\\/_.
Circuit
"—/\\/_ Transmitted wave

Reflected wave

Figure 9.54 s Parameters are related to the traveling waves.
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i I,
—_— —
+ A —SN — —N — a +
‘7] Device ‘72

Figure 9.55 Incident and reflected waves.

The linear equations describing this two-port network in terms of the s parameters are

by = 5114, + $12a,

9.142
by =sy1a1 +spa, ( )

or in a matrix form

b B Si1 Sz || 4 (9.143)
by - $21 S22 || 42 '

where S is the scattering matrix given by

S11 - S12
S= (9.144)
S1 S22
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Magnetically Coupled Circuits

10.1 Self and Mutual Inductance

Consider the circuit shown in Figure 10.1.

Time-varying current i;(¢) gives rise to the time-varying flux &;; that crosses the loop
in which the current i; flows. According to Faraday’s law this time-varying flux crossing
the loop induces a voltage in the loop.

We model this by introducing the concept of the self inductance of circuit 1, defined as

=2 (10.1)
h

We then augment the circuit of Figure 10.1 to that shown in Figure 10.2.

Note that the loop inductance is a property of the loop itself and does not depend on
the voltage Vs or the current i (just like the resistance of a resistor does not depend on
the voltage across it or the current through it).

That is, any closed loop will have its own self inductance, whether current flows
through it or not. It can, therefore, be represented by the circuit model shown in
Figure 10.3.

Now consider the situation where another circuit (with its own self inductance) is
placed next to the original circuit, as shown in Figure 10.4.

The time-varying flux &, created by the current i; flowing in loop 1 and intersecting
loop 2 induces a voltage in loop 2.

We model this by introducing the concept of the mutual inductance between the
circuits 1 and 2 as

My =—= (10.2)
L

Using the concept of the mutual inductance we can now augment the circuit of
Figure 10.4 to that shown in Figure 10.5.

Similar discussion leads to the scenario shown in Figure 10.6. Here circuit 2 is driven
by a voltage source and circuit 1 is represented by a loop containing resistance and self
inductance.

In many practical cases (Alexander and Sadiku, 2009, p. 558)

M,=M,=M (10.3)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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R, i Figure 10.1 Magnetic flux produced by the current
— flowing in a loop.

R, i Figure 10.2 Loop self-inductance.

R Figure 10.3 Circuit model of a loop.
L
R, i R,
W " — W
== N -
- "'\
\
Vs <+> % L g L
_ ’
¢|| - - J’
~~.
R I
!, ’
T e

-"‘-A-—.l-

Figure 10.4 Flux caused by current in loop 1 intersects loop 2.
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Figure 10.5 Mutual inductance between loops 1 and 2.

R, My, R, i

A M T a /\N\/“—

Figure 10.6 Mutual inductance between loops 2 and 1.

e % b % b (0

Figure 10.7 Mutual inductance between loops 2 and 1.

Let’s combine the two scenarios shown in Figures 10.5 and 10.6, as shown in
Figure 10.7.

When the time-varying current flows through the self inductance it gives rise to the
voltage across it according to

yop 9 (10.4a)

dt
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R, i M Ry I
— -
W\ - W
+ . . +

Figure 10.8 Mutual inductance with dot convention.

when the passive sign convention is satisfied, or according to

I (10.4b)
dt

when the passive sign convention is not satisfied.
The polarity of the voltage due to the mutual inductance cannot be determined using
the passive sign convention.
di

v=tM— (10.5)
dt

The choice of the correct polarity for M di/dt depends on the physical configuration
of the circuit. This is indicated in the circuit by the dot marking, as shown in
Figure 10.8.

The dot convention allows us to determine the polarity of the induced voltage according
to the following rule (Nilsson and Riedel, 2015, p. 190).

When the reference direction of the current in one circuit enters the dotted terminal,
the reference polarity of the induced voltage in another circuit is positive at the dotted
terminal.

Figure 10.9 shows how to apply the dot convention.

Figure 10.10 shows the polarities of the induced voltages for the circuit shown in
Figure 10.8.

KVL for the circuit on the left results in

. diy di
=Ry + L+ M2 (10.6a)
V=gt 14 dt di
while for the circuit on the right we have
b A (10.6b)

Vs :R2i2+LZZ+M o
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. M M
I I
— X a e
L ] . + [} -
di di
dt dt
— - +
M M
) iy
" T Tw
+ Y
dl2 d
M— et
dt dt
— . . + L4
Figure 10.9 Dot convention application.
R, I M R, i
Wy - W
+ + L] L] + +

Figure 10.10 Polarities of the induced voltages.

Example 10.1 Coupled transmission lines
In Chapter 15 we will discuss the distributed-parameter transmission lines. The per-unit-
length equivalent circuit of a three-conductor transmission line is shown in Figure 10.11
(Paul, 2006, p. 566).

KVL along the outside loop yields

81G (Z,t)

+lmAz—aIR (Z’t)
ot

Vg (2,t)+lgAz +Vg(z+Az,t)=0 (10.7a)

while the KVL along the lower loop in Figure 10.11 produces

81R (Z,t)
ot

GIG (Z,t)

Vi (z,t)+IrAz +1,Az +Vp(z+Az,t)=0 (10.7b)
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Izt lg Az I (z+ Az, 1)
i.. ) . Generator conductor
+ / +
| 7 ———
{ || Ly A —— ¢ Az ‘
\
pn N\ A2 . o Ip(z+ Az, )
Vg(z,t) —* eceptor conductor. N Vg (z+ Az 1)
. aa a

_ _ Ig@n+1g(z 0D
—
1 N i
. Reference conductor [
7+ Az

+ +
l Vg (z, 1) —— CrAZ —|— €GAZ Y, (z+ Az 1) l

Z

Figure 10.11 Per-unit length circuit model of three-conductor transmission line.
10.2 Energy in a Coupled Circuit

Recall that energy stored in an inductor is given by

w=%Li2 (10.8)

Let’s determine the energy stored in magnetically coupled coils. Consider the circuit
shown in Figure 10.12.

Let’s assume that the initial current sin the coils are zero so there is no initial energy
stored in the coils.

First we increase i; from zero to I3, while keeping i, =0. Since i, =0 there is no mutual
voltage induced in coil 1. The mutual voltage induced in coil 2 is M di;/dt.

The energy stored in both coils is

M p(0)de= (2950 i (e [ 0% i
Wl—z[pl(t) t—'([ IE ll(t) t+b[ E by t
n=I 1
=1 j il(t)di1+0=§L1112
=0

(10.9)

If we maintain i; =[; and increase i; from zero to I, the mutual voltage induced in coil
1 is M di,/dt. The mutual voltage induced in coil 2 is zero since i; = const.
The energy stored in both coils now is

‘ o diy), o di
Wy :J‘pz(t)dt:j Lzz lz(t)dt'i‘J‘ ME Ildt
e h 0 (10.10)
=L Iiz(t)diz—i-Mll jdi2=§L21§+M1112

=0 ;=0
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Figure 10.12 Coupled coils. i M i
—_— B -
"
L] [ ]
+ +
L Ly
vi(®) % % V(1)
- ——

The total energy stored in the coils when both i; and i, have reached constant values is

1 1
w=w +w, :ELllf +§L2122 +MILI, (10.11)

Equation (10.11) was derived with the assumption that the coil currents both entered
the dotted terminals. If one current enters the dotted terminal and the other does not,
the mutual voltage is negative and the mutual energy M1, is also negative.

The total energy in the system then is

W=w +w, :%Lllf +%1QI§—M1112 (10.12)

Since I; and I, were arbitrarily chosen, we may replace them by any other values. Let’s
replace them by i; and i;. Then we obtain a general expression for the instantaneous
energy stored in the system:

1 1
w= ELlif +5L2i22 + Miyi, (10.13)

Equation (10.13) allows us to determine the upper limit for the value of the mutual
inductance. Since the circuit consists of passive elements, the energy stored in it cannot
be negative. Thus,

1 1
Z Lyt +—Lyi3 — Miji, >0 (10.14)
2 2
Then, since
1/, . 2 1., .. 1.
E(llﬂLl —lz'\/lxz) :ELlllz _lllZNILll/Z +§l/2l22 (10.15)

inequality (10.14) can be written as
2
%(il\/Ll —izx/Ll) +iip\I Ly — Miyiy >0 (10.16)

The first term is never negative. This leads to the condition

iliz( L1, —M) >0 (10.17)
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thus
LI, -M=>0 (10.18)

or

M<JLL, (10.19)

Thus, the mutual inductance cannot be greater than the geometric mean of the self
inductances of the coils.

Coefficient of coupling specifies the extent to which the mutual inductance approaches
its limit.

__M (10.20)

VLI,

or, equivalently,
M=kJLL, (10.21)

10.3 Linear (Air-Core) Transformers

Figure 10.13 shows a circuit model of a linear transformer.

The coil connected directly to the voltage source is called the primary winding. The coil
connected to the load is the secondary winding. The resistors R; and R, account for the
power losses. The transformer is said to be linear if the coils are wound on a magnetically
linear material — a material with a constant magnetic permeability. Linear transformers
are sometimes called air-core tmnsfornzers (Alexander and Sadiku, 2009, p. 568).

Let’s obtain the input impedance, Z;,, as seen by the source. Applying KVL to the
primary and the secondary coils gives

V=R +jo Li - jo M, (10.22a)
0=Roly+jw Lydy + Z; I — joo MI, (10.22b)
R, M R,
n"d___“‘u
) —W
O 8§ 8- [
Primary coil Secondary coil

Figure 10.13 A linear transformer.
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From Eq. (10.22b) we get

R joo Mi,
) (10.23)
R+jo LL+Z;
Substituting Eq. (10.23) into Eq. (10.22a) we obtain
. . jo Mfl
V:(R1+ja) Ll)ll—ja) M— (10.24)
R2 +j(0 IQ +ZL
or
\ . oM
V:(R1+ja) L1)11+—A 1 (10.25)
R2 +ja) IQ +ZL
Thus the input impedance seen by the source is
.V jo* M?
Ziy=—=R+jo L + ——————— (10.26)
11 RZ +]Cl) lQ +ZL

The first term on the right-hand side of Eq. (10.26), R, + jwL,, is the primary impedance.
The second term is the result of the coupling between the primary and secondary
windings. It is known as the reflected impedance Zy,

jo* M*

Rm— (10.27)
R2 +]Cl) IQ"FZL

10.4 Ideal (Iron-Core) Transformers

An ideal transformer consists of two or more coils with a large number of turns wound
on a common core of high permeability (with no losses or magnetic flux leakage).
Iron-core transformers are close approximations to ideal transformers (Alexander and
Sadiku, 2019, p. 574).

The circuit symbol of an ideal transformer is shown in Figure 10.14.

Figure 10.14 Circuit symbol of an ideal transformer. — —
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Figure 10.15 Coupled coils in frequency domain.

1, M I,
— —
— r—-——"‘“—-\‘
[ ] [ ]
+ +
Vi %Ll %2 L2 vy
P— .

The vertical lines between the coils indicate an iron core, as distinct from the air core
used in linear transformers. In an ideal transformer, the primary and secondary coils are
lossless (R, =0, Ry, =0).

Consider the circuit shown in Figure 10.15.

The circuit is governed by the following equations

Vi = jo Lil+jo M, (10.28a)
Vs = jo M +jo L1, (10.28b)

From Eq. (10.28a) we get
. _%—ja’Mlz (10.29)

1=

jo L

Substituting Eq. (10.29) into Eq. (10.28b) gives

R ‘}1—/@ Mj2 .
Vy = joo M— +jo Ly, (10.30)
1
or
~ 2 27
. w” M-I .
v =M T T2 oL, (10.31)
L jo Ly
leading to
N . 2%
. . joo M1,
Vy = jo Ll + M SO (10.32)

L L

The ideal transformer is characterized by perfect coupling, that is, k=1, and therefore

M=\LL, (10.33)
Substituting Eq. (10.33) into Eq. (10.32) we get

JLLV, oLl (10.34)
L L

‘}2 =ja)l/2j2+
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‘©  gllgs ]

Figure 10.16 Voltages and currents in an ideal transformer.

or
V, = /ﬁl?l =nV, (10.35)
L
where
ae |2 (10.36)
L

is called the turns ratio.

When a sinusoidal voltage is applied to the primary winding, as shown in Figure 10.16,
the same magnetic flux @ flows through both windings.

According to Faraday’s law, the voltages across the primary and the secondary windings,
are, respectively,

do

N2 (10.37a)
V1 1 dt

v, =N, 22 (10.37b)
dt

Dividing Eq. (10.37b) by Eq. (10.37a) gives

n_N_ (10.38)
1 Nl
where 7 is, again, the turns ratio. When n =1, the transformer is usually called an isolation
transformer.
Since there are no losses in an ideal transformer, we have
b =p (10.39)
or
Vlil = V2i2 (10.40)
and thus

b_n_Ni_1 (10.41)
il Vo N2 n
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In phasor form, we have

Va_Np _ (10.42a)
Vi N
h oM 1 (10.42b)
Il N2 n
From Eq. (10.42) we get
Vi = ¥ (10.43a)
n
I, =nl, (10.43b)
The input impedance as seen by the source in Figure 10.14 is
Zyy =k (10.44)
I
Using Eq. (10.43) in Eq. (10.44) we get
i = izﬁ (10.45)
n 12
From Figure 10.14, it is evident that
Y2z, (10.46)
I,
and thus the input impedance seen by the source is
Zi = Z—ZL (10.47)
n

The input impedance is also called the reflected impedance, since it appears as the
load impedance reflected to the primary side.

As we shall see, the reflected impedance is used in impedance matching for maximum
power transfer, as explained next.

Consider the circuit shown in Figure 10.17.

Recall that for maximum power transfer the load must be matched to the source
resistance, i.e. R; = Rs. In most cases, however, these two resistance are fixed and
not equal.

An iron-core transformer can be used to match the load resistance to the source
resistance. The ideal transformer reflects its load back to the primary with a scaling
factor of n®. To match this reflected load with the source resistance we set
them equal

Ry =R (10.48)
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Source 1 Load
Matching transformer

Figure 10.17 Circuit with a matching transformer.

10.5 EMC Applications

10.5.1 Common-Mode Choke

A common-mode choke, shown in Figure 10.18, consists of a pair of wires carrying
currents I; and 1> wound around a ferromagnetic core (Paul, 2006, p. 350).

As we shall see, the common-mode choke blocks the common-mode (CM) currents
and has no effect on the differential-mode (DM) currents.

The currents shown in Figure 10.18 and the total current flowing in each wire, shown
in Figure 10.19, are related by

jl =jCM +jDM (10493)

I =Icy—Ipm (10.49b)

Equivalently, the CM and DM currents can be expressed as

I =%(i1 +i2) (10.50a)
ip =%(i1 —1}) (10.50b)

Let’s investigate the effect of the choke on the CM and DM mode currents. The circuit
model of the choke is shown in Figure 10.20.
Using the model in Figure 10.20, we calculate the impedance of each winding as

v, jo LI, + joo MI,

7, = . (10.51a)
L I,

. V. joLl+joM

g, =2 SO IO (10.51b)

I I
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Ipm N
E—
e

lem

lCM
—iE—

Ipm N

Figure 10.18 Common-mode choke.

il iCM iDM

- "
Ll L *

12 1CM Ipy

Figure 10.19 Total currents flowing in each wire.

+ Vl
M [ Li=L=L
2 + Vz -

Figure 10.20 Circuit model of the CM choke.

To determine the effect of the choke on the DM currents let
=1, (10.52a)
Iy=—Ip (10.52b)
Using Eq. (10.52) in Eq. (10.51a) we get
\ V. joLl+joMi,
Zpm = I :f—
L 1 (10.53a)
ja) LID — ]a) MID
= fD

= jo(L-M)




Magnetically Coupled Circuits
Similarly, using Eq. (10.52) in Eq. (10.51b) we get

) v, joLl+joMi
ZDM:A_:A—
L L (10.53b)
—jo Lip + jo Mi
= > ® = jo(L-M)

= _fD

Thus, the impedance seen by the DM current in each winding is
Zpu = jo(L—M) (10.54)
In the ideal case, where L = M, we have

Zpu =0 (10.55)
Thus, the (ideal) CM choke is transparent to the DM currents, i.e. it does not affect
them at all.
Now let’s determine the effect of the choke on the CM currents. To this end, let
L =1 (10.56a)
I, =1I¢ (10.56b)

Using Eq. (10.56) in Eq. (10.51a) we get

N ‘}1 ]CULIAI +jwa2

Zey == x
T h (10.57a)
jo Lic + jo Mic 7
== jo(L+M)
Ic
Similarly, using Eq. (10.56) in Eq. (10.51b) we get
L ‘}2 ]Cl)sz +jwMi1
Zey =5 =—">5—"—
I I
jo Lic + jo Mic (10.57b)
== jo(L+M)
Ic
Thus, the impedance seen by the CM current in each winding is
Zew = jo (L+M) (10.58)

Thus, the CM choke inserts an inductance L + M in each winding, and consequently
it tends to block CM currents.
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11

Frequency-Domain Analysis

In Chapter 7, we defined the Laplace transformation and used it to obtain the s domain
expression for a given time-domain function, and conversely, we obtained the time-
domain expression from a given s domain function using inverse Laplace transform.

The real power of Laplace transformation in engineering applications emerges
when we transform the electrical circuit itself from time domain to s domain and
analyze it directly in the s domain. The s domain analysis leads to a definition of a
transfer function, and subsequently to the concept of the frequency transfer function,
some of the most important concepts in circuit analysis.

In EMC, we are predominantly interested in the sinusoidal steady state and therefore
we will focus on the frequency transfer function techniques. We begin by defining the
concept a transfer function.

11.1 Transfer Function

The concept of a transfer function is perhaps the most important concept in frequency
domain analysis.

A transfer function is defined as the ratio of a Laplace transform of the output Y(s) to
the Laplace transform of the input X(s), under the assumptions of zero initial conditions
in the circuit (Nilsson and Riedel, 2015, p. 482).

Thus,

H(s)= 1) (11.1)
X($)licsc

Figure 11.1 shows a typical representation of a circuit in the s domain, used to define
the voltage transfer function.

The transfer function depends on what variables we define as the input and the
output. Perhaps the voltage transfer function is the most important one; it is used to
define several frequency-domain concepts (e.g. frequency transfer function and
electrical filters).

A _ VOUT (S)
H(S)_—VIN (s) (11.2)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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| o P
. . . +
Linear circuit

Vin w/zero initial
conditions

V() ur

Figure 11.1 Circuit used to define the voltage transfer function.

Iy
> 1 - o
I p—
Ve {/IN Circuit

Figure 11.2 Circuit used to define input impedance.

Toyr
—
- - [ 7 |
+
Circuit Vour VS

Figure 11.3 Circuit used to define output impedance.

Two additional very useful transfer (or network) functions can be defined using the
circuits shown in Figures 11.2 and 11.3.

Using the circuit shown Figure 11.2 we define the input (driving point) impedance
(Alexander and Sadiku, 2009, p. 852) as

Zin(s)= Viv (s) (11.3)
IIN (S)
while using the circuit shown Figure 11.3, we define the output impedance as
. Vour (s
ZOUT (S)ZAOL() (11‘4)
Tour (S )

A

Once the transfer function Aof the system, H(s), is obtained, then the output of the
system, Y (s), due to an input X(s) can be obtained as

Y(s):H(s)X(s) (11.5)

The following example illustrates the above defined concepts.
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1Q 1F

V() C) 1Q 1H § vour(t)

Figure 11.4 Circuit for Example 11.1.

Example 11.1 System network functions
Consider the circuit shown in Figure 11.4.

Determine:

1) the circuit’s transfer function

2) the input impedance

3) the output impedance

4) the output VOUT (s) when the input is vy (¢)=1,£>0

5) the output voy7(f) when the input is vy (t) = 3cos2t,£ >0

6) the steady state output voy(f) for the input vy (£) =3cos2t,t >0

Solution:
1. Transfer function
To determine the system’s transfer function let’s transform the circuit into the Laplace
domain under the zero initial conditions assumption, as shown in Figure 11.5.
The desired transfer function is defined as:

H(s) _ V‘E/)IL;T((S;)

First, combine impedances in series:

1 s+1

1+=-=2"-

N N

W— | N

Vin(s) <J_r> 1 $ § Vour(s)

Figure 11.5 Circuit in the s domain.
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s+1

Viv (5) <J:> 5 Vour (s)

Figure 11.6 Simplified circuit.

Next, combine impedances in parallel:

==
s+1

The resulting circuit is shown in Figure 11.6.
Using a voltage divider yields:

: s s
I:[(S):V?UT(S): s+1 _ s+1 :( s j S(S+]_)
Vin (s) il_ki (s+1)2+52 s+1

s s+l s(s+1)

252 +2s+1

and thus the circuit’s transfer function is

H(s)= 5~

25 +2s+1

2

2. Input impedance

The input impedance is obtained from the circuit shown in Figure 11.7.

Vin (5) C) 1 s %

Figure 11.7 Circuit for obtaining the input impedance.
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i[N(S)

s+1

Vin (s) <+> s
- s+1

Figure 11.8 Equivalent circuit for obtaining the input impedance.

G| —

I(s)

MW— | —

2 8 Ow

Figure 11.9 Circuit for obtaining the output impedance.

This circuit is, of course, equivalent to the one shown in Figure 11.8, from which the
input impedance is obtained as

2 (s)_VzN(S)_s+1 s (s+1)+s* 2842541
N _fIN(s)_ s s+l s(s+1) C s

3. Output impedance
The input impedance is obtained from the circuit shown in Figure 11.9.
This circuit is equivalent to the one shown in Figure 11.10, from which the output

impedance is obtained as
s+1 S
_ S s+1

S

Zour ()= Y1) (21)

Is(S) N
_ 1 _ 1 _ 1 S +s
st s (s+1) 48 25742541 26°+2s+1

s s+l s(s+1) s*+s
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I(s)

s+1

s + .
s+1 CD V()

Figure 11.10 Equivalent circuit for obtaining the output impedance.

4. Output VOUT (s) when the input isvy(£)=1,£20
The output can be obtained by utilizing the derived transfer function:

Vour (s)= I:I(S)VIN (s)

Since
VIN (t) =1
we have
- 1
‘/in =
(5)=1

and the output in the s domain is

~ §2 1 s
V = =
our (s) (2s2 +2s+1) s

& st
2

5. Output voy(t) when the input is vy (t) =3cos2t,t 20
Again, the output in the s domain can be obtained by utilizing the derived transfer function.

VOUT (S) = ]:I(S)‘}IN (S)
Since

VIN (t) =3cos2t

we have

. 3s

Viu(s)=

n(s) 5 +4

and the output in the s domain is

s 3s

(252+2s+1)52+4

‘}OLIT (S) =
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Now, partial fraction expansion yields

s 35 _ As+B  Cs+D
25 +2s+1s2+4 252 +2s+1 s*+4

Vour (s)
thus

3s° =(As+ B)(s2 + 4) +(Cs+ D)(2s2 +25+ 1)
or

3s® = As® + 4 As+ Bs® + 4B +2Cs> +2Cs> + Cs+2Ds> +2Ds + D

or
35> =(A+2C)s’ +(B+2C +2D)s’ +(4A+C+2D)s+(4B+ D)
therefore,

A+2C=3
B+2C+2D=0
4A+C+2D=0
4B+D=0

leading to

A=0.4154
B=0.3692
C=1.2923
D =-1.4769

thus

Vowr (5)= 0.41545+0.3692 _ 1.29235 ~1.4769
our 2% +25+1 44

Let’s obtain the time domain function represented by the above expression. We will
use it to obtain the steady state solution for part (5) of this example.
Let’s complete the square for the first term.

0.4154s+0.3692 0.20775+0.1846  0.2077s+0.1846

2 2
2s* +2s+1 Sz+s+% s+l +1
2 4
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Then the result leads to the damped cosine and sine functions, as follows:

0.2077s+0.1846 —0.2077 s+0.88878

1Y 1 1Y 1
s+—| +— s+— | +—
2) 4 2) a4
- s+05 038878
=0.2o77%=0.2077[ 1)2 1 ( 1)2 1
( 1 1 S+— | +— [ s+ | +—

2 4 4

o007y STO5 . 008075 _ . s+05 008075 05

1?1 11 1% 1 05 17?1
s+ | +— s+ | +— s+ | +— s+ | +—
2) " a 2) " a 2) 4 2) " a

The second term in

v (S) _0.41545+0.3692 N 1.29235-1.4769
o 2s% +2s5+1 s> +4

can be written as

1.29235-1.4769 1.2923s 1.4769
s +4 - s +4 _sz+4
12993 2s 1.4769 22
s“+4 2 s°+4
S _0.7384—>

2 +4 s$+4

=1.2923

Thus, the output voltage can be expressed as

~0.41545+0.3692 N 1.29235s-1.4769

Vour (s)=

our (5) 282 +25+1 14

:0.2077¢+0.16150+52+1.2923 S 0.7384—
( 1 1 ( 1 1 s“+4 s“+4

s+=| +— s+=| +—
2) 4 2) 4

Using the tables of Laplace transform pairs we obtain the time domain output as

vour (£)=0.2077e " sin2¢ +0.1615e " cos2¢ +1.2923cos 2t — 0.7384sin 2¢

5. Steady-state output voy(t) for the input vy (t) = 3cos2t,t >0
The sinusoidal steady state output is obtained directly from the solution of part (5) as

vour,ss (t) =1.2923cos2t —0.7384sin 2¢
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This output can also be expressed as

Your, ss (t) = 1.4'884'COS(21' + 29740)

In the next section we will show an alternative (and much easier) method of obtaining
the steady state response due to a sinusoidal input.

11.2 Frequency-Transfer Function

When the linear system is driven by a sinusoid, the response at steady state is sinusoidal
at the same frequency as the input. The steady state output differs from the input only
in the amplitude and phase angle.

The output amplitude and phase angle at each frequency can be determined by using
the sinusoidal or frequency transfer function.

The frequency transfer function is defined as the transfer function H(s) in which s is
replaced by jo.

A

H(jw)=H(s)

(11.6)

s=jw

Example 11.2  Sinusoidal transfer function
Given the system’s transfer function

A s+2
H(s)=—>"2
(S) 2 +3s+4

Obtain the system’s frequency transfer function

Solution: To obtain the frequency transfer function from the system’s transfer function,
we simply replace s by jo in the system’s transfer function.

A

H(jo)=Fi(s) s+2 | je+2 2+jo

o S +3s+4l,  (jo) +3jo+d4 4-0"+ 30

Obviously, the frequency transfer function is a complex function. As such it has a
magnitude (which is a function of the frequency w) and a phase (which is also a function
of the frequency w).

Let’s calculate these for the frequency transfer function obtained in the above
example.

Example 11.3 Magnitude and phase of the sinusoidal transfer function
Determine the magnitude and phase of the frequency transfer function
“ 2+ jw
H(jo)=——"——
4—-w" +j3w
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Solution: First, let’s determine the magnitude.

. ‘_| 2+jw | 12+ jol ~ i+ &? | 4+’
|

4—* + j30 | |4—a)2 +j3w| B \/(4_0)2)2 90 Not+0?+9
The phase of the frequency transfer function is

A ; Z(2+]
ZH(jo)= £ 2?0) = (2+jo) —tan' 2 tan™
4-0’ +3jo) L(4-a*+3j0) 2 4—w

11.2.1 Sinusoidal Steady-State Output

Frequency response characteristics of a system can be obtained directly from the

sinusoidal transfer function. Consider the linear time invariant (LTT) system sho
Figure 11.11.
The input x(¢) is a sinusoid given by

wn in

x(t)=Asinot (11.7)

Let the transfer function be expressed as a ratio of two polynomials (Nilsson and

Riedel, 2015, p. 442)

H(s)= AAI(S) = N(s) (11.8)
D(s) (s+p)(s+p2)-(s+pn)
The output in Laplace domain can be obtained as
. N N(s) -
Y(s)=H(s)X(s)= A(S)x(s) (11.9)
D(s)
(a)
Input Linear Output
time invariant >
x(t) = A sin wt system ¥(¢) = B sin (ot + 0)
(b)
Input Transfer Output
- Jfunction [T —*
X(s) H(s) Y(s)

Figure 11.11 LTI system driven by a sinusoid (a) time domain representation, (b) frequency domain

representation.
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Let’s consider the systems that are stable. For such systems the real parts of the roots
in the denominator of D(s) are negative.

Also, since the steady state response of a stable LTI system to a sinusoidal input does
not depend upon the initial conditions (they give rise to transient terms), we can assume
that the initial conditions are zero.

In the following discussion, we will consider several cases of roots of the output’s
denominator D(s).

Case 1: D(s) has only distinct poles (real or complex) In this case, the output Y(s) can be
expressed as

- N(s) Ao (11.10)
(s+p)(s+p2)(s+pu)s*+@°
a a b b, b,
=— + ot
s+jo s—jo s+p  s+p, 5+ py

where 4 is a complex constant and b; (i =1,...,n) are real or complex constants. The
inverse Laplace transform gives

jot A% +jot

y(t)=ae " +ae " +be P +he P 4t b (11.11)

For a stable system the roots, —p; have negative real parts. Thus, as £ —o0,e # — 0.
Therefore, at steady state, all the terms, except for the first two vanish, and the output is

jot At +jot

yis(t)=ae " +ae (11.12)
Case 2: D(s) has repeated poles (real or complex) If D(s) has multiple poles p; of multiplicity
my, then y() will be of the form

y(t) = ée_/m + &Al*e*—lwt + bleip]t + bze’l’ﬁ RS thl e_Plt ,
(11.13)

Since the real parts of the - p; are negative for a stable system, in steady state the terms
t" e P" will also vanish, and again the steady state response becomes

A —jot A% +jot

ys(t)=ae ™ +d'e (11.14)

The constant g can be evaluated as follows:

A Aw .
:H(S) 2 o2 (S+]a))

s=—jw

(11.15)
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and

a = H(s)X(s)

. Aw ,
= H(SA)Sz g (S_]w)szﬂ'a,
_AH(jw)

2j

s=+jo

- Aw
O s

s=+jw

A

H(jo) can be expressed in an exponential form as
H (joo) = |H (joo)

Similarly,
H(=jo)=|A(-jo)e " =|A(jo)e

Now, Eq. (11.14) can be written as

Yss (t) = &eijwt + 6?6+th =S —%I:I(—ja))ejm +2£j

= _%‘I:I(—ja))‘e"jee_th + %‘ﬁ(ja))‘ewe

j(wt+0) —j(wt+c9)

= 4| (jo)2 T

Therefore, the steady state output due to
x(t)=Asinot
is
¥ss (£)= AlH (jo)|sinwt + 2H (jo))
More generally, if the input is of the form
#(t) = Asin( ot +¢)
then the steady state output is
¥ss(£) = A| i (joo)[sin( ot + ¢+ 271 (jo))
Similarly, if the input is a cosine function of the form
x(¢) = Acos(wt +9)
then the steady state output is
¥ss(£) = A (joo)|cos(wt + g+ 2H (jo))

jot

= A‘I:I(ja))‘sin(a)t+ 9)

(11.16)

(11.17)

(11.18)

(11.19)

(11.20)

(11.21)

(11.23)

(11.24)

(11.25)

(11.26)
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W— | .

vy () C) 1Q 1 H§ vour (1)

Figure 11.12 Circuit for Example 11.4.

This is an extremely important and useful result! The output in steady state, is a sinu-
soid of the same frequency as the input, and its amplitude and phase are determined
from the frequency transfer function and the input’s amplitude and phase.

Example 11.4 Sinusoidal steady-state
Let’s use the circuit analyzed in Example 11.1 and redrawn in Figure 11.12.

Determine:

1) the system’s transfer function
2) the steady-state solution when the input to the system is v;, (¢) = 3cos2¢,t > 0.

Solution: In Example 11.1 we found the transfer function of this circuit to be

2

A S
H(s)=———
(5) 252 +2s+1

Thus the frequency transfer function is

. —o? g

H(jw)= =
(je) 20" +2jo+1 1-20" + 20

Since @ =2, we have

4
-7+ j4

H(jo)=H(;2)
The magnitude of the frequency transfer function at the frequency of ® =2 is
H( j2)‘ % 04061

V49+16

The angle of the transfer function is

H(jo)|=

L]:[(ja)):zﬁ(jz):é(

j: £(-4)- £(-7+ j4)

4
=180° — tan ™! —— =180° — (~29.74° + 180°) = 29.74°

(=7)

-7+ j4
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Since v;, (t) =3cos2t,t > 0, we have

Vour.ss (t) = (3)(0.4961)cos(2t +29.74")

which, of course, agrees with the steady state solution obtained in Example 11.1.

11.3 Bode Plots

On numerous occasions in EMC we plot the output of the system using a dB scale
for magnitude, and a logarithmic scale for frequency. We often refer to such plots
as Bode plots (Alexander and Sadiku, 2009, p. 619). The exact Bode plots can be
obtained using many available software packages. In many cases, it is more con-
venient and expedient to sketch an approximate magnitude plot using straight-line
approximations.

Let’s consider a transfer function with real, first-order poles and zeros:

. K(s+z
H(s)zu (11.27)
s(s+p1)
The first step in creating Bode diagrams is transforming Eq. (11.27) into a
standard form:
Kzl[l+sj
H(s)= il (11.28)

pls[1+sj
§ 21

The corresponding frequency transfer function is

Kz, (1 + "Oj
21

A

H(ja)):—jw (11.29)
pljo 1+j
(o 1+

If we let
K, =Xa (11.30)
b1
then Eq. (11.29) becomes

1<0(1+]‘"j

H(jo)=——22 (11.31)

EEa
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Example 11.5 Standard form of a frequency transfer function
Let

; 150s
Hls)= (s+10)(s+100)

Expressing this transfer function in a standard form we get

1(s)= 150s _ 0.15s
H (10)(100)(“12)(“15)0) (1+1S0j(1+130j

It follows that the frequency transfer function in a standard form is

0.15jw

i(jo)-
R

Let’s return to the frequency transfer function in a standard form given in Eq. (11.31).
Expressing this frequency transfer function in polar form gives

) Ko 1+//‘4a1 Ko 1+J‘"
H(jo @ —90°— f3;) (11.32)
|a)|490° 1+17 ‘4,31 o] 1+/7 ‘
where

a; =tan' 2 (11.33a)
21

B =tan 2 (11.33b)
)41

and thus, the magnitude and the phase of the transfer function are given by

K,

2]
1+]a/
P

ZH(jo)=a; -90°~ f3, (11.35)

(11.34)

|A(jo) =

@]
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Let’s focus on the magnitude. Expressing Eq. (11.34) in dB gives

Ky 1+f“/
21

P
=20log;o Ko +20log;, 1+/“/ 1+/“/‘
21 y21

Thus the magnitude of the transfer function in dB can be obtained by plotting each
term in the equation separately and then combining the separate plots graphically. The
individual factors are easy to plot because they can be approximated in all cases by
straight lines, as discussed next.

The plot of 20log;(Kj is a horizontal straight line because Kj is not a function of w.
The value of this term is:

(11.36)

—20log;o @ —20log,

KO >1 = I<0,dB >0
Ky=1 = Ky4;=0 (11.37)
0<Ky<l = Kyu5<0

The plot of this term is shown in Figure 11.13.
Next, let’s look at the term of the form

1+/"‘/‘ (11.38)
21

For small values of w, we obtain

‘I:l( ja))‘dB =20log;o

20 lOglo

1+j%‘52010g101=0, 0—0 (11.39)

On alog scale, this is a horizontal line at a dB =0 value. For the large values of @, we have

2010g101+]% ;2Olog10(%l), ® —> 0 (11.40)
|H(joo) 5|
K,

[0

Figure 11.13 Magnitude plot for the factor in Eq. (11.37).
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On a log scale, this is a straight line with a slope of +20dB/decade. This straight line
intersects the 0dB axis at w = z;, since

20log;o (“):Z/Zl)=201og10(1):0d13 (11.41)

This value of w is called the corner frequency. Figure 11.14 shows the Bode plot for the
factor in Eq. (11.38)
When z; =0, i.e,

I:I(s):(s—i-zl):s (11.42)
and subsequently
H(jo)=jo (11.43)
the magnitude plot takes on the form shown in Figure 11.15.
Next, let’s look at the term of the form

b

‘1&( ja))‘dB =-20log, (11.44)

|H(iw)dB| r
o
40 \ ‘\QCQ
d,Qc\
20 /
0 : .
w=z; 10z w
-20

Figure 11.14 Magnitude plot for the factor in Eq. (11.38).

|I:I (i@)d3| 4
o
40 e
»
DN
20
0 >
(0]
=20

Figure 11.15 Magnitude plot for the transfer function in Eq. (11.43).
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For small values of w, we obtain

b1

For the large values of @, we have

1+](l/
b

On a log scale, this is a straight line with a slope of -20dB/decade. This straight line
intersects the 0dB axis at ® = p,, since

~20log;o ~-20log;01=0, ®—0 (11.45)

—201Og10

;—201og10(% )  —> 0 (11.46)
1

—20logy, (a) = p/p ) =-20logo(1)=0dB (11.47)
1
Figure 11.16 shows the Bode plot for the factor in Eq. (11.44).
When p; =0, i.e,
H(s)= 1 1 (11.48)
(s+p1) s

and subsequently

H(ja)):]_iw (11.49)

the magnitude plot takes on the form shown in Figure 11.17.

|1:1(iw)d3| I

Figure 11.16 Magnitude plot for the factor in Eq. (11.44).
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|AGj@) s
40
20
0 (0]
)
20 Of())\‘/
“%

Figure 11.17 Magnitude plot for the transfer function in Eq. (11.49).

11.4 Passive Filters

To study the behavior of electrical filters we utilize the frequency transfer function
discussed in the previous section.
Recall: the output of the circuit in steady state is given by

yss(t):A‘H(jw)‘sin(wt+4ﬁ(jw)) (11.50)

In our discussion of passive filters (filters consisting of resistors, inductors, and
capacitors) we will use the transfer function of the form

H(s)= Vt () (11.51)

Vin (5)

That is, we will study the behavior of the electrical filter where both the input and the
output signals are voltages. In our study we vary the frequency over the frequency range
of interest and determine the magnitude and phase of H ( jw) in that frequency range.

Based on the magnitude response plots, the passive filters fall into four major catego-
ries, as shown in Figure 11.18.

11.4.1 RL and RC Low-Pass Filters

In this section we will examine two of the most basic low-pass RL and RC filters.

RL low-pass filter An RL low-pass filter is shown in Figure 11.19.

In order to analyze this filter (and all the remaining passive filters) we need to trans-
form this circuit to the s domain. This is shown in Figure 11.20.

The voltage transfer function for this circuit can be obtained using the voltage divider

. R
]_*I(S_VOLIT(S)_ R 2

 Vw(s) sL+R R
L

(11.52)
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|H(jw)] LOW-PASS FILTER [Hje) HIGH-PASS FILTER
1 b
Passband Stopband Stopband Passband
@c ® wc ®
|Hjo)| BANDPASS FILTER |Ho)| BAND-REJECT FILTER
1] 1
Stopband ~ |Passband| Stopband Passband  |Stopband|  passband
@y @D w @cy [ler)

Figure 11.18 Frequency response of the four types of ideal filters.

L

000"

vy ()

=

vour (1)

Figure 11.19 RL low-pass filter.

sL

Figure 11.20 RL low-pass filter.
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|H(jo)| + O(jw) 4

1.0 [ 0°

1
N R,
’ —45°
LT — -95°
0 >
e w
Figure 11.21 RL low-pass filter frequency response.
The corresponding frequency transfer function is
R
H(jo)=—L (11.53)
. R
jo+—
L
Figure 11.21 shows the frequency response of this RL filter.
The corner frequency of this filter is
R
Wc =— 11.54
=7 (11.54)

Note that, at the corner frequency, the angle of the transfer function is —45°.
The RL low-pass filter transfer function can be now be expressed in terms of the
corner frequency as

I:I(s): @

(11.55)
S+ ¢

RC low-pass filter An RC circuit shown in Figure 11.22 is also a low-pass filter.

R
- +
~ - 1 .
Vin(s) T ¢ Vour(s)

Figure 11.22 RC low-pass filter.
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|I:[(/(U)| + ()(]'(U) A

00

—45°

-90°

[0

Figure 11.23 RC low-pass filter frequency response.

The voltage transfer function for this circuit can be obtained using the voltage

divider as
1 1
H(s)= SCI -1 RCI (11.56)
R4 RsC+1 P
sC RC

The corresponding frequency transfer function is

1

» RC
H == .

(jo) — (11.57)
jo+——
RC

Figure 11.23 shows the frequency response of this RC filter.
Note that this filter has the same shape of frequency response as that for the low-pass
RL filter. The corner frequency of this filter is

1
Oc=—— 11.58
e (11.58)

The RC low-pass filter transfer function can be now expressed in terms of the corner
frequency as

H(s)=—%

- (11.59)
S+ ¢

which has the same form as the RL low-pass filter transfer function in Eq. (11.55).
The Bode plot of the RL and RC low pass filter is shown in Figure 11.24.

11.4.2 RL and RC High-Pass Filters

RL high-pass filter ~An RL high-pass filter is shown in Figure 11.25.
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| 1:10(1)) |dB
A

Figure 11.24 Bode magnitude plot of the RL and RC low-pass filter.

Figure 11.25 RL high-pass filter. R
—W\
+
Vin(s) sL Vour(s)
The voltage transfer function for this filter is
. v, S L
H(S): ?UT( ): 5 = 5 (11¢60)
VIN(S) sL+R S+£
The corresponding frequency transfer function is
H(jo)=—1L2 (11.61)
jo+—
T
Figure 11.26 shows the frequency response of this RL filter.
The corner frequency of this filter is
R
oc =— 11.62
c=7 (11.62)

281



282 | Foundations of Electromagnetic Compatibility
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Figure 11.26 RL high-pass filter frequency response.

Note that at the corner frequency the angle of the transfer function is 45°.

The RL high-pass filter transfer function can be now expressed in terms of the corner
frequency as

H(s)= +S (11.63)
S+ ¢

RC high-pass filter An RC high-pass filter is shown in Figure 11.27.
The voltage transfer function for this circuit is

H(s)= R1 __RGs _ Sl (11.64)
Ry RCs+1 s L
sC RC
The corresponding frequency transfer function is
I:I(ja)):Ll (11.65)
jo+——
RC
Figure 11.27 RC high-pass filter. 1
sC
. || .
+ I +

Vin(s) Vour(s)
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Figure 11.28 shows the frequency response of this RC filter.
Note that this filter has the same shape of frequency response as that for the high-pass
RL filter. The corner frequency of this filter is

1

=— 11.66
7C (11.66)

WOc
Note that this is the same value as that obtained for the low-pass RC filter. The RC
high-pass filter transfer function can be now expressed in terms of the corner fre-
quency as
. s

H(s)= (11.67)
S+ wc

which has the same form as the RL high-pass filter transfer function.
The Bode plot of the RC and RL high-pass filter is shown in Figure 11.29.
The summary of the first order low-pass and high-pass filters is presented in Table 11.1.

A

Ao | 0(je)

1.0},
AN 90°

1
2

45°

00

@c )

Figure 11.28 RC high-pass filter frequency response.

| A (o)l a5
0 ................................................
-3

>

0.1 1 o /oc

Figure 11.29 Bode magnitude plot of RL and RC high-pass filters.
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Table 11.1 First-order filter descriptions.

Low-pass RL Low-pass RC High-pass RL High-pass RC
Corner frequenc: 1) _R 1) _ L o) _R [0) - L
aeney ? ¢ RC M’ ¢ RC
. oc wc S s
Transfer function H(s)=—— H(s)=—— H(s)= H(s)=
f f ( ) S+ oc ( ) S+ ¢ ( ) S+ ¢ ( S+ ¢

11.4.3 Series and Parallel RLC Bandpass Filters

In this section we will examine two fundamental RLC filter configurations: the series
RLC filter and the parallel RLC filter. Both configurations can be implemented as either

bandpass or band-reject filters.

Understanding of these filters facilitates the discussion of the very important topic of
resonance presented in the following section. We begin with the bandpass configurations.

Series RLC bandpass filter A series RLC bandpass filter is shown in Figure 11.30.
The transfer function of this circuit can be obtained from the voltage divider as

R
f1(s) - R RrRCs %
= = . =
sC L LC

The frequency transfer function is
R
. JT®
H(jo)=
(joo) R

— -0 tj-o
LC L
The frequency plot of this filter is shown in Figure 11.31.
The Bode magnitude plot is shown in Figure 11.32.

| =

sL

000"

—a

> R N
Vivs) ; Vour(s)

Figure 11.30 Series RLC bandpass filter.

(11.68)

(11.69)
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Figure 11.31 Series RLC bandpass filter frequency response.

|H(jo)| 45
A

-3

0.1 1
W W) Oc)

Figure 11.32 Series RLC bandpass filter - Bode magnitude plot.

The maximum magnitude occurs at

1

Oy =——
MeJLe

This frequency is often called the center frequency. For this series RLC circuit, this
frequency is equal to the undamped natural frequency of a pure LC tank, which is
denoted as

(11.70)

@0 -1 (11.71)

JLC

We will see in the next section that it is also the resonant frequency of this circuit.
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The filter has two corner frequencies that can be calculated by setting the magnitude
in Eq. (11.69) equal to:

1

H(jw,)=— (11.72)
|A(je.) 5
The result is (Nilsson and Riedel, 2015, p. 537)
R R 1
Oy = —— || = | —— 11.73a
Y3 (2Lj LC ( )
ey =£+ R +L (11.73b)
2L 2L) LC
The bandwidth f of the bandpass filter is defined as the difference of the corner
frequencies:
R
B=wc, —wc)=— (11.74)

L

In terms of the bandwidth and the center frequency, the corner frequencies can be
expressed as

2
©c1 =—§+ [gj +g (11.75a)

2
wcz=§+ (g} +o; (11.75b)

Additionally, for this filter, the center frequency is the geometric mean of the corner
frequencies.

Wy = 0,10 (11.76)

The quality factor Q of the bandpass filter is defined as the ratio of its center fre-
quency to its bandwidth:

wy 1 |L

ZFZE c (11.77)

Q
The corner frequencies can be expressed in terms of the center frequency and the
quality factor as

2
W, = 0y —i+ 1+ 1 (11.78a)
2Q 2Q

1 1Y
0y = | — + 1+[—J (11.78b)
2Q 2Q
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Figure 11.33 Parallel RLC bandpass filter.

Finally, the transfer function of the series RLC circuit can be expressed in terms of the
bandwidth and the center frequency as

Ry
H(s)=—L - B (11.79)
s2+§s+i >+ Bs+ g

Parallel RLC bandpass filter A parallel RLC bandpass filter is shown in Figure 11.33.
The impedance of the parallel configuration of L and C is

) (o

1
sLl—= T == (11.80)
s L+ sLC+1 s°LC+1
sC
Using the voltage divider, we obtain the transfer function of this filter as
sL 1
: $PLC+1 sL rC’
H(s)= =3 = 1 . (11.81)
4 S“RLC +sL+R P gy
sS’LC+1 RC LC
The corresponding frequency transfer function is
.1
\ J % ®
H(jo)=— RC - (11.82)
0w
LC RC

The frequency plots for the parallel RLC filter have the same general shape as those
for the series RLC filter shown in Figures (11.31) and (11.32).
The maximum magnitude of the transfer function is

=1 (11.83)

max

|Fi(joo)

287



288 | Foundations of Electromagnetic Compatibility

when

1
Wy = —

JLC

The two corner frequencies are:
1 1Y 1
ey =———+,|| — | +—
2RC 2RC LC
1 1Y 1
Wcy =——+,|| — | +—
2RC 2RC LC

The bandwidth f of the parallel RLC bandpass filter is

1

B =0 -0 =E

(11.84)

(11.85a)

(11.85b)

(11.86)

In terms of the bandwidth and the center frequency, the corner frequencies can be

expressed as

a)cl=—£+ (E\J +(0§
2 2

@ :£+ (EJZ +op
2 2

(11.87a)

(11.87b)

Additionally, the center frequency is the geometric mean of the corner frequencies.

o =/ W0c1Dc2

The quality factor Q of the bandpass filter is

2
<g:&:a>(,zeC=,/E:R\/E
B L L

(11.88)

(11.89)

The corner frequencies can be expressed in terms of the center frequency and quality

factor as

W, =0y —t 14| —

0)62:600 —+ 1+

(11.90a)

(11.90b)
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V],\r (s) \A/O ur (s)

Figure 11.34 Series RLC band reject filter.

Finally, the transfer function of the parallel RLC circuit can be expressed in terms of
the bandwidth and the center frequency as

S

. ry Ps
H(s)=—RC —=— . (11.91)
24 5 s + fBs+ wp
RCLC

11.4.4 Series and Parallel RLC Band-Reject Filters

Series RLC band reject filter A series RLC band reject filter is shown in Figure 11.34.
The transfer function of this circuit can be obtained from the voltage divider as

L+— 2, L
H(s)= Tlsc o stuwenl 7 e (11.92)
5 .
R+sL+i s’LC+sRC +1 52+£s+i
sC L IC
The frequency transfer function is
A B
H(jo) =1LC—R (11.93)
O S )
LC L
The frequency plot of this filter is shown in Figure 11.35.
Bode magnitude plot is shown in Figure 11.36
The magnitude minimum is zero
‘H(ja)) =0 (11.94)
when
1
0=y = (11.95)
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Figure 11.35 Series RLC band reject filter frequency response.
A (jo)l g
0
-3
0.1 1 @0 10 w/w¢
@cy o)
Figure 11.36 Series RLC band reject filter - Bode magnitude plot.
The two corner frequencies are
R R 1
ocy =——+, || — [+— 11.96a
Y3 (ZLJ LC ( )
R R 1
Wy =—+ || — |[+— (11.96b)
2L 2L) LC
The bandwidth f of the series band reject bandpass filter is
R
=— (11.97)
F L



Frequency-Domain Analysis

In terms of the bandwidth and the center frequency, the corner frequencies can be
expressed as

2
wc1=—§+ (gj +ag (11.98a)
o, =£+ (ETJ@& (11.98b)
c2 2 2

Additionally, the center frequency is the geometric mean of the corner frequencies.

0o =/ W10 (11.99)

The quality factor Q is

Q=% _1|L (11.100)
B R\NC
The corner frequencies can be expressed in terms of the center frequency and quality
factor as

2
W, =0y —i+ 1+(i] (11.101a)
2Q 2Q
) 1Y
Wy = | — + 1+(—] (11.101b)
2Q 2Q

Finally, the transfer function of the series RLC band reject filter can be expressed in
terms of the bandwidth and the center frequency as

1
2
: e s> +a}
H(s)= R =2 5 (11.102)
2N L s+ Bs+ap
L LC

Parallel RLC Band Reject Filter ~ A parallel RLC band reject filter is shown in Figure 11.37.
The impedance of the parallel configuration of L and C is

1 L
L. (SL)(SCJ - (CJ(SC) -k (11.103)
- CSLC+1 SLC+1 '
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L

sC
| |
+ a +
) 000" o
Vin(s) sL % Vour(s)
Figure 11.37 Parallel RLC band reject filter.
Using the voltage divider we have
I
5 =
. L
H(s)= RL = ZSR CrR__ - LC : (11.104)
+ zS S"RLC+sL+R P
sSTLC+1 RC LC
The frequency transfer function is
H(j :
(jo)=— X (11.105)
— -’ +j-
LC L

The frequency plots for the parallel RLC band-reject filter have the same general
shape as those for the series RLC filter shown in Figures (11.35) and (11.36). Following
the same steps as those for the series RLC band reject filter, it’s easy to show that the two
corner frequencies are:

+ ( 1 j+— (11.106a)
V 2RC LC
/ 2RC (11.106b)

The bandwidth f of the parallel RLC bandpass filter is
i (11.107)

In terms of the bandwidth and the center frequency, the corner frequencies can be
expressed as

wcl——§+ (g) +ag (11.108a)

Oy = §+ [gj + o (11.108b)
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Additionally, the center frequency is the geometric mean of the corner frequencies.

CUO :\,COCICOCZ (11.109)

The quality factor Q of this filter is

2
Q=2 _ RC = /RC:R\E (11.110)
B I I

The corner frequencies can be expressed in terms of the center frequency and quality
factor as

[ 2
W, =g —L+ 1+ =S (11.111a)
2Q 2Q
1 1Y
Oy = | — + 14| — (11.111b)
2Q 2Q

Finally, the transfer function of the parallel band reject filter can be expressed in terms
of the bandwidth and the center frequency as

52 -i-L 2 2
A(s)= IC __ S *% (11.112)
2 1 1 P4 pBs+ap
s
RC LC

The summary of the second-order filters is presented in Table 11.2.

Table 11.2 Second-order filter descriptions.

Parallel RLC Series RLC Parallel RLC
Series RLC Bandpass Bandpass Band Reject Band Reject
Bs Bs 2 4 ol 2 4ol
Tansfer H(s)= gy H(s) =g H(s) =R H(s)=
function "+ Bs+ag s”+ Ps+ap s+ Bs+wd S+ Bs+af
Bandwith _R _ 1 _R _ 1
F L F RC F L F RC
Center @ = 1
frequency JLC
Quality 1L e 1L e
facor 2= R\c Q=RT ==\c T

Corner B B 2 )
frequencies ®c1 :_E+ 5 + g W1 =Wy

CR
oa=-Lo 2] vei { i H[Lj

2Q

|
|
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11.5 Resonance in RLC Circuits

11.5.1 Resonance in Series RLC Bandpass Filter

Let’s consider a series RLC bandpass filter analyzed in Section 11.4.3 and shown in
Figure 11.38.
Let’s calculate the input impedance for this filter.

5 V;'n (S) . 1
Zu(jo)= =R L+— 11.113
(]a)) Ly (S) s=jo Hent ]a)C ( )
or
R 1
Zi”(jw):RJrj[wL_RJ (11.114)

Let’s determine the frequency when the input impedance is purely real; this hap-
pens when
1

wL——=0 (11.115)
oC

or

g = — (11.116)

JLC

So, what does this mean? It means that at the frequency of @y the input impedance is
purely real, and thus the voltage phasor and the current phasor are in phase (with
respect to the input terminals).

Ziw=R (11.117)

The frequency at which the voltage and current phasors (with respect to the two
terminals of the circuit) are in phase is called the resonant frequency, w,.

As we shall see, when the circuit has a resonant frequency (not every circuit does),
several very interesting and important consequences may follow.

In(s) R
S

/\/\f\/ +

‘A//N(-V) sL % 1 \A/OUT(S)
sC

Figure 11.38 Series RLC bandpass filter.
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1Z(j)l 4

@ @
Figure 11.39 Magnitude of the input impedance.

The magnitude of the input impedance in Eq. (11.114) is

4o o)
= |R* +| oL -— (11.118)
wC

Note that the magnitude of the input impedance is minimum at the resonant fre-
quency and is given by Eq. (11.117); it is infinite at ® =0 and @ = .

The magnitude plot of the input impedance using a linear scale is shown in Figure 11.39.

Let’s investigate the input admittance of this circuit

A
‘Zin

Yo (jo) == 1 (11.119)
i (jo) ( 1 J
R+j| oL ———
wC
Its magnitude is
. 1
Y(/a))‘ - : (11.120)
J R+ (a)L - 1]
aC
This magnitude is maximum at the resonant frequency
. 1
Y(jo) =% (11.121)

and goes to zero at very low and very high frequencies, as shown in Figure 11.40.

Note that the shape of the magnitude of the input admittance is of the same form as
that of the series RLC bandpass filter voltage transfer function.

We note that, at resonance, the input impedance of the circuit is minimum while the
input admittance is maximum.

It is very instructive to look at the current and component voltages as functions of
frequency, especially at resonance. Let’s start with the magnitude plot of the current,
shown in Figure 11.41.
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[Y(jw)! &

1/R

Figure 11.40 Magnitude of the input admittance.

()| 4

Figure 11.41 Magnitude of the current.

We observe that the maximum current occurs at resonant frequency, which is con-
sistent with the input impedance plot.

Now, let’s reveal something extremely interesting. Let’s plot the voltage across the
circuit elements; to focus on the phenomena occurring here let’s use the prototype
circuit with all circuit element values equal to one, as shown in Figure 11.42. The circuit
is driven by a 1V amplitude ac source.

The magnitudes of the voltages across the circuit element are plotted in Figure 11.43.

As expected, the voltage magnitude across the resistor is maximum at the resonant
frequency, and is equal to one.

But notice that the magnitudes of the voltages across the capacitor and inductor are
greater than one, even though the circuit was driven with a 1V magnitude source!
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1H LF
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|
+ + VL(j(IJ) - + Vc(j(l)) - *

Figure 11.42 Voltages across the circuit elements.

IV(jw)l
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v

, ®

Figure 11.43 Magnitudes of the voltages across the circuit elements.

Let’s look closer at both the magnitudes and the phases of the voltages across the
capacitor and inductor, shown in Figure 11.44.
At resonant frequency w, we have

a

Ve = Ve max £0° (11.122)

V, =V, £+90°, V, =V (11.123)

Ve =Vel—90°, V, =V, (11.124)
and

V, +Ve =V, Z+90°+V, £ —90°=0 (11.125)

We observe that the maximum magnitude of the capacitor voltage (V.. =1.15V) s
larger than the magnitude of the input voltage (V,,, =1V), and occurs at frequency o¢ < @,.

The maximum magnitude of the inductor voltage (V, ., =1.15V) is larger than
magnitude of the input voltage (V;,, =1V) and occurs at frequency w; > ®,.
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Figure 11.45 Circuit with a new capacitor value.

Additionally we have, V¢ ;.0 =V .4 and the phase angle of the capacitor voltage
Oc =-55° is of the opposite polarity to that of the inductor voltage 8; =55°.
Recall: the quality factor of this circuit is given by Eq. (11.77), repeated here,

(O 1 L

Q:F:E = (11.126)

which for the prototype circuit shown is equal to one.

For the illustration purposes, let’s change the capacitor value to C =100 pF, as shown
in Figure 11.45.

The quality factor now is

-6
Q:%Jll?)o =100 (11.127)

First let’s look at the voltage across the resistor, shown in Figure 11.46.
Its maximum occurs at resonance and it is still equal to one. Now let’s look at the
voltages across the capacitor and inductor, shown in Figure 11.47.
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IV(jw)l

A

1

Figure 11.46 Voltages across the resistor Q=100.
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Figure 11.47 Voltages across the capacitor and inductor Q=100.

At resonance, the magnitude of the capacitor and inductor voltage is 100V for a 1V
input signal!
To be more specific

Vi =QV, (11.128a)
Ve =QV, (11.128b)
where V,, is the amplitude of the input voltage.
Let’s prove it. Recall the definition of the quality factor
®o
Q=— (11.129)
B
Since
R
= 11.130
B=7 ( )
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0y = — (11.131)

JLC

we can rewrite Eq. (11.129) as

Q:%L (11.132)
or
1
L
Q=®L_o Ll _r1c”_ 1 (11.133)
R 0wy R wyR @ RC
and thus
Vi|=2.u1 =(w0L)(Vij =“%Lvm =QV,, (11.134a)
Ve|=zer=[ = (V—mj: L v —qv, (11.134b)
aC )\ R wgRC

At resonance, the voltage across the capacitor and the voltage across the inductor can
be many times larger than the input voltage.

This is especially dangerous in high Q circuits where this voltage might be destructive
to the capacitor (inductors handle high voltages much better).

Note that at resonance

VL = VL,maxé + 9001 VL,max = VC,max (111353)
Ve =VemaxZ=90°% Vi max = Ve max (11.135b)

And again, the total voltage across the LC configuration is zero.

Vi +Ve = Vimax 2 +90°+ Vo £ =90° =0 (11.136)

11.5.2 Resonance in Parallel RLC Bandpass Filter

Let’s now consider a parallel RLC bandpass filter analyzed in Section 11.4.3, and shown
in Figure 11.48.

Let’s apply the source transformation to the input voltage source and the resistor. The
resulting circuit is shown in Figure 11.49 and is known as a parallel RLC circuit.

Note that the circuit to the left of the inductor, consisting of a current source in
parallel to a resistor, is equivalent to the one in Figure 11.48, consisting of a voltage
source in series with a resistor. This means that the results obtained for the inductor
and capacitor currents from the circuit in Figure 11.49 also apply to the circuit in
Figure 11.48.
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Figure 11.48 Parallel RLC bandpass filter.

Ixtio) o[ Teto)

Figure 11.49 Parallel RLC circuit.

The input admittance of this circuit is

ﬁn(jw)=l+#+jwczl+j wC -1 (11.137)
R joL R oL

At

=@y =— (11.138)

JLC

the input admittance is purely real. Thus the frequency in Eq. (11.138) is the resonant
frequency of the parallel RLC circuit. Let’s look at the magnitudes of the element
currents, shown in Figure 11.50.

Let’s look closer at both the magnitudes and the phases of the currents through the
capacitor and inductor, shown in Figure 11.51.

At resonant frequency w, we have

I = I max £0° (11.139)
I,=1,/-90°, I,=I¢ (11.140)

Ie=1c2+90°, I, =I¢ (11.141)
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Figure 11.50 Magnitudes of the currents through the circuit elements.
(jw)l
4 4 0(jo)
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J— f
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o} @, wc w
Figure 11.51 Currents through the capacitor and inductor.
and
I, +1c=1,/-90°+1,/-90°=0 (11.142)

We observe that the maximum magnitude of the inductor current (I; ,,,, =1.15A) is
larger than magnitude of the input current (/;, =1 A) and occurs at frequency o; < ®,.

The maximum magnitude of the capacitor current (I ,,,, =1.15A) is larger than
magnitude of the input current (I;, =1 A) and occurs at frequency w; < ®,.

Additionally, we have I, ., = Ic .. and the phase angle of the inductor current
0, =-55° is of the opposite polarity to that of the capacitor current 8 =55°.

The quality factor of this circuit is given by

_® _ 5 |C
Q—ﬂ R\/: (11.143)
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1, (jo)!
A

100

Figure 11.52 Magnitude of the capacitor and inductor currents, Q=100.

which for the prototype circuit (R=1Q, L=1H, C=1F) is equal to one. For the illustra-
tion purposes let’s change the resistor value to R=100 Q.
The quality factor now is

Q= 100\E =100 (11.144)

Now, let’s look at the capacitor and inductor currents shown in Figure 11.52

At resonance, the magnitude of the capacitor and inductor current is 100A fora 1 A
input signal!

At resonance the current through the capacitor and the current through the inductor
can be many times larger than the input current.

This is especially dangerous in high Q circuits where this current might be destructive
to the inductor (capacitors handle high currents much better).

To be more specific

I =QI, (11.145a)
Ic =Ql, (11.145b)

where [, is the amplitude of the input current. Let’s prove it. Recall

Q= _ 1“’0 =woRC=iL (11.146)
B %QC 2]
The impedance of the parallel combination of R and C is
R 1 C R
Fpe =1 o (11.147)
R4+ 1 1+ jayRC
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Using the current divider, we get the inductor current as

R
iL _ 1+]0)0RC IA: : R : IA
ja’OL"'W R+]a)0L(1+]a)ORC) (11148)
R i R i=Rj

R-a§RLC+jaxl  p_ L preyjmr  Jl
LC
The magnitude of this current is
R

I, =—1,=0QIl, (11.149)
oL

The capacitor current is

_RjanL
\ R+joyl JjeoRL ;
le=Rmr 1 17 R jool |
_RjL jaoRL + 10~
R+ jaoyl  jo,C JonC
iwyRL)( jar,C \ e :
___ UaRL)UexC) 5 _ _—aRLC_; (11.150)
(jaoRL)(jooC)+R+ jayL -y RLC + R+ jay, L
—R jo—R;j_: R 1=jQi

T R+R+jol janl oL

The magnitude of this current is

=21 oI, (11.151)
a)oL

11.5.3 Resonance in Other RLC Circuits

In series and parallel RLC circuits discussed so far, we encounter a “pure” series and
parallel connection of L and C, as shown in Figure 11.53.
For these pure configurations, the resonant frequency was equal to

W, =W, :; (11.152)
Jic
In general, when L and C are not purely in series or parallel, this is not the case. Let’s
consider the parallel LC circuit shown in Figure 11.54.
Even though this is not a pure parallel LC configuration, it is often called such. Let’s
determine the input admittance and the resonant frequency of this circuit.

Y(jo)= LI = jooC +——
]  R+joL R+ joL
oC (11.153)

—jwC+ R—ja)LZZ R - a)C—w—Lz
R +(ol)” R*+(olL) R*+(wL)
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(a) (b)

x

Figure 11.53 Pure (a) series and (b) parallel LC configurations.

Figure 11.54 Another parallel LC configuration. m/)

For resonance to occur, the admittance needs to be real. This occurs when

o, L

0,C-———
R +(o,L)

-0 (11.154)

or
o, C[ R +(0 L) |-0,L=0 (11.155)
Dividing by w, and rearranging produces

, L-RC?
Oy =——

’ - (11.156)

and therefore the resonant frequency of the circuit is expressed as

2
oy =,/%—IZ—2 (11.157)

Substituting this value into Eq. (11.153) gives the value of the input admittance at
resonance.
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:{%} —— R - R . (11.158)
R +(G)L) o0, R +(a),L) R2+ L_RT L2
LC L
R _RC
R+l_p L
C
The input impedance at resonance is therefore
Z(jw,):i (11.159)
RC
Returning to Eq. (11.157) we observe that if
2 2 2
1 R, 1 R R, (11.160)
LC I LC P

then the resonant frequency is complex and thus there is no real solution for the reso-
nant frequency; this means that the source voltage and the source current cannot be in
phase at any frequency.

If

2 2 2
L—R—>0 = L>R— ﬂ<1 (11.161)
LC [? LC I? L

then there is a unique non-zero resonant frequency.

For completeness, let’s consider the series LC circuit shown in Figure 11.55.

Even though this is not a pure series LC configuration, it is often called such. Let’s
determine the input impedance and the resonant frequency of this circuit.

L

000!

p—e %R

Figure 11.55 Another series LC configuration.
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R—,al)c
Z(jo)=joL+ / = joL+————
R+ 1 1+ joRC
joC (11.162)
R(1-joRC 2
= joL+ (1-je 2)= R —+j a)L—LCZ
1+(wRC)”  1+(wRC) 1+(wRC)

For resonance to occur the impedance needs to be real. This occurs when

2
w,L—LC2 -0 (11.163)
1+(w,RC)
or
o,L[1+(0,RC)’ |-, R*C =0 (11.164)

Dividing by w, and rearranging produces

, RC-L 1 1

O = ciL TIc RCE (11.165)

and therefore the resonant frequency of the circuit is

o, = /%_ RZICZ (11.166)

Substituting this value into Eq. (11.162) gives the value of the input impedance at
resonance.

. 2
Z(ja),)= %4_] a)L—ch
1+(@RC) 1+(eRC) ||

= LZ = R (11.167)
1+(wRC) | 1+R2C2(1— 1 j
r LC R2C2
3 R L
2
1+R C_1 RC
L

The input impedance at resonance is therefore

L
Z(jo,)=— 11.168
(er) =2 (11.168)
Returning to Eq. (11.166) we observe that if
L 1 = 1 1 L >1 (11.169)

_— < —< =
LC R*C? LC R*C? CR?
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then the resonant frequency is complex and thus there is no real solution for the
resonant frequency; this means that the source voltage and the source current can-
not be in phase at any frequency.

If

L
— <1 (11.170)
CR?

then there is a unique non-zero resonant frequency.

11.6 EMC Applications

11.6.1 Non-ldeal Behavior of Capacitors and Inductors

Capacitors The impedance of an ideal capacitor is equal to

A

Z(jo)

The magnitude of this impedance decreases linearly with frequency or at a rate of
—-20dB/decade, as shown in Figure 11.56.

The equivalent circuit model of a physical capacitor is shown in Figure 11.57.

The impedance of this RLC circuit is

= (11.171)
joC

1  -0’LC+ joCR+1

H(jw)=jo+R+-

joC joC
—’L+joR+E o jORL L
- ' C_p L IC (11.172)
jo jo
1 5 LR
e ”
jao
A
Ljow) — C
Z(jw)l 4 B
S
&
0) 10 w (:)

Figure 11.56 Impedance magnitude of the ideal capacitor.
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Figure 11.57 Circuit model of L R

a physical capacitor. A W /\/v\/_

Z(jw) —>

Z(jeo)l 4

—20 dB/decade
+20 dB/decade

Capacitive
behaviour

Inductive
behaviour

< 7 2avie

Self-resonant frequency

Figure 11.58 Impedance magnitude of a physical capacitor.

0.00E +00

~5.00E+00 L

N

-1.00E+01

N
>

—1.50E+01 A

—2.00E+01

LJg mngnitu de

— Short trace

-2.50E+01 — Long trace \
_3.00E+01 [T 11
1.00E+06 1.00E+07 1.00E + 08 1.00E+09 1.00E+10

Frequen o

Figure 11.59 The effect of the connection leads on the impedance of a capacitor.

The magnitude of this impedance is shown in Figure 11.58.

One of the most important factors that affects the behavior of a capacitor (and an
inductor) in a practical circuit is the length of its leads. The longer the leads the larger
the inductance. Figure 11.59 shows the impedance measurements of a 120 pF capacitor
with the short and long connection leads, respectively.
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J\Z(jo)l

20 dB/decade

Figure 11.60 Impedance magnitude of the ideal inductor.

Note that increasing the length of the connection leads moves the self-resonant
frequency of a capacitor to the left. This is consistent with the model we have used.
Increasing the connection leads increases the inductance and thus the resonant
frequency becomes smaller.

Inductors The impedance of an ideal inductor is equal to

Z(jo)= joL (11.173)

The magnitude of this impedance increases linearly with frequency or at a rate of
20dB/decade as shown in Figure 11.60.

Figure 11.61 shows the impedance measurements of a 56 nH inductor with short and
long connection leads, respectively.

Again, we note that increasing the connection leads increases the inductance and
thus the resonant frequency becomes smaller.

11.6.2 Decoupling Capacitors

One of the most interesting EMC examples of resonance involves the use of decoupling
capacitors. Figure 11.62 shows the circuit model and the current flow for two cascaded
CMOS inverters with the adjacent decoupling capacitors.

When a decoupling capacitor is placed adjacent to an IC to supply the transient
switching current, an RLC circuit is created. The parasitic inductance comes from sev-
eral sources (Ott, 2009, p. 432):

o the capacitor itself
o the interconnecting PCB traces and vias
o the lead frame of the IC

This inductance is shown in Figure 11.63.

Effectively, this RLC circuit will be resonant! Let’s look at this resonance for several
different decoupling schemes.

First, let’s consider three different capacitors in series with 15 nH of parasitic induct-
ance, as shown in Figure 11.64.

Figure 11.65 shows the plot of the magnitude of the impedance of these LC networks
vs frequency.



56 nH inductor

— IZI long trace
— |ZI short trace

+09

Frequency

Figure 11.61 The effect of the connection leads on the impedance of an inductor.
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Figure 11.62 Local decoupling capacitor in a CMOS circuitry (a) low-to-high transition, (b) high-to-low
transition.



Figure 11.63 Parasitic circuit
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Figure 11.64 Circuit model - three different capacitors in series with 15 nH of parasitic inductance.
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Figure 11.65 Impedance plot - three different capacitors in series with 15 nH of parasitic inductance.
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Note that above 100 MHz, the impedance of the decoupling network is dominated by
the 15 nH of inductance, regardless of what value capacitor is used.

Figure 11.66 shows multiple capacitors of the same value.

The resulting impedance plots are shown in Figure 11.67.

Figure 11.68 shows a single capacitor vs multiple capacitor configurations, where the
total capacitance in each circuit is the same.

Figure 11.66 Circuit model — multiple capacitors of the same value.
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Figure 11.67 Impedance plot — multiple capacitors of the same value.

Figure 11.68 Circuit model - single cap vs multiple capacitors when the total capacitance is the same.
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The resulting impedance plots are shown in Figure 11.69.
Figure 11.70 shows two capacitors one decade apart in values.
The resulting impedance plots are shown in Figure 11.71.
Figure 11.72 shows three capacitors one decade apart in values.

100

Impedance (L)

0.1 4

0.01 —_—
1 MHz 10 MHz 100 MHz
Frequency (Hz)

1 GHz

Figure 11.69 Impedance plot — multiple capacitors of the same value.

Figure 11.70 Circuit model - two capacitors one decade apart.
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Figure 11.71 Impedance plot — two capacitors one decade apart.
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Figure 11.72 Circuit model - three capacitors one decade apart.

The resulting impedance plots are shown in Figure 11.73.

Finally, it is interesting to compare the case of three capacitors decades apart vs three
capacitors of the same value. This is shown in Figure 11.74.

The resulting impedance plots are shown in Figure 11.75.

1000 N
Anti-resonpnée A
100 < \
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Figure 11.73 Impedance plot — three capacitors one decade apart.



Figure 11.74 Circuit model - three capacitors one decade apart vs the same value.
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Figure 11.75 Impedance plot - three capacitors one decade apart vs. the same value.

11.6.3 EMCFilters

In Section 11.4 we discussed the four basic types of passive filters (low-pass, high-pass,
bandpass and band-reject) and their parameters. In this section we will focus on passive
low-pass filters used to suppress EM noise.

EMC filters are described in terms of the insertion loss defined as (Paul, 2006, p. 386)

VL,without filter

1L =20logg —————— (11.173)
L,with filter

Figure 11.76 illustrates this definition.
The most basic EMC low-pass filters are shown in Figure 11.77.

Figure 11.76 lllustration of the insertion

Zg .
— loss of afilter.
LT +
. v, 5
VS (u'n/nm{‘/?lﬂ’l') |:_ ZL
Zg
1
L +

. Filter v, L
VS <_> (with filter)____| ZL
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Figure 11.77 First-order low-pass filters. L

A typical higher-order EMC low-pass filter consists of a series inductance and shunt
capacitance. Figure 11.78 shows two different LC configurations.

The filters shown in Figure 11.78 can be cascaded to produce higher-order filters.
This is shown in Figures 11.79 and 11.80.

Third-order & and T filters are shown in Figure 11.81.

(a) I3 (b) I3

- -

Figure 11.78 LC low-pass filters: (a) configuration 1, (b) configuration 2.

Figure 11.79 Cascaded LC L L

filters — configuration 1. W Lk

Figure 11.80 Cascaded LC filters — configuration 2.
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7 filter T filter

Figure 11.81 nand T low-pass filters.

The higher the order of the filter the sharper the transition from the pass band to
the rejection region. Note that for each order of the filter we have two different
configurations. Which one will perform better? That depends on the impedance of
the source and the load.

The general rule is that the inductor should be on the low-impedance side and the
capacitor should be on the high-impedance side.

Figure 11.82 shows the appropriate configurations when both the source and the load
impedances are low.

Figure 11.83 shows the appropriate configurations when both the source and the load
impedances are high.

Figure 11.84 shows the appropriate configurations when the source impedance is low
and the load impedance is high.

Finally, Figure 11.85 shows the appropriate configurations when the source impedance
is high and the load impedance is low.

B o7,

c Liow| Z,

Figure 11.82 Filter configurations when both the source and the load impedances are low.
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Frequency-Domain Analysis

Figure 11.83 Filter configurations when both the source and the load impedances are high.

Figure 11.84 Filter configurations when the source impedance is low and the load impedance is high.
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I,

i

C low ZL

Zs L L

high = . g - W —‘
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Figure 11.85 Filter configurations when the source impedance is high and the load impedance is low.

Let’s verify the above claims by determining the insertion loss of second-order LC
filters. First, let’s investigate the configurations shown in Figure 11.86, where the source
impedance is low and the load impedance is high.

Figure 11.87 shows the insertion loss of the two filter configurations in Figure 11.86.

As can be seen from Figure 11.87, the insertion loss of configuration 1 is about 25dB
higher than that of configuration 2.

Next, let’s investigate the configurations shown in Figure 11.88, where the source
impedance is high and the load impedance is low.

Figure 11.89 shows the insertion loss of the two filter configurations in Figure 11.88.

As can be seen from Figure 11.89, the insertion loss of configuration 1 is again about
25dB higher than that of configuration 2.

Next, let’s compare the performance of the m and T filters as shown in Figure 11.83.
First, let’s investigate the configurations shown in Figure 11.90, where both the source
impedance and the load impedance are low.

Figure 11.91 shows the insertion loss of the two filter configurations in Figure 11.90.

As can be seen from Figure 11.91, the insertion loss of the T configuration is about
50dB higher than that of the © configuration (except for the low frequency region).

Next, let’s investigate the m and T filters configurations, where both the source imped-
ance and the load impedance are 100 Q, as shown in Figure 11.92.

Figure 11.93 shows the insertion loss of the two filter configurations in Figure 11.92.

What we notice is that the performance of both filters is virtually the same. The rea-
son is that the 100 Q impedance is neither low nor high for these configurations (and
filter component values).
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Figure 11.86 Filter configurations when the source impedance is low and the load impedance is high:
(@) no filter, (b) inductor on the low impedance side (configuration 1), (c) inductor on the high
impedance side (configuration 2).

110dB
100dB
90dB
80dB
70dB oottt
60dB o
50dB i i
10dB Configuration 1 == B P
30dB o — =T
20dB =
10dB : —. ‘Configuration 2
0dB : 1 1
-10dB ; ; ; ;

1 KHz 10 KHz 100 KHz 1 MHz

1\

Figure 11.87 Insertion loss of the two configurations shown in Figure 11.86.

Finally, let’s investigate the m and T filters configurations, where both the source
impedance and the load impedance are high, as shown in Figure 11.94.

Figure 11.95 shows the insertion loss of the two filter configurations in Figure 11.94.

As can be seen from Figure 11.95, this time the insertion loss of the n configuration is
about 25 dB higher than that of the T configuration (except for the low frequency region).
Increasing the source and load impedances would increase the insertion loss.
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()

Figure 11.88 Filter configurations when the source impedance is high and the load impedance is low:
(a) no filter, (b) inductor on the low impedance side (Configuration 1), (c) inductor on the high
impedance side (Configuration 2).

100dB
80dB
60dB e
40dB — ]
20dB S e Configuration 2. &
0dB i
-20dB
-40dB
—-60dB
-80dB
—100dB
—120dB

1 KHz 10 KHz 100 KHz 1 MHz

‘ Configuration 1

Figure 11.89 Insertion loss of the two configurations shown in Figure 11.86.
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(b)

Figure 11.90 Filter configurations when both the source impedance and the load impedance are low:
(a) no filter, (b) inductors on the low impedance sides (r configuration), (c) capacitors on the low

impedance sides (T configuration).

120dB

100dB

T filter
80dB

/

60dB T

40dB

0dB L Pi filter

e —

0dB

1 KHz 10 KHz 100 KHz

Figure 11.91 Insertion loss of the two configurations shown in Figure 11.90.
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(a)

Figure 11.92 Filter configurations when both the source impedance and the load impedance are
100 Q: (a) no filter, (b) T filter configuration, (c) = filter configuration.

100dB

80dB

60dB

40dB

\

20dB

0dB
1KHz 10KHz 100KHz 1 MHz

Figure 11.93 Insertion loss of the two configurations shown in Figure 11.90.

(a)

©

Figure 11.94 Filter configurations when both the source impedance and the load impedance
are high: (a) no filter, (b) T filter configuration, (c) = filter configuration.



Frequency-Domain Analysis | 327

120dB 4 : ! [ | : : N L A O O :
100dB - ST SN NN NS SV SR SN S S SRR

80dB i i S | pifilter i

60dB A g — T
40dB A ) ; ; ; ;

T filter
20dB -

0dB T T T T T T — T
1KHz 10KHz 100 KHz

Figure 11.95 Insertion loss of the two configurations shown in Figure 11.92.
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12

Frequency Content of Digital Signals

12.1 Fourier Series and Frequency Content of Signals

12.1.1 Trigonometric Fourier Series

Any periodic function can be represented as an infinite sum of sinusoids:

x(t)=ao + Y (a,cos2nnfyt + b, sin2xnfyt)
- (12.1)
=ay+ Y (@, cosnmot + b, sinnagt),  t<t<ty+T

n=1

An expansion of this type is known as a Fourier Series Expansion (Kreyszig, 1999, p. 530).
Note that each sinusoidal component has a frequency that is a multiple of the funda-
mental frequency, f, =1/7, and the radian fundamental frequencyiso =27 fy =27/ T.
There are two forms of the Fourier series: trigonometric and exponential. The form in
Eq. (12.1) is called the trigonometric form.
The multiples of the fundamental frequency, fy, are called harmonics of that funda-
mental frequency. The coefficients ao, a,, b, are called the Fourier coefficients.
The Fourier coefficients are determined from the following formulas:

tH+T

ay=— jx(t)dt (12.2)
Note that a is the average value of x(¢) over t; <t <t; +T.

tH+T

a,=— j x(t)cos notdt (12.3)

b, = x(t)sin naytdt (12.4)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Example 12.1 Trigonometric Fourier series — triangular wave
Determine the Fourier series for the periodic voltage waveform shown in Figure 12.1.
The expression for v(¢) over one period is

V,

v(t)z?mt

Now, we are ready to calculate the Fourier coefficients.

t1+T 2|t
V T
= j dt_—j tdt = ’“jtdt =V—”’
0 T 2 2
£=0
That is,
A
D
This is clearly the average value of this waveform.
t +T T T
: 2V, 2V,
== _[ COS noytdt = ?J-7tcosna)0tdt = FJ‘tcos nwotdt

0 0

From the integral tables we find

1
fx(cosax)dx = —zcosax+fsinax

a a
Thus,
- T
B t
J-t cosnmytdt = 5 COS Nyt + ——sinnwot
0 _(na)o) 1% =0
1 T t
= 3 cosnwyl + ——sinnwyT |— 5 cos0+——sin0
(meo oy (nwo ) Ha@y
1 2 T 2 1
= 2Cosn—TET+—sinn—nT - —2+O
(mwy ) T oy (nwy )
1 T 1
= 5 COs n2n+——sinn2m |- 3
) oy (meo )
1 1
= > +0- > =0 for all n
(ﬂa)o) (ﬂwo)
w(t)
Vm
-T 0 T 2T t

Figure 12.1 Periodic waveform for Example 12.1.
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Thus,
a, =0
o 8tT T T
! 2V, . 2Vur, .
== j smna)otdt = ?I7t sin nwytdt = thsm noytdt

From the integral tables we find

. 1 X
Ix(smax)dx =— sinax ——cosax

a a
Thus,
T
It sin nwytdt = { 5 sinnwot — Lcosnooot}
nawg
t=0
T 1
smna)OT——cosna)oT 3 sin0—-0
nawy nwy
T 2
smn—T ——cosn—nT
(na)o) T Ny T
1 T
= 5 sinn2m———cosn2n
(nw, noy
T
= 0 E——
nawgy
Thus
2V, © 2V, T 2V, T v,
by =—" _[tsinna)otdt:( ;”j -— =( ;”j -— ==
T 3 T 7100 T 2" nn
T
That is
A
nr

And according to Fourier series expansion, v(£) can be expressed as

0

x(t)=ao+) (@, cosnoot + b, sinnagt),  t <t<ty+T
n=1
="+ (bysinnwgt) +Z —2" \sin nawyt
2 n=1 n=1
Ve Vo . Vi . Vi .
=" " sinwyt ——=sin2wpt — —=sin3wgt — -
2 b 21 3n
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Example 12.2 Trigonometric Fourier series — square wave
Determine the Fourier coefficients for the square wave shown in Figure 12.2.
Let the duty cycle of this square wave be 50%, that is, =7 /2. An expression for a

square wave on the interval 0 <t < T is

A 0<t<Z
2

x(t)=

-A Z<zf<T
2

The Fourier coefficients can be calculated as:

1 t+T
dy :? ;.: x(t)dtzo

2 tH+T
= j x(t)cos naotdt =0

15t

) tH+T ‘ 24
b, = j V(t)smna)otdt=E[1—cos(nn)]

2]

2A
The term —[l—cos(nn)} =2 if n is odd and zero if n is even. Hence, b,, can be

writtenas ™
4A

— n odd
b, =| nn

0 n even

The Fourier series of this square wave is
4A 1 1
x(t)= T[sinZn(fo )+ EsinZn(Bfo )t +Esin2n(5f0 e+ }

Note that this series contains only odd harmonic terms. Let’s recreate the square wave

using Fourier expansion.

v(t)

Figure 12.2 Periodic waveform for Example 12.2.
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_1.5 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

t=T

Figure 12.3 Waveform for Example 12.3,n=1.

_]' 1 1 1 1 1 1 1 1
50 01 02 03 04 05 06 07 08 09 1

Figure 12.4 Waveform for Example 12.3,n=3.

For n=1 we get

x(t)= ﬂ[sir12rc(f0 )t]

T

This waveform is shown in Figure 12.3.
For n=3 we have

x(t)= ﬁ[sirlzft(fo)t+ésinZTt(Sfo )t}
T

The resulting waveform is shown in Figure 12.4.

For n=7; the waveform is shown in Figure 12.5.

Two more waveforms: for n=19 the waveform is shown in Figure 12.6.
And finally, for n=101 we obtain the waveform shown in Figure 12.7.
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(1) 1.5
1

0.5

-1.5
0

0.1

02 03 04 05 06 07 08 09
t=T

Figure 12.5 Waveform for Example 12.3,n=7.

1

x(t) 1.5

-1.5

0

0.1

02 03 04 05 06 07 08 09

Figure 12.6 Waveform for Example 12.3,n=19.

(1) 1.5

1L
0.5[

-1.5
0

0.1

02 03 04 05 06 07 08 09
t=T

Figure 12.7 Waveform for Example 12.3,n=101.

1
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12.1.2 Exponential Fourier Series

The Fourier series of Eq. (12.1) can be put into a much simpler and more elegant form
with the use of complex exponentials. According to Euler’s identity

e/t = cos(na)ot)+ jsin(na)ot), n=-o,...,—1,01,...,00 (12.5)

From Eq. (12.5) we obtain two useful expressions

ejmuot + e—jmoot

cos(ncoot) = — (12.6)
jnogt - jnagt
sin(nwot ) = ¢ 5 ? (12.7)
J

Substituting Eq. (12.6) and Eq. (12.7) into Eq. (12.1) we obtain the complex-exponen-
tial form of Fourier series as

x(t)=ao + Z(ﬂn cos nat + b, sinnayt )

n=1

w [ jnagt — jnayt jnagt - jnagt
J
=ag+ Y ﬂ—"-ﬁ-b—"‘ e/t a_,,_b_,,‘ e /nent (12.8)
2 2j 2 2j

*[(a b . a b .
=ay+ L | | g e
° 2_[2 ]2j [2 ]2j

0
(a0 v eeimat = Y g el

1]

)

(=}

+
1M

or
x(t)= " e (12.9)
where
1 tH+T )
b= [ x(t)e e dt (12.10)
2

The Fourier series as expressed in Eq. (12.9) is called the two-sided spectrum, since it
contains both the positive and the negative frequencies.

The complex exponential form is more useful and more easily computed than the
trigonometric form. Note that the summation in Eq. (12.10) extends from —oo to +co.

Each expansion coefficient, ¢,, will be, in general, a complex number that can be
expressed in polar or exponential form as

€y =yl O,y = e (12.11)
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Note, that for n =0, the expansion coefficient becomes

1 tH+T 1 4u+T
_ — jnayt _
¢ =| = ;|: x(t)e” "™ dt ) = ;]:x(t)dt (12.12)

which is a real number and is the average value of x(¢).

Note that the complex exponential form of the Fourier series contains both the posi-
tive-valued harmonic frequencies @, 2w, 3wy, ... and the negative-valued harmonic
frequencies —@,,—2wy,—3®y,. ...

Thus, for each positive value of # (and harmonic frequency nw,) there is a corre-
sponding negative value of # (and harmonic frequency — nw,). The coefficients corre-
sponding to these values of n and - n are

t,+T ’

== J e not 1y (12.13a)
t,+T t+T

= j )e /" _% [ x(t)e™ (12.13b)

4

Note that these coefficients are the complex conjugates of each other. That is,

é,=¢, (12.14)
Thus
& =c e % (12.15)

Note that the complex exponential Fourier series in Eq. (12.9) can be written as

t): Zénej”“*’ Zc e/t 4 ¢y +Zc e/nont (12.16)
n=—own n=-—ow
Since
1
Z:énej"”’b Zc e /nent :zc g /nant (12.17)
n=—0 n=1

we rewrite Eq. (12.16) as

0 s e
2(t)= D Euel ™ =co+ Y Guel ™+ e (12.18)
n=1 n=1

n=—ow
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Using Eq. (12.11) and Eq. (12.15) in Eq. (12.18) produces

0 0
x(t)=co+ Z(cne’a” )e’"”’“ + Z(cne"’a” )e"j"th

n=1 n=1

=co + ZC,,ej (et +0a.) Zc,,e_j (et +0or) (12.19)
n=1 n=1

o0
j(neont+0, —j(neopt+0
—c+ Y, [ej(non ) | @ (ot LK)J
n=1

Since

(oot +6,,) i e—j(antJer)

2

e

= cos(na)ot +6,, ) (12.20)

the complex exponential Fourier series can be expressed as

x(t):co +22c,, cos(na)ot+0m) (12.21)

n=1

Note that ¢, and 0, in Eq. (12.21) are real values, since

¢, =¢, 20, =c,e/% (12.22)

The Fourier series, as expressed in Eq. (12.21), is called the one-sided spectrum since
it contains only the positive frequencies.

Note that in order to obtain the expansion coefficients for the one-sided spectrum,
the magnitudes of the expansion coefficients for the two-sided spectrum need to be
doubled, while the dc component ¢, remains unchanged (Paul, 2006, p.97).

12.1.3 Spectrum of the Digital Clock Signals

Clock waveforms can be represented as periodic trains of trapezoid-shaped pulses as
shown in Figure 12.8.

Each pulse is described by the key parameters: period 7" (and thus the fundamental fre-
quency fo =1/T), amplitude 4, rise time £, fall time #; and the on-time or pulse width 7. We
will investigate the effect of these pulse parameters on the spectrum of the clock waveform.

X(f) &

A —

1
]

tl’ " i [f

Figure 12.8 Trapezoidal clock signal.
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To obtain the complex-exponential Fourier series of this waveform, we will use the
computational techniques described in Paul, 2009, Section 3.1.3.

The expansion coefficients for a periodic function x(£) are related to the expansion
coefficients of its derivative in the following manner.

Let x(¢) be represented by its Fourier series as

)= ¢l (12.23)

and let its kth derivative be represented as

d* i ,
—dxgt) = > el (12.24)
t

Then the expansion coefficients are related by (Paul, 2009, p. 115)
: L
Cp=—"73Cn » n#0 (12.25)
(Jjnax )

Thus, the coefficients of the waveform that is the second derivative of the original
waveform are related to the coefficient of the original waveform by

1 A(2) Cy
& = (12.26)
(jna)’ (nax )’

c, =

Figure 12.9(a) shows the original clock waveform and Figure 12.9(c) shows its second
derivative.

The second derivative waveform consists of four impulses, repeating themselves
every period T:

t—t £+t
As0), ~2As(r,), —Ls[cebTl| As[ Bl (12.27)
t, t, t 2 ts 2
where unit impulse 6(t) is defined by

0 for t<O

0 for t>0 (12.28)
5(t)=1,

[8(t)dt=1

Each train of pulses has its own Fourier representation as

x (¢ )=t—5 (0+kT)= Zc et (12.29a)

n=—0w

x, (¢ )=——5 (t, £kT)= chge’”“’“‘ (12.29b)
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x(t)h
A _
@
i i dx tr I: i tf : ET !
i A i : :
; | 1Al '
(b) g PN
= T r
:
d2
)2‘ -Alty
dt
(Al1) (Alt)
t.—t
r f)
+
(©) t, (T )
ty+ty t
+
(T 2 )

@A) ), (@Al

Figure 12.9 Trapezoidal clock signal and its derivative waveforms.

X3 (t):—§5(7+%]: Z ¢, 38/t (12.29¢)
f n=—0
x4(t)=t£5(r+ b ;tf j: D Cupel (12.29d)
f n=—00

By the property of linearity, the expansion coefficient for these four trains of pulses is
equal to the sum of the expansion coefficients for each individual train of pulses. That is,

P S S (12.30)

The expansion coefficient for the train of pulses occurring at £=0 (and repeating itself
every T) is

1 t+T ’ 1 T A )
énl :? J- xl (t)eim%tdt Z?J-t—é'(t)e*’"w“tdt
“ o (12.31)
_ A [5(e)e ™ dr = A [5(¢)de= A
Tt, Tt, J Tt,

The expansion coefficients for a given waveform x(¢) are related to the expansion
coefficients of the shifted version of it x(¢£ — a) as follows.
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Let x(¢) be represented by its Fourier series as

x(£)="" ¢ue* (12.32)

Hn=—00

and its shifted version x(t—a) be represented by its Fourier series as

x(t—a)= D e (12.33)
Then the coefficients of the shifted version are related to the coefficients of the
unshifted one by
¢l =c,e " (12.34)
Thus, the expansion coefficients for the remaining three trains of pulses are
1({ A) _;
Cp =—| —— |e /"t 12.35
) -
and
1 A —jna)o(ﬁtritfj
b3 =—| — |e 2 (12.36)
T tf
and
1 A —jna)o(ﬁtrﬂf]
bpa =—| — e 2 (12.37)
T tf
And thus
A£12) :i+i _é e—]"’l(l)ol‘r +i _i e—jnwo[rJr(t, —tf)/2] +i i e—jna)o[r+(t,+tf)/2]
Tt, T\ t, T\ tf T\ty
=i l_e,]’nwﬂt, )_iefjnwnf |:e—jna)0(t,—t_,)/2 _e—jna)o(t,,+tf)/2:|
Tt, Tty
- i(l _ e Jnent; ) _ ie*imor [ef/nwot, 12ginents 12 _ o= jnont, 2= jnents /2 J
Tt, th
(12.38)
Or

A(2 All _; 2 i 2 —j 2 1 —ji 12 jnayt ¢ 12 —jnaxty /2
CSI ) :_|:_e jnant, | (emwot,/ _ e et/ )__e jnent g=jnant, 12 ( o jnanty 12 = jnanty

T\t ty
A . 1 . . 1 . . .
=2 Jnat, 12 _(ejnw(,t,/Z_e }na)ot,/Z)__e /munr(em(ogt//Z_e ]na)ot//Z)
T t, tr
A . .
=e jna)ot,/Ze jnaet/2
T

l(ejmuot,/Z _ e—jna)ot,/Z )ejna)or/Z _i(ejmootf/Z _e—jna)otj/Z )e—jna)or/Z
t, ts
(12.39)
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Now, let’s utilize the identity

t jnaot, 12— jnogt, /2
sin("‘”" r ) =8 c (12.40)
2 2j
or
ejna)ot,/Z _e—jn(oot,/Z _ jzsin(l’la);tr j (12413)
similarly
Inonts 12 _ vty 12 _ j2sin[na);tf J (12.41b)

Substituting Eqs (12.41) into Eq. (12.39) leads to

(2) _ e — jnayt, /Ze—]mu(,r/2 ]25111[”(00 rj jnant/2 —ijZSin Vla)otf efjna)l,r/Z
T £ 2 tr 2

nawyt
sin[”wﬁr] sin[“’w]
A oo (e4t,)12 2 ) gtz _ 2 oot/

T 1 1
2" 2"
sin(lna)t ) sin(lna)ot j
= ney =
:jéna)oe—jnwo(rJrr,)/Z 2 i ejmx)oz'/Z_ 2 ! e—}"l(x)ol'/2
T 1 1
—nayt, —nayt
2 0 X

(12.42)

That is,

sin(lnwotrJ sin(lna)otf)
jnan(z+7, )12 2 ez \2 ") a2 | (19 43)

&Y =jéna)0e
" T lna) t l;fza)ot
9 0cr 2 f

According to Eq. (12.26), the expansion coefficient for the original trapezoidal wave-
form is related to the coefficient in Eq. (12.43) by

. &Y
¢, =—2 > (12.44)
(ﬂa)o)
Thus
sin(lna)ot j sin(lnw t ]
- r S ol f
én — _j A e—i"wo(T+T,)/2 2 ejna)or/2 _ 2 e—jna)or/2 (1245)
Tna,

lna)ot lna)t
2 T o
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Since
Wy = 2?” o T= i—: (12.46)
We finally obtain
sin(lnwot,) sin(lnwotf]
. _].ie—jna)o(r+r,)/2 Z—ejna)orﬂ _z—e—jna)orﬂ (12.47)

2nn lmoot 1ot
o o P

Now, if the pulse rise time equals the fall time, ¢, =, we obtain a very useful result
that leads to very important conclusions. Letting t, = ¢ in Eq. (12.47) gives

(1 (1
sin nwot,) sm(na)ot,)
A e—f”%(7+fr)/2 (2 ejna)or/2 _ 2 e—jnwor/Z

¢ =—]
2mn 1 1
Ena)ot, Ena)ot,
sin[na)ot,j
_j A2 e/nnel2 _gminanr/2 ) imon(z )2 (12.48)
2nn 1
Ena)ot,
of )
sin| —nwyt,
:—j A 2 jzsin(ln%rjejmun(r+r,.)/2
27nn = net
2 r
or
sin(lna)ot j
A A " 1 —jn 7,
Gy :—2—sin(—na)oz' e Jnen(r+n)2 (12.49)
nn lna) " 2
2 0cr
Since
o= o g= “’;T (12.50)
we rewrite Eq. (12.49) as
(1 (1
sin Ena)or sin Ena)ot, ‘
¢, :A; : : e /nen(T+e)/2 (12.51)
El’la)(ﬂ' Ena)ot,
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or, substituting for wg from Eq. (12.50) as

PR sin(nnz /T) sin(nnt, /T)e—jnwo(rﬂ',)/Z (12.52)
" T nnt/T nnt, | T

Thus, with the rise and fall times being equal, we obtain the one-sided Fourier spec-
trum of the trapezoidal clock signal as

x(t)=co +22cn cos(nawot +6,, ) (12.53)

n=1

where

. . (nnt,
- sm("TW/T) sm( T)‘
2¢, =2A— forn#0 (12.54)
T| nnt nnr/
|| |
and
o -l (12.55)
0 7 .
The angle of the Fourier coefficient is
Opn = Léy =—nay (T+7,)/2%7 (12.56)

The +7 term in Eq. (12.56) appears when the product of the two sinx/x terms in
Eq. (12.52) is a negative real number (and thus a complex number with an angle of +m).

A very interesting and useful result is obtained when we consider a 50% duty cycle
signal. That is, when

1
r_Z (12.57)
T 2
Under this condition the first sine term in Eq. (12.54) becomes
sin ( nnT j‘ 1
— sin—nm
T
L2 (12.58)
nnT
—_— —nr
T

which is zero for even n. Thus, there are no even harmonics when the duty cycle is 50%.
Figure 12.10 shows the frequency spectrum of a 1V trapezoidal pulse, with a funda-
mental frequency of 10 MHz, and 5 ns risetime and two different duty cycles.
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Ref 107.0 cdBu¥ Atten 20 dB
Peak I
Log '
10
dB/

3 2 s R Ao

e |

i
Center 50.00 MHz Span 100.0 MHz
#Res BW 100.0 kHz #VBH 300.0 kHz #Sweep 100.0 ms
49% Duty cycle

Ref 107.0 dBu¥ Atten 20 dB
Peak
Log
10

dB/

FC |

Center 50.00 MHz Span 100.6 MHz

#Res BH 100.0 kHz #VBW 300.0 kHz #Sweep 100.0 ns
50% Duty cycle

Figure 12.10 Frequency spectrum of a clock signal with 49% and 50 % duty cycle.
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12.1.4 Spectral Bounds on Digital Clock Signals

Recall: with the rise and fall times being equal, the one-sided Fourier spectrum of the
trapezoidal clock signal is given by

x(t)=co+ Y 2¢, cos(nwot +6,,) (12.59)

n=1

Where

T

sm(l’lnT/T) Sm(nm-%ﬂ)‘
2Cn = ZA?
nnT nmT,
| |
These coefficients (spectral components) exist only at the discrete frequencies

f =n/T.The continuous envelope of these spectral components is obtained by replac-
ingn/T = f in Eq. (12.60).

forn#0 (12.60)

Envelope = 2A—|Smn:;f I st njf}f . f =% (12.61)
or in dB,
20log, (Envelope) =20logo (2A%j +20logs %}f)‘
(12.62)
+20logyo sin(xz, /) )‘
nT, f

These bounds are shown in Figure 12.11.

2A7 | 0 dB/decade
—20 dB/decade

—40 dB/decade

— e ——

\ f

T T,

Figure 12.11 Bounds on the one-sided magnitude spectrum of a trapezoidal clock signal.
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Trapezoidal pulse, 1V, 10 MHz, 50% duty cycle

Ref 107.0 dBu¥ Atten 20 dB
Peak
Log
10

dB/

W1 82 i . 1
S5 sa N

FC
Center 250.0 MHz Span 500.0 MHz
#Res BW 100.0 kHz #VBW 300.0 kHz #Suweep 100.0 ns

20 ns rise time

Ref 107.0 dBu¥ Atten 20 dB
Peak
Log
10

dB/

o 2\l M

FC
Center 250.0 MHz Span 500.0 MHz
#Res BH 100.0 kHz #VBH 300.0 kHz #Sweep 100.0 ns

5 ns rise time

Figure 12.12 Frequency spectrum of a clock signal with 20 ns vs 5ns risetime.



Frequency Content of Digital Signals

There is one extremely important observation we can make from the plots in
Figure 12.11. Note that above the frequency f =1/nz, the amplitudes of the spectral
components are attenuated at a rate of 40 dB/decade.

It seems reasonable, therefore, to postulate that somewhere beyond this frequency
these amplitudes are negligible (compared to the magnitudes of the components at
lower frequencies) and can be neglected in the Fourier series expansion.

A reasonable choice for that frequency is (Paul, 2009, p. 133)

1 1
Snax =3X—=TX—=— (12.63)
nT, nT, T,

With the above choice, the bandwidth (BW) of a trapezoidal signal is

BW =L+ (12.64)
T,

Returning to Figure 12.10, we make another important observation: the pulses having
short rise/fall times have larger high-frequency content than do pulses with long rise/
fall times.

This is illustrated in Figure 12.12.

12.2 EMC Applications

12.2.1 Effect of the Signal Amplitude, Fundamental Frequency, and Duty Cycle
on the Frequency Content of Trapezoidal Signals

The effect of the signal amplitude on the frequency content of a trapezoidal signal is
shown in Figure 12.13.

As can be seen, reducing the signal amplitude reduces the frequency content over the
entire frequency range. This is verified by the measurement shown in Figure 12.14.

2497 | 0 dB/decade

—20 dB/decade

—40 dB/decade

1

1 1\ s

nT nT,

Figure 12.13 Effect of the signal amplitude.
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Trapezoidal pulse, f=10 MHz, 5ns rise time, 50% duty cycle
Ref 117.0 dBu¥  Atten 30 dB

Peak

Log

10

dB/

M1 §2 ' Ly |

SSS!E*MM MWT' Hay

FC

Center 250.0 MHz Span 500.0 MHz

#Res BW 100.0 kHz VEBH 100.0 kHz Sweep 1,002 s
A=2V

Ref 117.0 dBuV Atten 30 dB
Peak I |

Log
10
dB/

Wi S2 l ] I " |
5351 Phoguadnfiempbet oo Ay b iy e

FC

Center 250.0 MHz Span 500.0 MHz

#Res BH 100.0 kHz VEH 100.0 kHz Sweep 1.002 s
A=1V

Figure 12.14 Effect of the amplitude reduction.

The effect of reducing the fundamental frequency while maintaining the same duty
cycle on the frequency content of signal is shown in Figure 12.15.

Reducing the fundamental frequency (while maintain the duty cycle) reduces the
high-frequency spectral content of the waveform, but does not affect the low-frequency
content. This is shown in Figure 12.16.

The effect of reducing the duty cycle while maintaining the fundamental frequency is
shown in Figure 12.17.



2AD | 0 dB/decade

—20 dB/decade

—40 dB/decade

LA 1 & f—
D =D T

Figure 12.15 Effect of the fundamental frequency while maintaining the duty cycle.

Trapezoidal pulse, 1V, 5 ns rise time, 50% duty cycle

Ref 117.0 dBu¥  Atten 30 dB
Peak
Log
10

dB/f

H1 82

53 -_~L i e

FC

Center 250.0 MHz Span 500.0 MHz
#Res BW 100.0 kHz VEW 100.0 kHz Sweep 1.002 s

fo=10MHz

Ref 117.0 dBuV Atten 30 dB
Peak
Log
10

dB/

FC

Center 250.0 MHz Span S00.0 MHz
#Rezs BW 100.0 kHz VBH 100.0 kMz Sueep 1.002 =

fO = 5 MHZ

Figure 12.16 Effect of the fundamental frequency while maintaining the duty cycle.



2AD, 0

2AD, :

Jo S 1N\ ¥
nD, nD, =z,

Figure 12.17 Effect of the duty cycle while maintaining the fundamental frequency.

Trapezoidal pulse, 1V, 5 ns rise time, 10 MHz

Ref 117.0 dBu¥  Atten 30 dB
Paak
Log
10

dB/

Wl 52
53 54 el e

FC

Center 250.0 HHz Span S00.0 HMHz
#Res B 100.0 kHz VBW 100.0 kHz Swaep 1.002 3

D =50%

Ref 117.0 dBu¥ Atten 30 dB
Paak
Log
[

dBf

Wl 52
53 54 NNy

FC

Center 250.0 MHz Span 500.0 MHz
#Res BH 100.0 kHz VEBH 100.0 kHz Sweep 1.002 =

D =20%

Figure 12.18 Effect of the duty cycle while maintaining the fundamental frequency.



Frequency Content of Digital Signals

Reducing the duty cycle (the pulsewidth) reduces the low-frequency spectral content
of the waveform, but does not affect the high-frequency content. This is shown in
Figure 12.18.
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13

Static and Quasi-Static Electric Fields

Modern theory of electromagnetics is based on a set of four fundamental relations
known as Maxwell’s equations. These equations hold in any material, at any spatial loca-
tion, and involve the time-varying, coupled electric and magnetic fields.

When the fields are time-invariant (static) Maxwell’s four equations separate into two
uncoupled pairs, one for the electric field and one for the magnetic field. This allows us
to study the electrostatics and magnetostatics separately.

13.1 Charge Distributions

The concept of electric charge is the basis for the study of electromagnetics. The elec-
tric charge can be either positive or negative, and exists in integer multiples of a charge
of an electron (negative charge).

We often use the idealized model of an electric charge, called the point charge, where
we assume that the charge is dimensionless (the charge is on a body whose dimensions
are much smaller than other relevant dimensions).

In addition to a single point charge or to the discrete distribution of point charges, we
will discuss continuous charge distributions: line, surface, and volume charge distribu-
tions. These distributions are shown in Figure 13.1.

If the charge is distributed along a line we characterize the distribution by the line
charge density.

_dq [E}
p=_r | = (13.1)

The total charge contained along a given length [ is then obtained from

Q=[pdl [C] (13.2)
!

If the charge is distributed across a surface we characterize the distribution by the
surface charge density,

ps :ﬂ l:%:| (13.3)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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(a) ®)
P [Clm] <’ TN
T \J
O plam
P—
© @
p, [Clnr?]
_

Figure 13.1 Charge distributions: (a) line, (b) surface, (c) volume.

The total charge contained in a given surface S is then obtained from

Q=|pds [C] (13.4)
Finally, if the electric charge is distributed over a volume in space we define volume
charge density,
_dq C
Py = o [mg} (13.5)

The total charge contained in a given volume v is then obtained from

Q=|p.dv [C] (13.6)

13.2 Coulomb’s Law

There are two fundamental laws governing electrostatic fields:

1) Coulomb’s law — applicable in finding the electric field due to any charge
configuration
2) Gauss’s law — practical to use when charge distribution is symmetrical

Coulomb’s law describes the force that a point charge exerts on another point charge.
The magnitude of that force is given by (Sadiku, 2010, p. 108)

__ 1 QQ
= R [N] (13.7)

where Q; and Q, are the magnitudes of the point charges, R is the distance between
them, and ¢ is the permittivity of the surrounding medium. Often the surrounding
medium is air and we use for it the permittivity of free space

-9
gy~ 20 {E} (13.8)
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0,

r

0 X

Figure 13.2 Forces between two point charges.

Consider that point charges Q; and Q, are located at points having position vectors r;
and r,, as shown in Figure 13.2.
The force Fy; on Q, due to Qq, is given by

1 QQ
dme, R?

12 = R (13.9)
where R is the vector along the line connecting the charges and pointing from charge Q;
to charge Q,

R:r2 —-n (13.10)

and ag, is its unit vector

ag =— 13.11
R=7 ( )

The force, Fy;, on charge Q; due to charge Q, (the order of the subscripts is source-
destination) is given by

E,, =-F, (13.12)

If we have more than two point charges, we use the principle of superposition to deter-
mine the force on a particular charge due to all the other charges.

13.3 Electric Field Intensity

Consider a positive electric point charge Q placed in space and shown in Figure 13.3.
If another positive test charge ¢ is introduced into the vicinity of Q, then according to
Coulomb’s law, an electric force will be exerted on it by the charge Q.
Thus we may associate an electric field around the point charge Q where electric forces
act. This concept leads to the first of the four fundamental vectors describing electro-
magnetic fields: the electric field intensity vector E.
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Figure 13.3 Electric field around a point charge.

The electric field intensity vector is defined as the force per unit test charge that is
exerted on that charge:

g-E [X} (13.13)

Note that the electric field intensity vector for a positive point charge is directed radi-
ally away from that charge. If the test charge is also positive, then the force acting on it
is in the direction of vector E.

If the charge Q is located at the origin of the coordinate system and the point charge
q atadistance R from it, then using Coulomb’s law, we obtain the electric field intensity as

1 Q
4me, R? ar
E=-22%0 % (13.14)
q
or
1 Q
E= —a 13.15
dmog B2 ( )

Note that the electric field intensity vector for a point charge decays inversely propor-
tional to the square of the distance.

For N charges Q;, Q, ...,Qx located respectively at points with position vectors ry,
ry, ..., Iy, the electric field intensity at point r is obtained using superposition.

13.4 Electric Field Due to Charge Distributions

We now extend the results of the previous section for the discrete charge distribution to
the case of the continuous charge distributions shown in Figure 13.1.

The electric field intensity due to each of the charge distributions, p;, ps, and p,, is
obtained as the superposition of the fields contributed by the numerous point charges
making up the charge distribution.
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Mathematically, the point charges are expressed as differential charges dQ and the
field due to each such charge is

1 dQ A%
dE = —a — 13.16
dme, B2 © [m } ( )

Mathematically, the superposition of the fields due to all differential charges 4Q, cor-
responds to an integral of over the location where the charge is distributed.

Replacing Q in Eq. (13.15) with Q in Eqs (13.2), (13.3), and (13.4), respectively, results in
expression for electric field intensity due to the line, surface, and volume charge density as

E_ [Pl a (13.17)
/ 4'7'580R

E- jMSzaR (13.18)
s4megR

E= pvdv2 ay (13.19)
v 4'7'580R

When computing the electric fields due using the above integrals, we usually do not
determine the fields anywhere in space about the charge distributions, but only at cer-
tain locations where we can utilize symmetry to simplify the calculations.

13.5 Electric Flux Density

Recall from calculus: given a vector A, the flux of A is defined as a surface integral of A:

N :IA-dS (13.20)
N

The vector A is then called the flux density vector. Adhering to this definition, we
could define the electric flux as

y :jE-ds (13.21)
S

Since the electrostatic field intensity E is a function of ¢, the permittivity of the
medium, it follows that the flux defined by Eq. (13.21) is dependent on the medium in
which the charge is placed. This leads to a different definition of the electric flux that is
independent of the medium, as explained next.

Suppose, we define a new vector D in free space as

D=¢,E (13.22)

It is apparent, that all the formulas for E, derived from Coulomb’s law can be used for
calculating D. All that needs to be done is to multiply those formulas by &.
In electrostatics, the electric flux is defined in terms of the vector D as

Y= jD -ds [C] (13.23)
S

The vector D is called the electric flux density and is measured in [C/m?].
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13.6 Gauss’s Law for the Electric Field

Gauss’s law gives us a very powerful tool in calculations of the electric filed intensity, or
the electric flux density due to the various charge distributions. It not only greatly sim-
plifies the calculations, but also gives us an insight into the E and D fields surrounding
the distributions.

According to Gauss’s law states the total electric flux ¥ through any closed surface is
equal to the total charge Q enclosed by that surface (Rao, 2004, p. 107):

Q:(]5D~dS (13.24)
5

When the enclosed charge distributed over a volume (within the closed surface S), we
can express Gauss’s law as

gSD-ds = Ipv dv (13.25)
S v

where p, is the volume charge density. Now, according to the divergence theorem
we have

D-dS=(V-Ddy (13.26)
go-as-|

Equating the right-hand sides of Eqs (13.25) and (13.26), we obtain
jv-de: j p, dv (13.27)

resulting in
V-D=p, (13.28)

Equation (13.28) is referred to as Gauss’s law in differential form, while Eq. (13.24) is
referred to as Gauss’s law in integral form. Each of these equations is one of the four
Maxwell’s equations (either in differential or integral form), which we will discuss in
detail in Chapter 15.

13.7 Applications of Gauss’s Law

Gauss’s law is most useful when the charge distribution is symmetric. When the charge
distribution is not symmetric, to determine E or D we resort to Coulomb’s law.

In evaluating the surface integral in Eq. (13.24) we are free to choose any closed
surface encompassing the charge. When symmetry in charge distribution exists,
we choose the surface that mirrors the symmetry exhibited by the charge
distribution.

On such a surface, E and D vectors are either tangential to it or normal to it while
constant in magnitude. Such a surface is called a Gaussian surface. Next we apply
Gauss’s law to several symmetric charge distributions.

Example 13.1 Point charge
Consider a single point charge Q located at the origin, as shown in Figure 13.4.



Gaussian
surface

X

Figure 13.4 Determination of an electric field of a single point.
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To determine D at any point, we choose a spherical surface with a center at the origin.
Note that D is everywhere normal to this surface and constant in magnitude on it.

That is,
D=D,a,

Applying Gauss’s law we have

Q:@ED-dS:D,@%dS:D,zwz
S S

Solving this gives

Q

= —ar
4mr?

Substituting D = ¢E gives the electric field intensity

g0

4mer?

a,

Example 13.2 Sphere with a uniform charge

(13.29)

(13.30)

(13.31)

(13.32)

Consider a sphere centered with a uniform surface charge density ps centered at the
origin, as shown in Figure 13.5.

Gaussian s
s
surface ~——xy

X

Figure 13.5 Determination of an electric field of a sphere of charge.
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As a Gaussian surface, we choose a spherical surface with a center at the origin that
encompasses the charge distribution. Note that D is everywhere normal to this surface
and constant in magnitude on it. That is,

D=D,a, (13.33)
Applying Gauss’s law we have
Q:gSD-dS:D,ngS:D,4nr2 (13.34)
S
or
Q=D,4nr* (13.35)

On the other hand the total charge Q distributed over the surface of radius a is equal to

Q= j psdS = ps jds = psdna’ (13.36)
S S

Equating the right-hand sides of Eqs (13.35) and (13.36) gives
D, 4nr* = ps4na® (13.37)

Resulting in

a2

Dr :ps—z (1338)
r
or

2
a

D:pg—za, r>a
r

(13.39)
D=0, r<a
Substituting D = ¢E gives the electric field intensity
2
a
E=ps—a,, r>a
Ser? (13.40)

E=0, r<a

Example 13.3 Infinite Plane of Charge
Determine the electric field of an infinite plane of charge with a uniform surface charge
density ps [C/m?], shown in Figure 13.6.

Solution: Let’s consider an infinite plane of charge lying on the z=0 plane. Due to the
infinite extent of the plane and the uniform charge distribution, the electric field will be
perpendicular to its surface.

To determine D above the surface, we choose a cylindrical Gaussian surface that is cut
symmetrically by the sheet of charge and has two of its faces parallel to the sheet, as
shown in Figure 13.6. The electric field is perpendicular to the top and bottom surfaces,
and is tangential to the sides of the cylinder.



Static and Quasi-Static Electric Fields

i
T |~ Area A
Gaussian .L E
X surface

Figure 13.6 Determination of an electric field of plane of charge.

At the top surface we have
D-dS=(D,a,)-(dSa,)=D,dS (13.41)
while at the bottom surface we have
D-dS=[D,(-a.)|[dS(-a.)]=D.dS (13.42)
Applying Gauss’s law gives
Q=¢D-dS= [D-dS+ [D-dS+ [ D-ds
s

side top bottom
= J D,(*a,)-dSa, + jDzaz -dSa, + J D,(-a,)-dS(-a,) (13.43)
side top bottom
=0+D, jds+Dz de=DZA+DZA:2DZA
top top
or
Q=2D,A (13.44)

where A is the area of the top and bottom surfaces of the Gaussian cylinder. The total
charge enclosed by the Gaussian surface is

Q=ps[dS = psA (13.45)
s
Combining Eqgs (13.44) and (13.45) produces
2D, A= psA (13.46)
and thus
D, = ”2—5 (13.47a)

D:%az, 2>0 (13.47b)
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Similarly, the field below the surface z=0 is given by

D= —%az, 2<0 (13.48)

Therefore, the electric field E due to the plane of charge is given by
Ps

—a,, z>0
E=]2¢ (13.49)
—&az, z<0
2¢e

Example 13.4 Infinite line charge
Next we determine the electric field due to the infinite line of uniform charge p; [C/m]
shown in Figure 13.7.

By symmetry, the electric flux density D and the electric field intensity E are directed
radially away from the line. In order to take advantage of this symmetry, we choose a
Gaussian surface as a cylinder of radius p.

Let’s consider a length [ of the cylinder. Over the top and bottom surfaces of the cyl-
inder, vector d8 is perpendicular to the vector D and the dot product of the two is zero.

On the side of the cylinder D is constant and pointing in the same direction as dS.
Thus, Gauss’s law produces

Q=D -ds=¢§D,a, dSa, = D,$dS = D,2mpl (13.50)
S s s

The total charge enclosed by the cylinder of length / is

Q=p/l (13.51)
Combining Eqgs (13.50) and (13.51) results in

D,2npl=p,l (13.52)

z
4S P

[N
[

1 —> dS
> D

=~

Gaussian
surface

ds

X

Figure 13.7 Determination of an electric field of an infinite line of charge.
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and thus
PL
D, =1L 13.53a
P 2np ( )
and
D :&ap (13.53b)
2np
Also
E=_FL a (13.54)
2mep n

Example 13.5 Infinite cylinder with surface charge density
Determine the electric outside and within an infinitely long cylinder of radius a with a
uniform surface charge density ps [C/m?], as shown in Figure 13.8.

Solution: The natural choice of the Gaussian surface is a cylinder of radius p, as
shown in Figure 13.8. Because of the charge symmetry, the electric field lines are
directed radially away from the cylinder.

The electric field is normal to the side of this Gaussian surface and parallel to its ends.

D=D,a, (13.55)

Gauss’s law produces

Q=¢D-dS= [D-dS+ [D-dS+ [ D-ds
S

side top bottom
= [ D,a,-dSa, + [D,a,-dSa,+ [ Dya,-dS(-a.) (13.56)
side top bottom
= [ D,dS+0+0=D,$ds=D,2mpl
side
Ps E [ E I
*-h__h__ﬂ ) )
Ps I Gaussian
oy h“‘f/ surface
! +5

Figure 13.8 Determination of an electric field of a cylinder of charge.
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or
Q=D,2mpl
The total charge enclosed by the cylinder of length / is
Q= ps2mnal

Combining Eqs (13.57) and (13.58) results in
D,2npl=ps2nal

and thus
p, - P54
Jo}
ngap, p>a
Jo}
Also
E:Map, p>a
&p

(13.57)

(13.58)

(13.59)

(13.60a)

(13.60Db)

(13.61a)

Since there is no charge interior to the cylinder of radius 4, the electric field inside the

cylinder is zero,

E=0, p<a

Example 13.6 Coaxial transmission line

(13.61b)

A coaxial transmission line is shown in Figure 13.9. The inner cylinder has a radius a
and the outer cylinder has a radius b. The inner cylinder has a surface charge density of

Ps Gaussian
surface

Figure 13.9 Determination of the electric field of coaxial transmission line.



Static and Quasi-Static Electric Fields

ps [C/m?] distributed uniformly along its length and around its periphery. The outer
cylinder has the same total charge as the inner cylinder distributed over its inner surface
and of the opposite polarity.

Determine the electric field between the two cylinders.

Solution: Because of the uniform charge distribution and the infinite length of the
cylinders, the electric field will be radially directed away from the inner cylinder toward
the outer cylinder.

To determine the electric field distribution we choose a cylindrical Gaussian surface
of radius p, as shown in Figure 13.9. The electric field is perpendicular to the side of this
surface and parallel to the end surfaces. The Gaussian surface is the same as in the
previous example. Thus, in the space between the two cylinders the electric field is
given by

E=2%, , a<p<b (13.62)
&p
Again, the electric field inside the inner cylinder is zero,
E=0, p<a (13.63)

The electric field outside the outer cylinder is also zero since the total charge enclosed
by a cylindrical Gaussian surface surrounding both cylinders is zero.

E=0, p>b (13.64)

This is a very important observation. Since there is no E field outside the (ideal) coaxial
cable, it is often referred to as a “shielded cable”.

13.8 Electric Scalar Potential and Voltage

The concept of electric potential leads to the definition of voltage, and serves as a bridge
between the field theory and circuit theory.

The electric scalar potential is defined through the work done by the electric field in
moving a point charge. Suppose we wish to move a positive charge Q from point A to
point B, in the presence of an electrostatic field E, as shown in Figure 13.10.

0

Figure 13.10 Determination of the work required to move a charge.
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The force exerted on Q by the field is
F=QE (13.65)
and the work done by the field in moving the charge Q by a differential distance dl is
AWy =F-dl=QE-dl (13.66)

The force that an external agent would have to apply to move the charge at constant
velocity (i.e. with no acceleration) would have to counteract the force exerted by the
field, so that the total net force on the charge is zero.

E, =-F=-QE (13.67)

The work done, or energy expended in moving the charge Q by a differential distance
dl under the influence of an external force is

dW =E,,; -dl=-QE-dl (13.68)

The total work done (by an external force), or the potential energy required, in mov-
ing Q from A to Bis

B
W= _Q.[E dl (13.69)
A

Dividing both sides by Q gives

B
%:_jg.dl E:v} (13.70)
A

This quantity is known as the voltage or the potential difference between points
Aand B

B
Vs :—IE-dl [é:v} (13.71)
A

When evaluating this integral it is assume that point A is at a lower potential than
point B. Thus,

higher
potential

Vap=— J E-dl |:%=V} (13.72)

lower
potential

Notice that the potential difference between two points does not depend on the
charge being moved between them.

To illustrate the application of Eq. (13.71), let’s consider a positive point charge Q
at the origin of the coordinate system. This is the charge that generates the electric
field E:

a, (13.73)
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Thus
B g Q
Vs _—jE-dl_—j—za, -dl (13.74)
% dneggr

Let’s decompose the vector differential element dl into a vector dr along the a, direc-
tion and vector dt perpendicular to it,

dl =dr +dt (13.75)
then

a,-dl=a, -(dr+dt)=a, dra, =dr (13.76)
and

Vap == | —2—dr (13.77)

M dmeyr

or

Vag = Q (i—i] (13.78)

47[80 rg ra

This is a very important result that we will refer to often.

Absolutepotential It is often convenient to determine the potential or absolute potential,
at a point, rather than the potential difference between two points. The potential at any
point is defined as the potential difference between that point and a chosen point at
which potential is zero.

Perhaps the most universal reference point in practical applications is “ground’, by
which we mean a reference point or surface where the potential is zero. Another widely
used reference point with zero potential is infinity. This is very convenient in theoretical
problems.

If we choose the reference point at infinity, then the voltage between this point and
infinity is referred to as the absolute potential, or just the potential, at a point, and is
defined as

V=—IE-dl (13.79)

0

Thus if V4 =0 as r4 — oo, the potential at any point (rg — r) due to a point charge Q
located at the origin is

Q

4mggr

V= (13.80)

13.9 Voltage Calculations due to Charge Distributions

In this section we will calculate the voltage between two points in space due to the vari-
ous charge distributions considered earlier in this chapter.
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Infinite line
of charg/ Pa
LB S P

X

Figure 13.11 Two points away from a line of charge.

Example 13.7 Voltage between two points away from a line of charge
Let an infinite line of charge have a uniform line charge density p; [C/m]. We want to
determine the voltage between two points at distances p4 and pg away (p4 > pp) from the
line shown in Figure 13.11.

The electric field at a distance p away from the line was previously calculated as

PL
E=—-a 13.81
2nep : ( )

The voltage between two points is calculated from

higher
potential

Ps p
VAB =— J. E-dl=— L ap-dpap

ower 2ngp
lpotential P (1382)
Ps
pLrdp _ pL PL
=L |22 =_ "L (lnpz—In =——(lnps —In
2ne /3[ P 2ne ( P pA) 2ne ( Pa pB)
or
Vap = 2L n(p—AJ (13.83)
2me PB

Again, this is a very important result that we will encounter on several occasions.

Example 13.8 Voltage between two points away from a plane of charge

Let an infinite plane of charge have a uniform surface charge density pg [C/m?]. We
want to determine the voltage between two points at z4 and zg away (z4 >zp) from the
plane, shown in Figure 13.12.
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Figure 13.12 Two points away from a plane of charge.

The electric field was previously calculated as
&az , z>0
E=]2¢ (13.84)

The voltage between two points is calculated from

higher
potential

Vug=— I Eodlz—Tg—;azodzaz
Zy

lower
potential

(13.85)

—-L(zy-z,)

or

Vap :s_:(ZA _ZB) (13.86)

Example 13.9 Voltage between the inner and outer cylinders of a coaxial cable
Next, let’s determine the voltage between the inner and outer cylinders of a coaxial
cable shown in Figure 13.13.

The inner cylinder has a surface charge density of ps [C/m?] distributed uniformly
along its length and around its periphery. The outer cylinder has the same total
charge as the inner cylinder distributed over its inner surface and of the opposite
polarity.
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Figure 13.13 Voltage between two concentric cylinders.

The electric field was previously calculated as

E=25%,, a<p<b (13.87)
&p
The voltage between two points is calculated from

higher
potential

Vug=— I E-dl:—]{%paap-dpap

lower b
potential

= _%Edf = —%[ln(ﬂ) —ln(b)}

(13.88)

or

Vs =254 n(éj (13.89)
&

Example 13.10 Voltage between two concentric spheres
Determine the voltage between two concentric spheres, shown in Figure 13.14.

The inner sphere of radius a has a uniformly distributed surface charge density of
ps [C/m?]. The outer sphere of radius b has the same total charge as the inner sphere
distributed over its surface and of the opposite polarity.

The electric field between the spheres was previously calculated as

E= psa’

er?

a,, a<r<b (13.90)

Ps

Y

Figure 13.14 Voltage between two concentric spheres.
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The voltage between two points is calculated from

higher
potential a 9
Vag =— I E-dl=—'|‘psi a, -dra,
er
lower b (1391)
potential
o' far__pa’ (1)
g r’ £ r,
or
p5a2 1 1
Vg = i (13.92)
e \a b
Since the surface charge density can be expressed in terms of the total charge as
Q
— (13.93)
Ps dra’
The above result can be written as
Q(1 1
Vip=—-|——— 13.94
P 4ne\a b ( )

13.10 Electric Flux Lines and Equipotential Surfaces

The concept of electric flux lines was introduced by Michael Faraday as a way of visualizing
the electric field. An electric flux line is an imaginary path or line drawn in such a way that
its direction at any point is the same as the direction of the electric field at that point.

Thus the electric flux lines are the lines to which the electric field intensity E or the
electric flux density D is tangential at every point. These lines do not intersect and
always start at positive charges and terminate at negative charges (or infinity).

Let’s now define an equipotential surface (or line) as any surface (line) on which the poten-
tial is constant. Figure 13.15 shows the equipotential surfaces around a point charge.

Flux line
4

Figure 13.15 Equipotential surfaces around a point charge.
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Since the potential is constant along the equipotential line or on the equipotential
surface, the work done in moving a charge along such line or surface is zero,

Vi-Vp=0=[E-dl (13.95)

Analyzing the above equation we note that vectors E and dl, in general, are not zero,
and therefore we conclude that the flux lines are always normal to the equipotential line
or surface.

13.11 Maxwell’s Equations for Static Electric Field

Recall from Chapter 4 that the line integral | F-dl is independent of the path of integra-
tion if the function F is a gradient of some scalar function f, i.e. F = Vf. It can be shown
that for static electric fields, the electric field intensity E is related to the scalar poten-
tial V' by

E=-VV (13.96)

It follows that the integral

Vap=Vp—Va= —_[E -dl (13.97)
is independent of the integration path and therefore
B A
gSE-dl:[—jE-dl}{—jE-le:VB —V +V,y =V =0 (13.98)
c A B
or
gSE.dlzo (13.99)
c

According to the Stokes theorem we have

$E-dl=[(VxE)-dS=0 (13.100)
C N

and therefore
VxE=0 (13.101)

Equations (13.99) and (13.110) are referred to as the Maxwell equations for static
electric field.

13.12 Capacitance Calculations of Structures

13.12.1 Definition of Capacitance

When separated by an insulating (dielectric medium), any two conducting bodies,
regardless of their shapes and sizes, form a capacitor.
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Figure 13.16 Capacitive structure.

If a dc voltage source is connected to the two conductors, charge of equal and oppo-
site polarity is transferred to the conductor’s surfaces. The surface of the conductor
connected to the positive side of the source will accumulate charge + Q, and charge —Q
will accumulate on the surface of the other conductor, as shown in Figure 13.16.

Capacitance of a two-conductor structure is defined as

c=-Q (13.102)

Vv

where Vis the voltage between the conducting surfaces and Q is the magnitude of the
charge on either surface.

The presence of free charges on the conductors’ surfaces gives rise to an electric field
E. The field lines (flux lines) originate on the positive charges and terminate on the
negative charges. Since a conductor’s surface constitutes an equipotential surface, E is
always perpendicular to the conducting surfaces.

The normal component of E at any point on the surface of either conductor is given
by (see Section 13.7),

E,=E,a,=£ (13.103)
&

Charge Q distributed over the surface of either conductor is

Q= IPst (13.104)
s

and according to Gauss’s law can be calculated from

Q=zE-ds (13.105)

The voltage Vis related to E by
V:—jE-dl (13.106)
!

where the path of integration is from the conductor at the lower potential to the con-
ductor at the higher potential.
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Substituting Eqs (13.105) and (13.106) into Eq. (13.102) produces a general formula
for calculating capacitance:

Cf)SE -dS
c-Q_s (13.107)
V. —[E-dl
!
Next we will calculate capacitance of the typical structures encountered in EMC:

parallel-plate capacitor
two-wire transmission line
coaxial cable

[ ]
[ ]
[ ]
o spherical capacitor

In our calculations we will follow these steps:

1) Assume + Q charge on one conductor and — Q charge on the other
2) Calculate E from Gauss’s law

Q=zE-ds (13.108)

3) Calculate V from
V=—[E-dl (13.109)
1
4) Determine the capacitance from
c-Q__Q (13.110)

V:—J'Eodl
/

13.12.2 Calculations of Capacitance
Parallel-plate capacitor Consider a parallel-plate capacitor shown in Figure 13.17.

1) Let the conductive plates carry charges+ Q and —Q or, equivalently, they have sur-
face charge densities as shown in Figure 13.18.

z Figure 13.17 Parallel-plate capacitor.
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Figure 13.18 Parallel-plate capacitor.

2) Determine E from Gauss’s law. We previously obtained:

E=E=25a, 175 (—a,)=P59, =54, __Q,, (13.111)
2¢ 2¢g g g cA
where A is the area of each plate and ¢ is the dielectric constant of the medium
between the plates.

3) Determine the voltage between the plates.

V= —'I[E'dl = —Zjd(—g%az)(dzaz)

ven 20 (13.112)
_ Qg
€A ) A
4) Obtain the capacitance from
Q Q Q
_Q_ _Q (13.113)
Vo -[ea
l eA
or
c-_t4 (13.114)
d

Two-wire transmission line A cross-section of a two-wire transmission line is shown in
Figure 13.19.

Let’s model the transmission line as two infinite parallel conductors of radius 4 sepa-
rated by a distance s. Under the assumption of the ratio s/a > 5, we may assume that the
conductors have a uniform surface charge distribution pg [C/m?] distributed on the
periphery along their length.

One of the conductors carries a positive charge distribution, while the other carries
an equal but a negative distribution. The voltage due to a line charge distribution
between two points at distances p4 and pg from the line was previously calculated as

Vap = 2L n[p—"j (13.115)
2ne PB

Replacing p4 with s and pp with a we get

v =&1n£i) (13.116)
21e a
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AS)
1l
=)

Figure 13.19 Two-wire transmission line.

The total voltage due to both lines of charge, by superposition is twice this result

V= &ln[ij (13.117)
e a

The per-unit-length capacitance is obtained from

Cz%zL (13.118)
Pnnm
e a
or
c=—"8 (13.119)

Coaxial cable For the coaxial cable shown in Figure 13.20, the voltage between the
inner and outer cylinders was determined as

1% =Mln(éj (13.120)

€ a
The surface charge distribution is related to the per-unit-length charge distribution as
P = ps2na (13.121)

thus the voltage becomes

1% :ﬂln(éj (13.122)

2ne \a

The per-unit —length capacitance is obtained from

c=PL___ Pr___ (13.123)

4 len(bj
2re a
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Figure 13.20 Coaxial capacitor.

Ps

Y

Figure 13.21 Spherical capacitor.

or

e 2TE (13.124)

()

Spherical capacitor For the spherical capacitor shown in Figure 13.21, the voltage
between the inner and outer cylinders was determined as

Q(1 1
Vipg=—r| ——— 13.125
B e (a bj ( )
The capacitance is obtained from
C:Q:L (13.126)
14 Qﬁl_lj
drne\a b
or
4me
= 13.127
C T 1 ( )
a b

Capacitance of an isolated sphere  Let the outer sphere extend to infinity, i.e. b — . The
capacitance of an isolated sphere of radius a then becomes

C=4mnea (13.128)



380

Foundations of Electromagnetic Compatibility

This capacitance is often referred to as an absolute capacitance. This result is a very
useful result in EMC, as we shall see in the application section.

13.13 Electric Boundary Conditions

If the electric field exists in a region consisting of two different media, even though it
may be continuous in each medium, it may be discontinuous at the boundary between
them, as illustrated in Figure 13.22.

Boundary conditions specify how the tangential and normal components of the field
in one medium are related to the components of the field across the boundary in another
medium.

We will derive a general set of boundary conditions, applicable at the interface
between any two dissimilar media, be they two different dielectrics, or a conductor and
a dielectric.

Even though these boundary conditions will be derived for electrostatic conditions,
they will be equally valid for time-varying electromagnetic fields.

In each medium we will decompose the electric field intensity E and electric flux
density D into two orthogonal components:

E=E, +E, (13.129a)
D=D, +D, (13.129b)

This is shown in Figure 13.23.
To determine the boundary conditions, we will use Maxwell’s equations for electro-
static fields:

gSE-dl =0 (13.130)
C
gSD-dS =Que (13.131)
S

Let’s consider the closed path abcd shown in Figure 13.24.

VAR
i

D,
E,

Medium 1

Figure 13.22 Discontinuity at the boundary between two media.
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E,
D,=D,,+D
E,, =Dy + Dy,
E,=Ey +Ey, D,
ADM Medium 2
Dlt 711:-
E]n El Dln Dl
E =E;,+E}, D,=Dy,+ Dy, Medium 1

Figure 13.23 Decomposition into the normal and tangential components.

E2 E2n

Medium 2

c d 5

 S— 1‘ 2

1 Ah
Eln E] b~ Al a

Medium 1

€]

Figure 13.24 Evaluating boundary conditions.

We will apply Eq. (13.133) along this closed path. First, we will break the closed-loop
integral in Eq. (13.133) into the integrals along the individual segments:

@E-dl:j’E-d1+jE-d1+TE~dl+fE-d1 (13.132)
C a b c d

Note that the integrals in Eq. (13.132) hold for any length of the integration path. That
is, we can let any segment length go to zero, and the right hand-side of Eq. (13.132) will
still be true. If we let Ak — 0 then the contributions to the line integral by the segments
bc and da go to zero and we have

b d
<j>E-d1:J'E1~d1+jE2 -dl (13.133)
C a c
Now, since
E; =E; +Ey, (13.134a)

E, =E,, +E,, (13.134b)
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We rewrite Eq. (13.133) as

gSE-dlsz(Eu +E1n)-dl+:f(E2t +E,,)-dl
¢ b b <y J (13.135)
=J'E1t -d1+jEM -dl+.[E2t .d1+jE2n -dl

or
b d
gSBdl:jElt ~dl+jE2t -dl (13.136)
C a c
leading to
b d
0= qSE-dl:jElt «dl+jE2t -dl=—E,,Al + Ey;Al (13.137)
C a c
or
Ey=Ey (13.138)

Thus is a very important result: the tangential component of the electric field is con-
tinuous (is the same) across the boundary between any two media.

Since
D,
E, =—% (13.139a)
&1
D
E,, =22 (13.139b)
&

We obtain the boundary condition on the electric flux density as
Dy _ Dy

&1 &

(13.140)

To obtain the boundary conditions on the normal components let’s consider the
closed cylindrical surface shown in Figure 13.25.

D, Medium 2
D 7
Dlt DZI‘ 2n &y

Dln DI

Medium 1
€]

Figure 13.25 Evaluating boundary conditions.
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Let’s apply the second of the two Maxwell’s equations
¢D -dS = Qe
s

First, we will break the closed-surface integral into three integrals as

q‘mds deS+ le dS+ID2 -dS

side bottom top

(13.141)

(13.142)

By letting A/ — 0, the contributions to the total flux by the side surface goes to zero.

q‘m -dS = j D, - dS+jD2 -dS

bottom top
Now, since
D, =Dy, + Dy,
D, =Dy, + Dy,

We rewrite Eq. (13.143) as
qSDds: j (Dy, + Dy, )-dSn, + I(D% +D,,)-dSn,
s

bottom top
J. Dln dSn2 + J.D2n dSnl
bottom top

or

@D ds = j D,, -dSn, + jDM dSn,

bottom top

(13.143)

(13.144a)
(13.144b)

(13.145)

(13.146)

Even if each of the two media happens to have volume charge densities, the only
charge remaining in the collapsed cylinder is that distributed on the boundary. Thus,

Q= ps j dS=D, -n, j dS+D, -n, jds
boundary bottom top
or
ps=Di-ny+D,-my
Since
n; =-n,
we arrive at the boundary condition on the electric flux density as
ps =D, — Dy,
The corresponding condition on the electric field intensity is

Ps =&Ey, —&1Eyy,

(13.147)

(13.148)

(13.149)

(13.150)

(13.151)

If no free charge exists on the boundary between the two media, then ps =0, and the

boundary conditions become
Dy, =D,

ek, =6k,

(13.152)
(13.153)
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Medium 2
E
D I Dielectric
Conductor
E=0
=0
Medium 1

Figure 13.26 Dielectric-conductor boundary.

A veryimportant application of the boundary conditions in EMC is when one medium
is a dielectric and the other is a conductor. This is shown in Figure 13.26.
Inside the prefect conductor the fields are zero

E=0 (13.154a)
D=0 (13.154b)
Since
E, =0 (13.155)
it follows that
E; =0 (13.156a)
E,,=0 (13.156b)

Since the tangential component of E field must be continuous across the boundary it
follows

E,, =0 (13.157)
and since

Dy, =&,Ey; (13.158)
we have

Dy =0 (13.159)

The tangential components of both the E vector and D vector are zero, but these
vectors themselves, in general, are not zero.

This means that both E and D vectors are perpendicular to the surface of the prefect
conductor.

Now recall the boundary condition on the normal component of the electric flux
density given by Eq. (13.151), repeated here

ps =& Ey, —&1Ey, (13.160)
Utilizing Eq. (13.166a) we obtain
ps =&Es, (13.161)
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or

ps =Dy, (13.162)

In a vector form we have

D2 = 82E2 =Npg (13163)

Electric field points directly away from the conductor surface when pg is positive and
directly toward the conductor surface when pyg is negative.

13.14 EMC Applications

13.14.1 Electrostatic Discharge (ESD)

When electric charges are separated, an electric field is created. The most important
consequence of this in EMC is electrostatic discharge (ESD). ESD can cause component
damage, system reset, or signal integrity issues.

The separation of charge may take place when two initially neutral insulating materi-
als, shown in Figure 13.27, come in contact with each other, as shown in Figure 13.28,
and subsequently are separated, as shown in Figure 13.29.

When the two materials are in contact, some charges may be transferred between
them; upon separation some of these transferred charges may not return to the original
material. Effectively, the initially uncharged materials may become charged; one posi-
tively, one negatively, as shown in Figure 13.30. Consequently, when the materials are

Neutral Neutral
insulator insulator

Figure 13.27 Two initially neutral insulating materials separated from each other.

Figure 13.28 Two initially neutral insulating materials in contact with each other.
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Figure 13.29 Insulators are separated after the contact.

Figure 13.30 Net charge on each insulator after the contact.

E
—_—
—
—_—
—
—
— W
14

+

-
2

Figure 13.31 Creation of a capacitor.

separated, a capacitor is created with an electric field between the surfaces and a voltage
difference between them, as shown in Figure 13.31.

Figure 13.32 shows a triboelectric list, i.e. a list of materials that have a greater ten-
dency of giving up electrons (becoming more positive) or attracting electrons (and
becoming more negative).

The further apart on the list the materials are, the greater the resulting charge Q and
voltage V. The charge, the voltage, and the capacitance are related by

C:% = Q=CV (13.164)

As the materials are separated, the charge remains constant but the capacitance
decreases, causing the voltage between them to increase. When this voltage reaches a
high enough level, an electric breakdown may occur in the air separating the materials.
This electric breakdown manifests itself as a lightning bolt and intense current; this
phenomenon is referred to as electrostatic discharge (ESD).
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Positive

y

@J Negative

Air

Human body
Glass

Nylon

Wool

Lead

Cotton
Aluminum
Paper

Steel

Wood

Gelatin
Nickel, copper
Gold, platinum
Natural rubber
Sulfur
Acetate
Celluloid
Urethane
Polyethylene
Vinyl

Silicon

Teflon

Figure 13.32 Triboelectric list.

Charged
object

rﬁ\

Figure 13.33 Charged object approaches a conductor.

The ESD effect just described involved the charge transfer between two insulating
materials. The ESD event can also occur when a charged object (insulator or conductor)

Neutral
conductor

approaches a conductor as shown in Figure 13.33.

The initially neutral conductor remains neutral as a whole; the charge, however, is
separated. The charge with the opposite polarity to that of a charged object will be
exposed on the surface closest to the object, creating the equal but opposite charge on

Static and Quasi-Static Electric Fields

the surface furthest from the object. This is shown in Figure 13.34.

If the conductor with the induced charge is momentarily connected to another con-
ductor (or ground), while still in the vicinity of the charged object, the negative sepa-

rated charge will be removed from it, as shown in Figure 13.35 (Ott, p. 584.).
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Charged Neutral conductor with the
object induced charge separation

Figure 13.34 Charged object in the vicinity of a neutral conductor.

Charged Neutral conductor with the
object induced charge separation

__Kﬂ
o -
o

Another conductor or ground

Figure 13.35 Momentary contact with another conductor.

Charged
object

Figure 13.36 Charged conductor.

Charged conductor

When the momentary contact with another conductor is removed, while in the vicin-
ity of the charge object, the initially neutral conductor will now be charged, even though
it has never touched the charged object. This is shown in Figure 13.36.

When this charged conductor is moved close to another conductor (grounded or
not), an electrostatic discharge can occur from one conductor to another. This is illus-
trated in Figure 13.37.
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Charged conductor Another conductor

P

ESD

event

Figure 13.37 ESD event.

Example 13.11 ESD event: walking on a carpet

Walking on a carpet with leather shoe soles can generate voltages as high as 25kV.
Consider the scenario shown in Figure 13.38, where initially uncharged dielectrics (car-
pet and shoe) come into contact (Paul, 2006, p. 846).

When separated both the carpet and the shoe become charged, as shown in
Figure 13.39. Subsequently, the negative shoe charge induces a positive charge on the
sole of the foot (conductor), as shown in Figure 13.40.

Positive charge on the sole of the foot causes negative charge to move to the upper
parts of the body (finger), as shown in Figure 13.41. As the finger approaches another
conducting surface (door knob or electronic component) electrons will be pushed away
from the surface closest to the finger, as shown in Figure 13.42. As the finger approaches
the charge separation between the finger and the conductor surface creates an intense
electrostatic field and voltage. An ESD event takes place: dielectric breakdown of the air
occurs, an arc is created, and the discharge current flows through the conductor. This is
shown in Figure 13.43.

Carp\et _Shoe

Figure 13.38 Initially uncharged dielectrics come into contact.



Electrons are transferred from
the carpet to the shoes -._

Carpet

Positive charge is left on the carpet

Figure 13.39 When separated the dielectrics become charged.

Negative shoe charge induces
a positive charge on the sole

Electrons are transferred from of the foot (conductor)

the carpet to the shoes -._
Tk

Carpet

Positive charge is left on the carpet

Figure 13.40 Positive charge is induced on the sole of the foot.

Positive charge on the sole of
the foot causes negative
charge to move to the upper
parts of the body (finger)

Carpet

++

Figure 13.41 Negative charge moves to the upper parts of the body.
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Another condutor

Figure 13.42 Charge separation in an adjacent conductor.

ESD
Another condutor event

Figure 13.43 ESD event.

During the ESD arc formation the speed of approach is critical. Faster approach
results in a physically shorter arc. Thus, for the same voltage difference, a faster approach
results in a higher density of voltage per arc length. This results in a larger current and
a faster current rise time.
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Figure 13.44 Typical shape of the ESD event.

Figure 13.44 shows the typical shape of the ESD event.
Typical ESD characteristics are:

rise time: 20 ps <¢, <70ns

spike width (if spike occurs): 0.5ns <¢,, <10 ns
total duration: 100 ns < £, <2 ps

peak current: 1A < I, <200 A (or more)

13.14.2 Human-Body Model
Recall: in Section 13.12 we obtained the capacitance of an isolated sphere as
C=4nea (13.165)
In free space

1 F
e=gg=—nx10"7 — (13.166)
367 m

Substituting Eq. (13.166) into Eq. (13.165) we get

1
C:§x10*9a:0.111x10*9a:111><10*1%z (13.167)

or
C=111a pF (13.168)

where the radius a is in meters. If we model the body as a sphere of radius 1m, its
capacitance would equal to 111 pE.
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Equation (13.168) can be used to estimate the absolute capacitance of objects other
than a sphere. We first determine the surface area of the object and then calculate the
radius of a sphere with the same surface area. Then we use Eq. (13.168) (Ott, 2009,
p. 585).

A human body has a surface area approximately equivalent to an area of a 0.5 m radius
sphere. Therefore, the absolute capacitance of the human body is

C=111x0.5=55,5=50 pF (13.169)

Using this value, we can now create the human body model which serves as the basis
for the ESD testing in EMC.

Because of the proximity of other objects to the human body, in addition to the abso-
lute capacitance of the human body, an additional capacitance must be taken into
account when determining the total capacitance of a human and the surroundings.

To create the human body model for ESD, we start with the absolute capacitance of
50pF. In addition to this capacitance we have an additional capacitance between each
foot and ground: 50 pF per foot (total 100 pF). Because of the presence of the adjacent
objects, an additional capacitance of 50—100 pF may also exist (Ott, 2009, p. 587). This
is shown in Figure 13.45.

Thus, the human body capacitance can vary from about 50-250 pF. The equivalent
circuit of the human body for ESD is shown in Figure 13.46.

The body capacitance C is first charged up to a voltage V, and then it is discharged
through the body resistance R. This body resistance limits the discharge current i. The
body resistance can vary from about 500 Q2 to 10kQ. The body capacitance limits the
discharge current rate.

Adjacent —|

objects
50-100 pF

50 pF

50 pF 50 pF

1

Ground

Figure 13.45 Human body capacitance.
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R
' 2
i i
Vv C

Figure 13.46 Human body circuit model.

Figure 13.47 An ESD gun and a cartridge.

The most common circuit model of human body consists of 150pF and 330Q
(Standard EN 61000-4-2). Typical RC combinations are

R=330Q, C=150pF
R=330Q, C=330pF

R=2000Q, C=150pF
R=2000Q, C=330pF

(13.170)

Figure 13.47 shows an ESD gun together with an RC cartridge.

13.14.3 Capacitive Coupling and Shielding

When two conductive bodies are in the vicinity of each other, separated by a dielectric,
effectively a capacitive structure is created. We often model this effect as the mutual
capacitance.

Note: In the following discussion the conducting structures are electrically short and
modeled as lumped parameter circuits.

Consider two circuits: generator circuits (conductor 1) and the receptor circuit (con-
ductor 2) shown in Figure 13.48.
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Conducto” !
(genemw”

Cor (recepwr

— + -
L = VNE R NE -

Figure 13.48 Model of a capacitive coupling between the circuits.

conducto”*
(generaw"

Figure 13.49 Model of a capacitive coupling between the circuits.

Cgr represents the mutual capacitance between the two circuits. This mutual capaci-
tance gives rise to a capacitive coupling between these two circuits when the source of
the electric field, V5 is time-varying. This time-varying source, Vg, has the potential to
induce the near-field noise voltage, Vg, and the far-field noise voltage, Vi, in the recep-
tor circuit.

Note: Often in practical circuits, in addition to a capacitive coupling, we have an
inductive coupling resulting in the near-end voltage, Vi, not being equal to the far-end
voltage, V. Since in this section we focus on the capacitive coupling only, these two
noise voltages will be equal and denoted simply by V.

The more detailed lumped-parameter circuit model of the capacitive coupling is
shown in Figure 13.49.

This model is described by:

\}G — source of interference (generator circuit)
Vi — capacitively induced noise voltage (receptor circuit)
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Conducto” !
(generaw”

Figure 13.50 Simplified circuit model.

Cgsr — mutual capacitance between the generator and receptor circuits
Ci¢ — capacitance between the generator circuit and ground

C; — load capacitance in the generator circuit

C,i — capacitance between the receptor circuit and ground

Cng — near-end load capacitance in the receptor circuit

Crr — far-end load capacitance in the receptor circuit

This circuit model can be simplified to that shown in Figure 13.50.
In this model:

Cg — total capacitance between the generator circuit and ground
Cr — total capacitance between the receptor circuit and ground

The circuit shown in Figure 13.50 can be represented by that shown in Figure 13.51.
It is apparent that the capacitance Cg has no effect on the noise voltage, Vy, and

therefore the circuit in Figure 13.51 can be further simplified to that in Figure 13.52.
The parallel combination of R and C results in an impedance of

"ot x
R|Cp=—L2 = - (13.171)
R4t JORCr +1
JoCr
The voltage divider produces
R
- joRCp +1 - R .
Vv="" R ¢ " jwRCgp +1 Ve
: +- 5 +R (13.172)
]a)CGR ]C()RCR +1 ]COCGR
]O)CGRR ‘} /a)CGRR VG

" j@RCp+1+ jaCerR ©  joR(Cop +Cr)+1
j



Static and Quasi-Static Electric Fields

Figure 13.51 Circuit representation.

Figure 13.52 Equivalent circuit.

And thus the noise voltage induced in the receptor circuit due to the capacitive cou-
pling is

joc CGRC
Vy = GR +1 Ry (13.173)
jor——
R(CGR +CR)

The Bode plot of this voltage is shown in Figure 13.53.
Equation (13.150) can be written as

jo Cor O R
N N Jolagr o
Vy = Contlr  y __ v, (13.174)
o+ 1 joR(Cgr+Cr)+1
R(CGR +CR)
When
joR(Con +Cr)<<1 & m<<— Lt (13.175)

R(CGR + CR )
Equation (13.174) simplifies to
Vy = joRCexVe (13.176)
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1Vilas 1

Vy=JoRCorVo, .-~

logw g

1
W= R(CGR + CR)
Figure 13.53 Capacitively coupled noise voltage, \7,\,.
Inequality (13.175) can be written as
1
R<<—— (13.177)
a)(CGR + CR )

In most practical cases this is true (Ott, 2009, p. 46). On the other hand, when

JOR(Cgr+Cr)>1 & o>——— (13.178)
( ) R(CGR + CR )
Equation (13.174) simplifies to
Vy :&VG (13.179)
CGR + CR
Inequality (13.178) can be also written as
Re>— 1 (13.180)
CO(CGR + CR )
Let’s return to Eq. (13.176), valid for frequencies much lower than the corner
frequency
1
0<<op =——— (13.181)
R(CGR +Cp)
Equation (13.176) can be written as
Vi = joRCerVe =R(ja)CGRVG)=RiN (13.182)

This equation clearly shows why (for electrically small circuits) we model the capaci-
tive coupling as a shunt current source, as shown in Figure 13.54.
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R y - ) 0 R
NE Vy (D Iy=joCeqrVs Yy § *

Figure 13.54 Capacitive coupling modeled as a current source.

25 mils separation 75 mils separation

[T ————— T
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Figure 13.55 Reducing capacitive coupling by moving conductors further apart.

The mutual capacitance, Crg, and the noise voltage, Vy, can be reduced by moving
the conductors further apart, as shown in Figure 13.55.

The mutual capacitance Crg and the noise voltage V) can also be reduced by shield-
ing the receptor circuit. This is shown in Figure 13.56.

Let’s investigate the effect of the shield around the receptor circuit on the noise volt-
age. Figure 13.57 shows the receptor circuit without the shield, while Figure 13.58 shows
the receptor circuit with the shield.

Note that the shield is grounded (this makes it effective, as we shall see) and the
receptor circuit extends beyond the shield (this corresponds to a practical
application).

The model in Figure 13.58 is described by:

Cg — total capacitance between the generator circuit and ground
Cr — total capacitance between the receptor circuit and ground
Cir — mutual capacitance between the generator and receptor circuits
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Figure 13.57 Capacitive coupling without a shield around the receptor circuit.

conduct®” !

Figure 13.58 Capacitive coupling with a shield around the receptor circuit.
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Cgss — mutual capacitance between the generator circuit and the shield
Crs — mutual capacitance between the receptor circuit and the shield

The circuit model of the configuration without a shield was presented in Figure 13.52,
repeated here as Figure 13.59.

Figure 13.60 shows the circuit model of the configuration shown in Figure 13.58 (with
a shield). Note that the capacitance Cgs (between the shield and ground) has no effect
on the noise voltage, Vs (just like the capacitance Cg).

Recall the expressions for the noise voltage without the shield:

. . 1
VN = ja)RCGRVg, < —F—m— (13.1833)
R(CGR +CR)
VoS po e L (13.183b)
CGR +CR R(CGR+CR)

Comparing the circuits in Figures 13.56 and 13.57 and looking at the Eqs (13.183), we
write the expressions for the noise voltage for the case of a shield receptor as

\ \ 1
VN = ja)RCGRVg, w << (13.1843)
R(CGR +CR +CRS)
Vy =¢Vg, @>> 1 (13.184b)
Cgr +Cpr +Crs R(Cgr +Cr +Cps)
1 | 2
+ Cor "

T

Figure 13.59 Circuit model without a shield.

1 { | 2
+ CGR +
VG CR f— CRS :: VN § R=RNE||RFE

Figure 13.60 Circuit model with a shield.
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The expressions for the noise voltage in Eqs (13.183a) and (13.184a) look identical.
The difference is that Cgz with a shield is much smaller than Cgz without a shield.
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Static and Quasi-Static Magnetic Fields

In the study of static electric fields, we learned that static distributions of charge led to
the definition of the two fundamental vectors:

o electric field intensity E
e electric flux density D

In the study of static magnetic fields, we will learn that a steady movement of charge
(dc current) leads to the definition of the remaining two fundamental vectors:

o magnetic field intensity H
¢ magnetic flux density B

Static electric and static magnetic fields, and their corresponding vectors, can be stud-
ied independently. In the time-varying case, the fields are no longer independent (hence
the name electromagnetic), and all four vectors are involved in the field description.

14.1 Magnetic Flux Density

Recall that the electric field intensity E at a point in space has been defined in terms of
the electric force F, acting on a test charge when placed at that point:

gk (14.1)

q

We could refer to Eq. (14.1) as an explicit definition of the electric field intensity.
Equivalently, Eq. (14.1) could be written as

E =gE (14.2)

and we could refer to it as an implicit definition of the electric field intensity.

In a similar manner, we define the magnetic flux density B at a point in space in terms
of the magnetic force F,, that would be exerted on a charged particle passing with a
velocity u through that point (Sadiku, 2010, p. 332),

F, =quxB (14.3)
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Equation (14.3) constitutes an implicit definition of the magnetic flux density. The
unit of magnetic flux density is Wh/m?

14.2 Magnetic Field Intensity

In the previous section we defined the magnetic flux density to denote the presence of
a magnetic field in space. We now define the last important EM vector, the magnetic
field intensity H as

B=uH (14.4)

where p. the permeability of the medium. Relationship (14.4) is valid in a linear and
isotropic medium.
Equivalently, Eq. (14.4) can be expressed as

-2 [é} (14.5)
m

Note that the relationship (14.4) between the B and H vectors is analogous the one for
the D and E vectors in static electric field:

D=¢E (14.6)

14.3 Biot-Savart Law

There are two fundamental laws governing magnetostatic fields:

1) Biot—Savart’s law
2) Ampere’s law

Like Coulomb’s law, the Biot—Savart law is the general law of magnetostatics. Just as
Gauss’s law is a special case of Coulomb’s law, Ampere’s law is a special case of the Biot—
Savart law, and is easily applied in problems involving symmetrical current distributions.

Consider Figure 14.1, where a steady current flows through a thin wire. With this cur-
rent, we associate a differential current element, /dl. This current element will produce a
differential magnetic flux density dB, at an observation point P that is distance R from it.

Figure 14.1 Magnetic field due to a current
element.
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The Biot—Savart law states the differential magnetic field 4B generated by a steady
current / flowing through a differential length dl is given by (Rao, 2004, p. 49)

dlxa
Jp o Mol 773 [Kb :T} (14.7)

a4t R? m?

where R is the distance from the current element and ay is the unit vector from the
current element to the observation point. The direction of the vector dB conforms to
the right-hand rule (and is into the page in Figure 14.1).

The constant yy is the permeability of free space and is

to = 41x1077 [E} (14.8)
m

To determine the total magnetic field B due to the current-carrying conductor, we
need to sum up the contributions due to all the current elements making up the con-
ductor. Hence, the Biot—Savart law becomes

IdlxaR

Ho
B=—|—7— 14.9
471;-! R? ( )

14.4 Current Distributions

Electric current can be distributed as a line current, a surface current, or a volume cur-
rent, as shown in Figure 14.2.
The differential source elements for all three distributions are related by

1d1=KdS=]Jdv [Am] (14.10)

Idl
J [A/m2 ] — volume current density
I Jdv [Am] — current element
K [A/m] — surface current density

KdS [Am] — current element

I [A] — line current

1dl [Am] — current element

Figure 14.2 Various current distributions.
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In terms of the distributed current sources, the Biot—Savart law becomes

Bzﬁij#dS (14.11)
4-7125 R
or
o (Jxag
B=20 225 gy 14.12
4nj = (14.12)

14

Equivalently, the Biot—Savart law can be used to obtain the magnetic field intensity H,
for the line, surface, or volume current distributions:

IdlxaR

H=[— "~ (14.13)
! 4R

H=IKX*‘§ ds (14.14)
5 4nR

H:jlxa’; dv (14.15)
, 4T R

14.5 Ampere’s Law

Recall that in electrostatics we could use Coulomb’s law to obtain the field due to any
charge distribution. The calculations were much easier using Gauss’s law when sym-
metry in the charge distribution was present.

An analogous situation exists in magnetic fields. To obtain the fields due to any cur-
rent distribution we could use the Biot—Savart’s law, but the calculations are much easier
using Ampere’s law when there is symmetry in the current distribution.

Ampere’s law states that the line integral of H about any closed path is equal the net
current enclosed by that path.

gSH dl=1,, (14.16)
1

where the enclosed current is often expressed as

Lope = fl -dS (14.17)
S

Figure 14.3 illustrates the Ampere’s law.
Positive current and the direction of the integration path are related by the right-hand
rule, as shown in Figure 14.3.
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Figure 14.3 lllustration of the Ampere’s law. z

BN
-

Let’s return to Ampere’s law in Eq. (14.16). According to the Stokes theorem we have

@Hdl:j(WH).dS (14.18)
l N

Comparing the right-hand sides of Eqs (14.17) and (14.18) we get

[1-ds=[(vVxH)-ds (14.19)
N S

leading to
VxH=] (14.20)

Equations (14.16) and (14.20) constitute another pair of the Maxwell equations.

14.6 Applications of Ampere’s Law

In evaluating the line integral in Ampere’s law we are free to choose any closed path
enclosing the current. When symmetry in the current distribution exists, we choose the
path that mirrors the symmetry exhibited by the current distribution.

On such a path, H and B vectors are either tangential or normal to it, while constant
in magnitude. Such a path is called an Amperian path. This allows us to write the line
integral as

@H -dl= gSHdl - Hgﬁdl (14.21)

where the closed integral is simply the length of the contour.

We now apply Ampere’s law to determine H for some symmetrical current distribu-
tions as we did for Gauss’s law. We will consider an infinite line current and an infinitely
long coaxial line.
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N

P Ed(/) y
@ - H(/,
dl=pdyp

X

Figure 14.4 Magnetic field due to an infinite line of current.

Example 14.1 Magnetic field of an infinite line of current

Determine the magnetic field due to an infinite line of current, as shown in Figure 14.4.
To determine H at an observation point at a distance p from the line, we choose an

Amperian path as shown in Figure 14.4. According to Ampere’s law we have

I=§H-d1=§H,a, - pdpa, = H,p$dp =2npH, (14.22)
or
I
Hp=——o (14.23)
2np
Since
H=H,a, (14.24)

we obtain the magnetic field intensity vector as

1
H=—-a, (14.25)
2np

Example 14.2 Magnetic field around an infinite coaxial line

Determine the magnetic field around an infinite coaxial line shown in Figure 14.5. The inner

cylinder carries a current I. The outer cylinder carries the same current oppositely directed.
Ampere’s law produces

gSH-dl =L =1+(~1)=0 (14.26)
1
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Figure 14.5 Coaxial line carrying a
current /.

Thus

<j>H-dl:O (14.27)
!

for any closed path surrounding the coaxial line. This can only happen when
H=0, p>b (14.28)

Thus, no magnetic field exists outside the (ideal) coaxial cable.

14.7 Magnetic Flux
The magnetic flux through a surface is defined as

W =[B-dS (Wb) (14.29)
S

The magnetic flux line, or magnetic field line is the path to which B is tangential at
every point in a magnetic field.

It is the line along which the needle of a magnetic compass will orient itself if placed
in the magnetic field. For example, the magnetic flux lines due to a straight long wire are
as shown in Figure 14.6.

B

Current out
of the page

Figure 14.6 Magnetic field lines.
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14.8 Gauss’s Law for Magnetic Field

Recall Gauss’s law for electric field: the electric flux passing through a closed surface
equals the total net charge enclosed by that surface.

gSD-ds =Q (14.30)
S

The charge Q is the source of the lines of electric flux, and these lines begin and ter-
minate on positive and negative charge, respectively.

There are no known isolated magnetic charges. For that reason, the magnetic flux
lines always close form closed paths, and therefore the magnetic flux through a closed
surface is zero.

This is Gauss’s law for the magnetic field:

gSB-dszo (14.31)
S

Applying the divergence theorem to Eq. (14.31) we have
$B-dS=[V-Bdv=0 (14.32)
N v
Equation (14.32) holds for any closed surface, and the volume defined by it. This can
only happen when
V-B=0 (14.33)

Equations (14.31) and (14.33) constitute another pair of Maxwell’s equations.

14.9 Maxwell’s Equations for Static Fields

Let’s summarize the four Maxwell equations for static electric and static magnetic
fields. Each of the equations can be written in either differential or integral form.

VXxE=0 (14.344)
<jSE-d1 =0 (14.34b)
1

VxH=0 (14.35a)
gSH-dl:]:jyds (14.35b)
! S

V-D=p, (14.362)

gSD-ds =Q= j 0,dv (14.36b)
S v
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V-B=0 (14.37a)
@B-dszo (14.37b)
S

14.10 Vector Magnetic Potential

The concept of a vector magnetic potential is extremely useful in studying radiation

from antennas.
To define the vector magnetic potential we use one of the Maxwell’s equations

V-B=0 (14.38)
and a vector identity
V-(VxA)=0 (14.39)
The vector magnetic potential is defined (implicitly) by

B=VxA (14.40)

Note that this definition is in agreement with (i.e. does not violate) the Maxwell equa-
tion (14.38). The following discussion illustrates the usefulness of the concept of vector
magnetic potential.

Recall that if the current distribution is known, we can calculate the magnetic field
intensity H from the Biot—Savart’s law as

Idlxap
H=[—— (14.41a)
'1[ 4mR?
H= [SX3 i (14.41b)
5 4nR
Jxag
H-= dv (14.41c¢)
"‘:AMRZ

The integration involved in these calculations is, in general, very difficult because of
the cross product and the unit vector calculations.

If the current distribution is known, we can also calculate the vector magnetic poten-
tial A from

Ho]dl
= j (14.42a)
1 41R
(14.42b)
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A= .[ HO]dV
JanR

(14.42¢)

14

Then we obtain the magnetic flux density from

B=VxA (14.432)

or the magnetic field intensity from

H=1vxA (14.43b)
u

This two-step process of obtaining B or H is easier than the direct process using Eqs
(14.41) because the integrations in Eq. (14.42) are easier to perform than those in Eqs
(14.41). The differentiation operation in Eq. (14.43) is well defined and can be easily
performed.

14.11 Faraday’s Law

Consider an open surface that has a closed loop contour ¢ surrounding it (think of the
mouth of a balloon) shown in Figure 14.7. The “balloon” can be inflated or deflated to
create different surfaces but the contour ¢ needs to stay unchanged.

This contour can be a conducting wire or an imaginary contour of non-conducting
material (free space). Magnetic flux passing through the open surface bounded by this
contour gives rise to an electric field.

Faraday’s law states that

d
gCSE-dl=—E:[B-dS (14.44)

B/ '

Figure 14.7 Open surface defined by a contour c.
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B — time-varying
-

V.

nd | ¥ )

Figure 14.8 Induced voltage inserted in the loop.

The line integral in Eq. (14.44) is often referred to as an electromotive force

Vs = <_f>13 -dl (14.45)

The surface integral in Eq. (14.44) is the magnetic flux crossing the contour

Y= jB -dS (14.46)
S

Using the notation in Eqs (14.45) and (14.46) Faraday’s law in Eq. (14.44) can be alter-
natively expressed as

avy

ar 14.47
= (14.47)

‘/emf =
This form clearly shows that the induced voltage is directly proportional to the rates
of change of the magnetic flux. If the loop is electrically small, this induced voltage can
be anywhere in the loop as shown in Figure 14.8.
The magnitude of this voltage is

Vina = d—\P (14.48)
dt

The polarity of this voltage is determined from Lentz’s law explained next.

The original magnetic field B gives rise to the induced magnetic field By, ;. According to
Lentz’s law the induced magnetic field B,,; opposes the change in the original magnetic
field B.

To facilitate the understating of Lentz’s law, let’s consider several scenarios shown in
Figure 14.9.

As shown in Figure 14.9, the original magnetic field B can be either pointing up or
down, and can be either increasing or decreasing. Let’s investigate each case separately,
and apply Lentz’s rule to determine the direction of the induced magnetic field.

Case 1 — The original field B is pointing up and increasing (Figure 14.10)

The induced field B;,; opposes this change. Thus, the induced field B;,; is pointing down.

Case 2 — The original field B is pointing up and decreasing (Figure 14.11)

The induced field B;,; opposes this change. Thus, the induced field B;,, is pointing up.

Case 3 — The original field B is pointing down and increasing (Figure 14.12)
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B - increasing B — decreasing
[ & ’ -[
l £ ] l L
B —increasing B — decreasing

Figure 14.9 Original magnetic field.

B — increasing Figure 14.10 B field pointing up and increasing.

et

Bind

B — decreasing Figure 14.11 B field pointing up and decreasing.

ind

&

The induced field B;,; opposes this change. Thus, the induced field B, is pointing up.
Case 4 — The original field B is pointing up and decreasing (Figure 14.13)

The induced field B;,; opposes this change. Thus, the induced field B;,;is pointing down.
The knowledge of the direction of the induced field allows us to determine the direc-

tion of the induced current (using the right-hand rule). This is shown in Figure 14.14.
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B ind

i,

B — increasing

Figure 14.12 B field pointing down and increasing.

Bind

B — decreasing

Figure 14.13 B field pointing down and decreasing.

B - increasing B — decreasing

<

ind

Lind

. . B — decreasing
B — increasing

Figure 14.14 Induced current direction.
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B — increasing B — decreasing
&

Bind

— Bind
V.

ind |: =
.\--l- ‘

y
Vind \

Lind

B/’nd

ind

Lind

v 13 L

B —increasing B — decreasing

Figure 14.15 Induced voltage polarity.

Since the induced current flows out of the positive terminal of the induced voltage the
polarity of the induced voltage is easily determined, as shown in Figure 14.15.

14.12 Inductance Calculations of Structures

The self and mutual inductance was defined in Section 10.1. In this section we will cal-
culate the self inductance of two typical structures encountered in EMC problems:
coaxial cable and two parallel wires.

Example 14.3 Inductance of a coaxial cable
Consider the coaxial cable shown in Figure 14.16.

The inner cylinder carries a current /. The outer cylinder carries the same current
oppositely directed. Applying Ampere’s law for the Amperian path shown we have

I, = (j)H -dl= (JSH(paq, -pdoa,
1 !
(14.49)
= wp(j)d(p =2npH,
1
and thus

H,=—— a<p<b (14.50)
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AS

Amperian path

AS

Figure 14.16 Coaxial cable.

The magnetic flux crossing the surface AS is

p=b 1
Y= IB -dS = j ‘[—aq, -dpdza,
2mp
p=az=0
um vy oull g (14.51)

_:_n_

Zﬁp:ap 2t a

and the inductance of the length / of the cable is

L=—=—In— (H) (14.52)

§=ﬂln2 (Ej (14.53)

Example 14.4 Inductance of two parallel wires
Consider the two parallel wires shown in Figure 14.17.
The magnetic field generated by the current in each wire is

H,=—, a<p<s-a (14.54)
2np

Figure 14.17 Two parallel wires.

417



418

Foundations of Electromagnetic Compatibility

The magnetic flux due to both wires is

p=s—a |
1
‘I‘:2.fB¢-dS:2 J I;Tpaq, -dpdza,
’ Jpea p:”l = l (14.55)
ML _plly st il s
TP T a T a

The inductance of the section of length / is

L=—=—In=, =>5 [H] (14.56)

while the inductance per unit length is

L_toys s g [E} (14.57)
I ®m a a m

14.13 Magnetic Boundary Conditions

If the magnetic field exists in a region consisting of two different media, even though it
may be continuous in each medium, it may be discontinuous at the boundary between
them, as illustrated in Figure 14.18.

Boundary conditions specify how the tangential and normal components of the field
in one medium are related to the components of the field across the boundary in another
medium.

We will derive a general set of boundary conditions, applicable at the interface
between any two dissimilar media, be they two different dielectrics, or a conductor and
a dielectric.

Even though these boundary conditions will be derived for electrostatic conditions,
they will be equally valid for time-varying electromagnetic fields.

Medium 2

.

H,
Medium 1

Figure 14.18 Discontinuity at the boundary between two media.
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In each medium we will decompose the magnetic field intensity H and magnetic flux
density B into two orthogonal components:

H=H, +H, (14.58a)

B=B, +B, (14.58b)

This is shown in Figure 14.19.
To determine the boundary conditions, we will use Maxwell’s equations for magneto-
static fields:

qSH.dl =1 (14.59)
L

(jSB-dS =0 (14.60)
S

Let’s consider the closed path abcd shown in Figure 14.20. We will apply Eq. (14.59)
along this closed path. First, we will break the closed-loop integral in Eq. (14.59) into the
integrals along the individual segments:

H2
H2n

B,
B, .~ B Bow Medium 2

B,

Hln Hl Bl

n

Medium 1

Figure 14.19 Decomposition into the normal and tangential components.

H2 H2n
K

c d Medium 2

H,, \« [ M

ol N v
H,, H, b Al @
i

Medium 1

M1

Figure 14.20 Evaluating boundary conditions.
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1=gSH-d1=TH-dl+jH-d1+TH-d1+TH-d1 (14.61)
C b d

a c

Note that the integrals in Eq. (14.41) hold for any length of the integration path. That
is, we can let any segment length go to zero and the right hand-side of Eq. (14.61) will
still be true. If we let A — 0 then the contributions to the line integral by the segments
bc and da go to zero and we have

b d
I:qSH-dl:IH1~dl+IH2-dl (14.62)
C a c
Now, since
Hl =S Hlt + Hln (14633)
H2 = HZt + Hzn (1463]3)

we can rewrite Eq. (14.62) as

1:<JSH-d1:T(HM +H1n)-dl+T(H2t +H,,)-dl
¢ a 4 < (14.64)
= [Hy, - dl+ [Hy, -di+ [Hy, - dl+ [Hy, - dI

or

gSHm:an -dl+TH2t dl=1 (14.65)
C c

a

As Ah — 0, the surface of the loop approaches a thin line of length Al. Hence, the total
current / flowing through this line is

I=KAl (14.66)

Therefore, Eq. (14.65) becomes

b d
KAl= IHU -dl+ jﬂu -dl =—Hy,Al + Hy, Al (14.67)
or
A
H2t - Hlt = I( ‘:_:| (1468)
m

Thus the tangential component of the magnetic field intensity is discontinuous across
the boundary between two media.



Static and Quasi-Static Magnetic Fields
Since
B
H,, =% (14.69a)
H
H,y, =22 (14.69b)
Ha

we obtain the boundary condition on the magnetic flux density as

By _ B
H

=K (14.70)

When K=0, i.e. the boundary is free of current or the media are not conductors (for
K is the free current density), we have

H,, =H,, (14.71)
B, _By (14.72)
b H

This is a very important result that we will utilize when discussing the electromag-
netic wave shielding.

To obtain the boundary conditions on the normal components let’s consider the
closed cylindrical surface shown in Figure 14.21.

Let’s apply the second of the two Maxwell’s equations

(ﬁB-dS =0 (14.73)
S

B, Medium 2
B
B . BZ/ ) 2n 1253

Medium 1
H1

Figure 14.21 Evaluating boundary conditions.
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First, we will break the closed surface integral into three integrals as

gSB das = jB s+ j B, -dS+ sz -dS (14.74)

side bottom top

By letting Ah — 0, the contributions to the total flux by the side surface goes to zero.

gSB .dS= [ B,-dS+ [B,-ds (14.75)
bottom top
Now, since
B, =By, +By, (14.76a)
B, =B, +B,, (14.76b)

we rewrite Eq. (14.75) as

QSBdS = J. (Blt +B1n)'dsn2 + .[ (BZt +B2,,)-d5n1
S

bottom top (1477)
I Bln . dSnz + Ian dSnl
bottom top
or
<_[>B dS= [ By, -dSm,+ [By,-dsSm (14.78)
bottom top
leading to
Since
n; =—ny (1480)

we arrive at the boundary condition on the magnetic flux density as
Bln = B2n (14.81)

Thus, the normal component of B is continuous across the boundary between
two media.
The corresponding condition on the magnetic field intensity is

wmHy, = thH,, (14.82)

A veryimportant application of the boundary conditions in EMC is when one medium
is a dielectric and the other is a conductor. The boundary conditions for this case are
summarized in Figure 14.22 (Paul, 2006, p. 905).
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Medium 1 Medium 2
&p.0 Perfect Conductor In a perfect conductor all the fields
€0» Hp, O=°

inside the conductor are zero.

«— E,=0 E field is perpendicular to the
surface of the conductor.

6 ‘ K, =surface current density

H, (+) H=0 g =K A on the interfac.e; it is orthogonal
G f S| m to the tangential
6 component of H;_

B.= B field is tangential to the
B 2= - 5
| surface of the conductor.

r C:| ps=Ssurface charge density

D.=0 D, =p; e on the interface
=

+ 4+ 4+ +

ps

Figure 14.22 Dielectric-conductor boundary.

14.14 EMC Applications

14.14.1 Current Probes

Figure 14.23 shows some typical current probes used in EMC measurements and
testing.

Electric current can be measured by connecting a current probe directly to a spec-
trum analyzer, as shown in Figure 14.24, or by using a preamplifier as shown in
Figure 14.25.

A current probe is essentially a transformer, as shown in Figure 14.26. When the probe
is clamped around a conductor, the conductor is the primary winding and the probe’s
windings are the secondary. The current in the conductor produces a magnetic field that
is concentrated in, and circulates around, the core of the probe. By Faraday’s law, this
circulating magnetic field induces V;,;, which is measured by a spectrum analyzer.

The probe is calibrated so that the voltage measurement by the probe, Vj,4, can be
translated into the current measurement flowing in the conductor (over the specified
frequency range). Typically, the probe’s output voltage is specified with the probe termi-
nated in Z;,=50C, as shown in Figure 14.27.

During the calibration process the current of known magnitude and frequency is
passed through the probe and the corresponding induced voltage is measured at that
frequency.

Then, at each frequency, the ratio of that voltage to current can be calculated:

Zr =% [Q] (14.83)
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measurement

Figure 14.24 Direct current measurement.

This quantity is referred to as the transfer impedance of the probe. The unknown
current measured by the current probe can then calculated from

[=—2 [A] (14.84)
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Figure 14.25 Current measurement using a preamplifier.

Current probe
Secondary p

winding

Spectrum
analyzer

Primary
winding

Figure 14.26 Current probe is a transformer.

Current probe

Conductor

/

~  Spectrum
" analyzer

Figure 14.27 Current probe terminated in 50 Q.
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25

20

15
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Transfer impedance (dBQ)
=

10k 100k 1M 10M 100M 1G
Frequency (Hz)

Figure 14.28 Current probe calibration chart.

The transfer impedance is specified in dBQ instead of the values in Q.

2| =2010g % [dBQ)] (14.85)
Therefore,
21| = By | ldBua (14.86)

This allows a direct determination of the unknown current measured by the current
probe by a simple subtraction (instead of division):

2010gm = 2010g“}pmhe

- ZOIog‘ZT ‘ (14.87)
and

Lagua = Vprobe,dBuv — Z1,dBO2 (14.88)

Current probes have an associated calibration chart like the one shown in Figure 14.28.

14.14.2 Magnetic Flux and Decoupling Capacitors

Recall from Section 4.6.3 that when a CMOS gate switches, a current transient is drawn
from the power distribution system. This current transient flows through both the
power and ground traces. Both of these traces possess (partial) inductance, as shown in
Figure 14.29, for alow-to-high transition, and in Figure 14.30 for a high-to-low transition.
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Shorter traces

“Long”supply traces connecting the ICs
\ |
| | |
Yo v v,
—_—— + —_— cC — [«

—
I
<
Q
+
I

| |

“Long” supply traces Shorter traces
connecting the ICs

Figure 14.29 CMOS transition from low-to-high.
Shorter traces

“Long”supply traces connecting the ICs
| |

IC —
V. 1
N — G + — l
— I GND +—— GND
G
| ) /
Y I
“Long” supply traces Shorter traces

connecting the ICs

Figure 14.30 CMOS transition from high-to-low.

During such transitions, in addition to causing the signal integrity issues (power rail
collapse and ground bounce), the transient current flows in a large loop, resulting in a
large magnetic flux crossing that loop (and creating an efficient loop antenna). This is
shown in Figure 14.31.
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Figure 14.31 Large current loop on CMOS transitions.

One method of reducing this current loop and lowering the flux crossing it is to pro-
vide capacitance (bulk decoupling capacitor C;) between the power and ground con-
ductors near the switching IC. This is shown in Figure 14.32.

The smaller current loop creates a smaller area for the magnetic flux to penetrate, as
shown in Figure 14.33.

To further reduce the current loop, we can add a local decoupling capacitor, as shown
in Figure 14.34.

This results in the smallest current loop as shown in Figure 14.35.

14.14.3 Magnetic Coupling and Shielding

Consider the two circuits shown in Figure 14.36.

Time-varying current ig(¢) flowing in the generator circuit gives rise to the time-vary-
ing magnetic field Hg, which in turn creates the time-varying flux Wy that crosses the
adjacent receptor circuit.

According to the Faraday’s law this time-varying flux induces a voltage in the receptor
circuit. The magnitude of this voltage is

dv¥
Vind = SR
dt

(14.89)
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Figure 14.34 Local decoupling capacitor effect on the current flow on CMOS transitions.

The polarity of this voltage is governed by Lentz’s law. This induced voltage is shown
in Figure 14.37.

To obtain the circuit model of this induced voltage, we introduce the concept of the
mutual inductance between the generator and the receptor circuit, defined as

Lg = h (14.90)
e
From Eq. (14.90) we obtain
Yer = Leric (14.91)

Substituting Eq. (14.91) into Eq. (14.89) we get

d¥er d . dig
o= teR 7 =L —= 14.92
Vind di di (LGRlG ) GR di ( )
or
dig (¢t
Vina (£) = Lez is (£) (14.93)

dt
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Figure 14.36 Magnetic flux crossing the receptor circuit.
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Vs(t)

Figure 14.37 Induced voltage in the receptor circuit.

ene’ ato?

G

Figure 14.38 Frequency domain circuit model.

When the source voltage driving the generator circuit is sinusoidal, the generator
current and the induced voltage in the receptor circuit are also sinusoidal. The circuit
analysis is then carried out in the sinusoidal steady-state in the frequency domain,
where the time functions are replaced by the corresponding phasors.

Vind(t) Ad ‘}ind

ig(t) < Ig (14.94)
dig (t) \
< jol
di Jolg
Thus, the frequency (phasor) domain induced voltage in the receptor circuit is

Vina = joLerls (14.95)

This voltage is shown in Figure 14.38.
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Figure 14.39 Reducing inductive coupling by reducing the area of the receptor circuit.

. This induced voltage will have the effect of creating the near-end, VNE, and far-end,
Ve, noise voltages in the receptor circuit. Applying the voltage divider rule we get

Ve —2 i Lol (14.96a)
RNE RFE
- Ry . R
Vig =——%  jololg (14.96b)
Ryg + Ree

The mutual inductance, Lgg, and the noise voltage, Vy, can be lowered by reducing
the area of the receptor circuit. In a multilayer PCB, this can be accomplished by
moving the ground plane (return path) closer to the signal plane. This is shown in
Figure 14.39. R

The mutual inductance, Lgg, and the noise voltage, Vy, can also be reduced by shield-
ing the receptor circuit. Let’s investigate the effect of the shield around the receptor
circuit on the noise voltage. Figure 14.40 shows the receptor circuit with a non-mag-
netic shield placed around it.

Note that the shield is grounded at both ends (which makes it effective, as we shall see).

Since the shield is non-magnetic, it has no effect on the magnetic properties of the
medium between the generator and receptor circuit. Thus, the magnetic flux produced
by the current, I, in the generator wire still crosses the receptor-ground circuit and
induces a noise voltage in the receptor circuit. This is modeled by the mutual induct-
ance Lgg.

Magnetic flux produced by the current, I, in the generator wire also crosses the
shield-ground circuit. This flux induces a voltage in the shield circuit that produces a
shield current 5. This is modeled by the mutual inductance Lgs.
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Figure 14.40 Inductive coupling with a shield around the receptor circuit.

Figure 14.41 Equivalent circuit model for inductive coupling.

The shield current, I, in turn produces a flux that tends to cancel the flux due to the
generator wire. This is the essence of the reduction of the magnetic or inductive coupling.

The flux generated by the shield current also crosses the shield-receptor circuit and
induces another noise voltage into the receptor circuit. This is modeled by the mutual
inductance Lpg.

Thus, there are two voltages induced in the receptor circuit, and they are of the oppo-
site polarities, as shown in Figure 14.41.
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With the shield present, the near-end, VNE, and far-end, VFE, noise voltages in the
receptor circuit are

A RNE . A A
VNE =] LGRIG - LRSIS (14.973)
RNE + Ree ( )
A RFE . A A
VFE e e— [ ) LGRIG _LRSIS (1497]3)
Rne + Reg ( )

The shield is modeled by the shield resistance, Rgy, and shield self inductance, Lgy.
The shield current equals

ja)LstG
= ’ (14.98)
Rgy + jo Ly

Also, the self inductance of the shield is equal to the mutual inductance between the
receptor and the shield (Ott, 2009, p. 59)

Lgy = Lgs (14.99)

Also, the mutual inductance between the generator and receptor circuit is equal to
the mutual inductance between the generator and the shield (Ott, 2009, p. 61; Paul, 226,
p. 655)

Lor = Lgs (14.100)

Substituting Eq. (14.98) into Eqs (14.97) and utilizing Eqs (14.99) and (14.100)
we obtain

- R A R
Ve ZLJ‘Q,LGR[G# (14.101a)
Ry + Ree Rgy + jor Lsyy
\_q/_—d
effect of shield
Vi =— Rep jolols RSfLI (14.101b)
Ry + Ree Rgy + jo Lsy

\_q/_—d
effect of shield

For electrically short lines

A

A Vs

I = 14.102
“ TR +R, ( )

Utilizing Eq. (14.102) in Eqs (14.101) we get

Rne Ler Rsn (14.103a)
VNE =ja) RNE +RFE RS +RL RSH +j(l)LSH VS

effect of shield
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Figure 14.42 Effect of the shield.
Ree Loz Ry (14.103b)
Ve = joy Rng + Reg Rs + Ry Rey + jo Lgy Vs
| S —
effect of shield
The effect of the shield is reflected in the shielding factor (SF):
SF = L (14.104)
Rey + joo Ly
or
sF=——1 (14.105)

)

1+j—

wc

where
oc = R (14.106)
Lsy

is the shield cut-off (break) frequency.
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For frequencies much less than the shield break frequency, the shielding factor can be
approximated as

1
(14.107a)

I
—

SF = o)
1+j—
OC Jyecar

while for the frequencies much greater than the shield break frequency it can be
approximated as

1 1
e e ¢ RSH (14.107]))

~ —

jo  joLsy

J—
Oc Jpssa ¢

These results are shown in Figure 14.42.
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Rapidly Varying Electromagnetic Fields

In the previous chapter we reviewed the static electric fields due to stationary charge
distributions, and static magnetic fields due to charges moving at constant speed, i.e. dc
currents.

With one exception, the two static fields are independent of each other, allowing us to
study them separately. The only time the static fields are linked is in a lossy medium,
where the current density J and the electric field intensity E are related by the conduc-
tivity of the medium as

J=cE (15.1)

The E field produces the current density J, which in turn creates the magnetic field.

When the charge distributions and currents vary with time the electric and magnetic
fields will also vary with time. When the resulting fields are quasi-static (slowly varying)
we can study them separately. When the electric and magnetic fields vary rapidly with
time they become coupled — the time-varying electric fields produce the time-varying
magnetic fields, and conversely, the time-varying magnetic fields produce the time-
varying electric fields.

This field coupling is the key factor in the study of the electromagnetic waves, trans-
mission lines, and antennas, which is the subject of the next three chapters.

15.1 Eddy Currents

In this section we will discuss volume and surface induced electric currents in solid
conducting bodies, when exposed to time-varying magnetic field (flux).

These currents (called eddy currents) are induced in conductors by a changing
magnetic field, due to Faraday’s law of induction. Eddy currents flow in closed loops
within conductors, in planes perpendicular to the magnetic field that induced them.

The eddy current density, Je4q, is related to the induced electric field intensity E;,4 by

]eddy =0E;u (15.2)

where o is the conductivity of the material.
Figure 15.1 shows the original induced fields and current densities on the surface of a
conducting body.

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

439



440

Foundations of Electromagnetic Compatibility

Figure 15.1 Eddy currents on the surface of a
conducting body.

" Y eddy

As a consequence of eddy currents, electric power is dissipated as heat in a conduct-
ing medium due to the resistance of the medium; this is the principle of induction
heating.

Another important consequence of eddy currents is the magnetic field that they pro-
duce. By Lentz’s law, an eddy current creates an induced magnetic field that opposes the
change in the magnetic field that created it.

While the induced magnetic field in thin wire circuits is practically always negligible
with respect to the original magnetic field, this often is not the case in solid volume
conductors.

The induced eddy current density is largest on the surface of the conducting body
and decreases exponentially due to the skin effect for harmonically varying magnetic
fields.

As we shall see, eddy currents play an important role in magnetic field shielding.

15.2 Charge-Current Continuity Equation

In this section we consider one of the fundamental principles of electromagnetics — the
charge-current continuity equation, which is the mathematical expression of the prin-
ciple of conservation of charge.

For an arbitrary surface S, the total current flowing through it can be defined as the
flux of the volume current density vector ] (in units of A/m?), through the surface S

I =j1-ds (15.3)
S

For a closed surface S, the outward flux of the current density becomes

I =gf>1.ds (15.4)
S
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which represents the total outward flow of current. Now, current is also defined as the
flow of charge. Thus, the net current I flowing across S out of v is equal to the negative
rate of change of Q:

dQ d

[=—— = (pa 155
dt dt-v[p Y (153

where p, is the volume charge density in v. Assuming the volume and the surface to be
stationary in time, we obtain

d
?I-dS :—E!pvdv (15.6)

By applying the divergence theorem, we can convert the surface integral of J into a
volume integral of its divergence, which then gives

c.f;]-ds:jv-)dw—%jpvdv (15.7)
S v v

For a stationary volume v, the time derivative operates on p, only. Hence, we can
move it inside the integral and express it as a partial derivative of p,:

op
V. ydv=—[Prq 15.8
- s
Therefore,
v.j=_Sp (15.9)
ot
or
v.y+ 2P g (15.10)
ot

which is known as the charge-current continuity equation in differential form. Its inte-
gral form can be expressed as (Sadiku, 2010, p. 192)

@]-d5+_[%dv:0 (15.11)
S v ot
As we shall see, the continuity equation, together with Maxwell’s equations and the

constitutive medium relations, provide a complete set of equations needed to describe
a general electromagnetic problem.

15.3 Displacement Current

Recall Ampere’s law from electrostatics. It states that the line integral of the static mag-
netic field H about any closed path must equal the total conduction current enclosed by
the path. This is the total current bounded by the contour that is due to free charges.
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L =<JSH-d1=j]-ds (15.12)
c S

Applying the Stokes theorem to Eq. (15.12), we obtain
Ly =fH-d1=[(VxH)-dS (15.13)
c S

Comparing the right-hand sides of Eqs (15.12) and (15.13) leads to
VxH=) (15.14)
Equation (15.14) is often referred to as Ampere’s law in differential form. It is also one

of the Maxwell equations for the static magnetic fields.
Taking the divergence of Eq. (15.14) we obtain

V-(VxH)=0=V"] (15.15)

Since the divergence of the curl of any vector field is identically zero, Eq. (15.15)
implies that

V-J=0 (15.16)

However, the charge-current continuity relation requires that

v

V.j-— 15.17
J o ( )
which shows that Eq. (15.17) can only be true if
v _g (15.18)
Ot

This is an unrealistic limitation. To overcome this difficulty, Maxwell postulated the
existence of displacement current density J,; which can exist even in a nonconducting
and free space medium. After adding the displacement current to the right-hand side of
Eq. (15.14), Maxwell obtained

VxH=J+], (15.19)

where J; is yet to be determined. Again taking the divergence of Eq. (15.19), we have

V- (VxH)=0=V-(J+J,)=V-J+V-], (15.20)
or
0=V-J+V-]J, (15.21)
thus
opy
V.J,=-V.J="~ (15.22)
ot

Now, recall the differential form of the Gauss’s law

p,=V-D (15.23)
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where D is the electric flux density. Substituting Eq. (15.23) into Eq. (15.22) we get
apv 0 ( ) oD

= (15.24)
or
j, =P (15.25)
ot
Substituting Eq. (15.25) into Eq. (15.19) results in
VxH=]+P (15.26)
ot

This is Maxwell’s equation for time-varying fields. It shows us that a time-varying
electric field produces a magnetic field. If we take the surface integral of both sides Eq.
(15.26) over an arbitrary open surface S with contour C, we have

j(vxﬂ )-dS = j] dS+J.— ds (15.27)
S

Applying Stokes’s theorem to the right-hand side of Eq. (15.27) we obtain
q‘m -dl= j] ds + j =.ds (15.28)

Equation (15.28) can be written in a more general form as

@H-dl:j}-der%jD-ds (15.29)
S S S

Equation (15.29) is known as the integral form of Maxwell’s equation (Rao, 2004,
p. 102). The quantity H is the magnetic field intensity vector in A/m. The quantity
J is the current density vector in A/m? The quantity D is the electric flux density
in C/m>

The two terms on the right-hand side of Eq. (15.29) are:

I, :jyds [A] (15.30)
S

the total conduction current that penetrates the surface S bounded by the contour
C. — this current is due to free charges — and

d
I _Z:[Dds [A] (15.31)

the total displacement current that penetrates the surface S bounded by the contour C.
This current is due to time-varying electric flux.

As was the case with Faraday’s law, any surface shape is suitable so long as contour C
bounds it. Only the J and D that pass through the opening contribute, as shown in
Figure 15.2.
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Figure 15.2 lllustration of the Ampere’s law — Maxwell’s equation.

15.4 EMC Applications

15.4.1 Grounding and Current Return Path

The term grounding in our discussion here means that the current return path is through
the ground plane (or ground conductor), as illustrated in Figure 15.3.
The ground conductor has a non-zero impedance:

ZG = RG + ]COLG (1532)

At low frequency, the resistance Rg is the dominant factor. At high frequency, the
inductance Lg is the dominant factor.

Consider a two-sided PCB with a single trace on top and full copper ground plane on
the bottom, shown in Figure 15.4. At points A and B, vias connect the top trace to the
ground plane.

The forward current flows on the top trace as shown in Figure 15.5.

How does the return current flow back to the source? The return current has a few
options: the direct path from A to B or an alternative path underneath the top trace, or
a combination of both, as shown in Figure 15.6.

At low frequencies, the ground current will take the path of least resistance (which
corresponds to the path of the lowest impedance). This is shown in Figure 15.7.

Rg Figure 15.3 “Ground” conductor return
current.

Circuit

Vs (T §RL

Return current

Y
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Top side
Ae A®

Vias Forward current

Figure 15.4 PCB illustrating the alternative
current return paths.

Figure 15.5 Forward current flow.

Direct return path A
from B to A {
! o f——— s s e e
B

Return path under
the top trace

Figure 15.6 Return current alternative paths.

Thus the return current will take the lowest resistance, direct path from A to B, shown
in Figure 15.8.

At high frequencies, the return current will take the path of least inductance, which is
directly underneath the trace, because this represents the smallest loop area (smallest
inductance). This is shown in Figures 15.9 and 15.10.

Let’s confirm the above analysis with measurement and simulation results. Figure 15.11
shows the experimental setup used for the return current measurements.

The details of the circuit being investigated are shown in Figure 15.12.

Figure 15.13 presents a circuit diagram of the measurements setup.

The signal from the function generator travels along the center conductor of the coax
cable and through the 50 Q resistor. The return current has two different paths to return
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Forward current

Figure 15.7 Low-frequency return current path.

Lowest resistance path A
] %
)
A
t
B
1

Figure 15.8 Low-frequency current will take the lowest resistance path.

High resistance path

to the source: a direct path over the copper wire or the path through the shield of the
coax cable. A current probe is placed over the copper wire, and a sinusoidal signal is
generated by the function generator. The frequency of this signal is varied and current
through the copper wire is measured.

Figure 15.14 shows the measurement results.

As expected, as the frequency increases more current returns through the shield, as it
provides the lower impedance path than the direct copper wire.
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Forward current

Figure 15.9 High-frequency return current path.

i

Lowest inductance path

High inductance path A

7

Figure 15.10 High-frequency current will take the lowest inductance path.

Figure 15.15 shows simulation results for the two-sided PCB described and analyzed
in this section.

At low frequencies (1-100kHz) the majority of the return current is through the
direct path of least resistance. As the frequency is increased to 500k—1 MHz, the cur-
rent splits between the two paths. At high frequencies (10—~100 MHz) the majority of the
return current flows underneath the top trace through the path of least inductance.
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Figure 15.11 Experimental setup for the return current measurements.

Figure 15.12 Circuit used for the return current measurements.

15.4.2 Common-Impedance Coupling

For common impedance coupling to occur, two circuits must share a current path (with
a non-negligible impedance). Before we discuss the common-impedance coupling let’s
consider a couple of scenarios when the common impedance coupling does not occur.
Consider the circuit shown in Figure 15.16. The current flows from the source to the
load, and returns to the source through a zero-impedance ground path.
The voltage at the load (with respect to ground is)

V, =R, (15.33)

Now, let’s consider the case where the return path has a non-zero ground impedance,
as shown in Figure 15.17.
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Figure 15.13 Circuit diagram of the measurement setup.

f=500kHz
10 kHz 109
100 kHz 69
f=100kHz
o . = 500 kHz 19

Figure 15.14 Coax cable measurement results.

Now the voltage at the load (with respect to ground is)
V, =R, I+ 71 (15.34)

Obviously the ground impedance, Z, affects the value of the load voltage, but no
other circuit influences this value or is impacted by this ground impedance — there is no
impedance coupling (since there is no other circuit to be coupled).

Now consider the situation shown in Figure 15.18 where two circuits share the ground
return path with zero impedance.
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100kHz 500kHz 1MHz 10MHz 100MHz

s I

Figure 15.15 Two-sided PCB simulation results.

= ZG=O

Figure 15.16 Current returns to the source through a zero-impedance ground path.

Figure 15.17 Current returns to the source through non-zero impedance ground.

The voltages at the loads are

VLl = RLlil (15.353)
‘}LZ = Ring (15‘3513)

Even though the two circuits share the return path, the load voltage of circuit 1, Vis,
is not affected by the return current of circuit 2, Iy similarly, the load voltage of circuit
2, VLZ, is not affected by the return current of circuit 1, 11
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Figure 15.18 Two circuits share a zero-impedance ground path.

Figure 15.19 Common-impedance coupling circuit

There is no impedance coupling between the circuits (since there is no common
impedance shared by both circuits).

Finally, consider the situation shown in Figure 15.19 where two circuits share the
ground return path with a non-zero impedance.

The voltages at the loads are

VLI :RLljl +ZG (jl +j2) (15.36a)
‘}LZ :Rszz +ZG(j1 +i2) (15.36b)

Now the load voltage of circuit 1, VL}, is affected by the return current of circuit 2, I;
similarly, the load voltage of circuit 2, V,, is affected by the return current of circuit 1, f;.
This type of coupling is called the common-impedance coupling.
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Electromagnetic Waves

Recall two of the Maxwell’s equations for source-free media:

oH
VxE=-u—0= 16.1
r (16.1)
V><H:615+82—]t3 (16.2)

These equations state that time variations of the magnetic and electric fields give rise
to space variations of the electric and magnetic fields, respectively. This interdepend-
ence of the space and time variations gives rise to the electromagnetic wave
propagation.

In general, electric and magnetic fields have three non-zero components, each of
them being a function of all three coordinates and time. That is,

E=[E,(%521).E,(%521),E (% 2t)] (16.3a)
H= [Hx (%9,2,t),H, (%, 9,2,t),H, (%, 9,2, t)] (16.3b)

In the following discussion we will focus on a simple and very useful type of wave: the
uniform plane wave. Uniform plane waves not only serve as a building block in the study
of electromagnetic waves but also support the study of wave propagation on transmis-
sion lines and wave radiation by antennas (Paul, 2006, p. 909).

16.1 Uniform Waves - Time Domain Analysis

To derive the uniform plane wave equations we will use the two Maxwell’s equations

(16.1) and (16.2). To this end, we first need to make two assumptions: (1) we need to

choose the direction of either the electric field intensity vector E or the magnetic field

intensity vector H, and (2) we need to choose the plane in which these two vectors lie.
Let’s choose the direction of the electric field intensity vector as

E=[E,(%,9,21t),0,0] (16.4)

and let’s choose the plane in which both vector lie as the plane parallel to the xy plane
(Paul, 2006, p. 445).
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Since the wave is uniform in the plane it follows that E, is not a function of the position
in the plane, i.e. it is not a function of x or y,

E=[E,(21),0,0] (16.5)

and therefore

%: _y (16.62)
ox

% _o (16.6b)
oy

In terms of the components, the first Maxwell’s equation (16.1) can be written as

OE OE
V x E:[aEZ - y]ax+(aE" —aEZjay+[ ? —aEx]az

oy 0Oz 0z Ox ox Oy (16.7)
- aHxa B aHya B aHZa
TR Ty T
Utilizing Eqs (16.5) and (16.6) we get
OE OH OH OH
Oa, +—*a,+0a, =— ‘a, — La, - Za, 16.8
oz Fooe 2 @ % (168)
Thus
OH
-u—==0 16.9a
H ( )
OF oH,
L—py—= 16.9b
oz o (16.95)
OH
—u="2 -9 16.9¢
H, (16.9¢)

Since magnetic field intensity is a time-varying quantity, the only way to satisfy equations
(16.9a) and (16.9¢) is when

H,=0 (16.10a)
H,=0 (16.10b)
Therefore, the magnetic field intensity vector H has only a y component

H=|0,H,,0| (16.11)

related to the electric field intensity by Eq. (16.9b). Thus, the E and H vectors are
orthogonal, as shown in Figure 16.1.
Since the wave is uniform in the plane, it follows that H, is not a function of x or y,

H=|0,H,(z),0] (16.12)
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x E
Direction of
/\/ propagation
H
z

Y

Figure 16.1 Uniform plane wave.

and therefore

OH

Z -9 (16.13a)
ox

O0H

—2X=0 (16.13b)
dy

The second Maxwell’s equation (16.2) can be written in terms of the components as

OH OH
V x H= oH, _oH, ax+[aHx—aszay+ oy _oH. a,
oy 0z 0z  Ox Ox oy

O OE O (16.14)
=|0E, +¢—= |a,+|0E,+¢—= |a, +| 0E, +¢—= |a,
ot ot ot
Utilizing Eqs (16.12) and (16.13) we get
OH OE,
—a—zyax +0a, +0a, =[0'Ex +£Ejax +0a, +0a, (16.15)
and thus
OH
My o 4 OB (16.16)
0z ot

Therefore, the uniform plane wave is described by a set of coupled partial differential
equations:

O, (z,t) oH, (z,t)

=— 16.17
0z H o ( K
0H, (z, OF, (2,
y(2t) _ _GEx(Z,t)_gﬂ (16.17b)
0z ot
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This set of equations can be decoupled as follows. Differentiating Eq. (16.17a) with
respect to time results in
aZEx (z,t) 82Hy (z,t)

=— 16.18a
0z0t # or? ( )

while differentiating Eq. (16.17b) with respect to z produces
’H,(z,t) 0L, (z,t) 0°E.(zt)
=—0 —-€

16.18b
oz* 0z otoz ( )
Substituting Eqs (16.17a) and (16.18a) into Eq. (16.18b) gives
azHy (z,t) OH, (z,t) 62Hy (z,t)
— =0 -uy—— || y———= 16.19
oz N o (16.19)
or
O’H,(z,t OH,(z,t OH,(z,t
) (Z ) — o y(Z )+,UE )y (Z ) (16.20)

022 ot ot*

This is the first of the decoupled equations. To obtain the second equation, we differ-
entiate Eq. (16.17a) with respect to z and Eq. (16.17b) with respect to time. The result is

aZEx (z,t) 82Hy (z,t)

=— 16.21
0z* H Otoz ( )
2H ’ ) 2 X ’
0°H,(z,t) s O, (z t)_ga E,(zt) (16.21b)
Oz0t ot ot*
Now, substitute Eq. (16.19b) into Eq. (16.19a) to obtain
’E,(z,t) OE.(z,t) 0°E.(zt)
P /) — 16.22
o2 o I PR (1622)
or
aZEx (z,t) OE, (z,t) GZEX (z,t)
= 16.23
oz* HO o T o ( )

This is the second decoupled wave equation. For source-free and lossless medium
(0=0) the wave equations in (16.23) and (16.20) simplify to

’E,(z,t) O’ (z,t)
= us

= 16.24a)
072 ot? (
0*H, (z,t) 0*H, (z,t)
=ue (16.24b)
022 H ot?

Both equations have the same mathematical form, and therefore their solutions will
have the same mathematical form. A solution of Eq. (17.24a) is known to be (Rao,
2004, p.174)
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14

Ex(z,t)=f(t—5j (16.25)

where

(16.26)

and fis an arbitrary twice-differentiable function. Let’s verify it, because this verifica-
tion will reveal a very interesting fact about this solution.

Let
=t % (16.27)
1%
then
Ex(z,t):f(r):f(t—§) (16.28)

Using the chain rule for differentiation, the partial derivatives of E, with respect to ¢
and z can be expressed as

GE.(21) _of(r)or _of(x)

(16.292a)
ot ot Ot ot
and
OE,(z,t) 0 0
OE(2t) _of(v)or _ 1(r) (16.29b)
oz ot 0z v 01
In a similar manner, we obtain the expressions for the second derivatives
0°E,(z,t) 0 OE.(zt) & {Gf(r)}
> = .
Ot 32 Ot fjt ot (16.30a)
_of(r)or _0f(x)
or? ot or?
and
O°E.(2,t) 0 OE.(z,t) o { 1 af(r)}
2 A i
0z oz i oz 0z Vz ot (16.30b)
__10f()or _13/(v)
v ot: 0z v o1’
Now, substitute Eqs (16.30) into Eq. (16.24a) to obtain
o o*
12/() et /() (16.31)

v or? v: or?
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Using Eq. (16.27) in Eq. (16.31) we get
10°f(r) 18°f(z)

v or? v: or?

(16.32)

which verifies that Eq. (16.28) is a solution of Eq. (16.24a). In a similar fashion, it can be
shown that any twice-differentiable function of the form

E,(zt)= g[t +fj (16.33)
v
is also a solution of Eq. (16.24a). Thus, the general solution of Eq. (16.244a) is
Ex(z,t)zAf(t—£j+Bg(t+£) (16.34)
v %
Note that
f(zt)= f(t—fj (16.35a)
v
while
f(z+Az,t+At):f(t+At—Z+Azj (16.35b)
v
Now, if
Az =vAt (16.36)
then Eq. (16.35b) becomes
f(z+Az,t+At):f(t+At— Z+Azj
Y (16.37)

=f(t+At—“V"Atj=f[t+At—§—Atj=f(t—§j

Therefore, after a time A¢, the function f retains the same value at a point that is
Az=vAtaway from the previous position in space (defined by z), as shown in Figure 16.2.

This means that an arbitrary function of the form f (t—z/v) represents a traveling
wave with a velocity

N (16.38)

At \Jue

The wave travels in the positive z direction as the time ¢ advances. Similarly, an arbi-
trary function of the form g(t + z/v) represents a wave with a velocity v in the negative z
direction as the time ¢ advances.

The corresponding solution for H,(z, £) can be obtained as follows. We begin with
Eq. (16.9b) repeated here:

OE, OH

=—pu—2r 16.39
oz N (16:39)
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Az=vAr t+At

z +Az z
Figure 16.2 A traveling wave.

thus

oH, 1%k (16.40)
ot u oz

Using Eq. (16.34) in Eq. (16.40) we get
o2 fo() )
S B S £
e
pia B

or

OH, 1 6f(t—zj 5g(t—zj
ot uv|A 5 Y/ _B 5 4
t ¢ (16.42)
e 6f(t—zj 8g(t—zj
= 1% v
A B
H o o
e af(t—zj ag(t—zJ
4l 12 12
A -B
H o ot

Integrating Eq. (16.42) with respect to time results in

H,(z,t)= ﬁ{Af{t%) Bg(t+§ﬂ (16.43)
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or
H,(zt) :%{Af[t —%) —Bg[t +§ﬂ (16.44)

where, for a lossless medium, the intrinsic impedance of the medium, 7, is

n= \/E [Q] (16.45)
&

Thus, in summary, the solutions to the wave equations for an arbitrary time-varia-
tions of the field are

Ex(z,t)zAf(t—fjJng(Hfj (16.46a)

14 1%

H,(z,t) :éf(t —fj—ég(t —fj (16.46b)
n v) n v

16.2 Uniform Waves - Sinusoidal Steady-State Analysis

In the previous section we obtained the solution to the wave equations when the fields
were arbitrary functions of time. Of particular interest are the sinusoidal variations of
the fields.

Recall the time domain wave equations for the arbitrary variations of the fields:

2 2
O’E,(z,t) craE’“(Z’t)+yga E,(zt)

=20 u - = (16.47a)
0*H, (z, oH, (z, 0" H, (2,
ay(zz 0_ ya(tz t) o, gtgz t) (16.47b)
74

We wish to obtain the sinusoidal steady-state phasor version of these equations.
Recall that differentiation in the time domain corresponds to the multiplication by jw in
the phasor domain. Thus,

OE, (z,t)

” < joE,(2) (16.48a)
oH,(z, .

ya(zz o joH, (2) (16.48b)

and

0*E, (z, OE, (z, R .

gt(zz t)zg{ a(: t)} o (jo)(jo)E:(z)=-0"E,(2) (16.49a)
2

H,(z, \
TH (=) © -0'H,(2) (16.49b)

ot?
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Also
O*E,(z,t 2F
a(zz ) o ddb;" (16.50a)
Z Z
*H, (2t d*H
ayz(zz ) o, Ak (16.50b)

Substituting Eqs (16.48)—(16.50) into Eqs (16.47) we obtain the sinusoidal steady-state
wave equations

-
dd:;" = ol jok,(z) |+ pe| -0, (z) ] (1651a)
-
’ d;y = po joH, (2) |+ ue| ~o* A, (2) ] (16.51b)
or
d’E, . N
122 :(]a),uc)'—a) ,ue)Ex (z) (16.52a)
-
dd;[y :(jwya—mzyg)ﬂy(z) (16.52Db)
Now,
jouo — o pe = jou(o + jog)=y* (16.53)
where

7 =yjou(o+ jos) (16.54)

is the propagation constant. Using Eq. (16.63) we rewrite the wave equations (16.52) as

-
dd:;" =7°E,(2) (16.55a)
A’H, ., -

o~ H () (16.55b)

The solutions of these equations are of the form

E, =Ae 7" + Be'* (16.56a)

e 7r —Zel? (16.56b)
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where

h= ﬂ_%:ﬂﬁ” [Q] (16.57)

o+jwe
is the complex intrinsic impedance of the medium.
Let’s verify that the equations (16.56) are indeed the solutions to Eqs (16.55).
Differentiating Eqs (16.55) we get

dE e
T =—yAe 7" +yBe’* (16.58a)
dz
dH S . o
YT fei _ Y Bt (16.58b)
dz n n
Differentiating Eqs (16.58) again results in
-
E. o o o s
d 2x — 72Ae—yz +}/ZBe;/z
dz (16.59a)
=72 (Ae_” + Be’* ) =y?E,
27 ~2 2
Gy 7 e L peis
dz>m 1 (16.59b)
ol A 5, B O
=7 Se7"-—e”* |=7H,
n n

which confirms that the Eqs (16.56) is the solution of Eqs (16.55).
The solution in Eqs (16.56) is consistent with that presented by Paul (2006, p. 912).
We simply make the notation change from

A o E| (16.60a)
B o E, (16.60b)
to obtain
E =Ele " +E,e* (16.61a)
.\ .
b, =Em ez Lz (16.61b)
n n
Expressing the propagation constant in terms of its real and imaginary parts
J=a+jp (16.62)
and the complex intrinsic impedance as
n=n26,=e" (16.63)

(a is the attenuation constant in Np/m and f is the phase constant in rad/m) we can
write the solution in Eqs (16.61) as



E, =E} e “e /P 4 E, e%e/F?

A

. ~
A, _En az g ipeg-ity _ Em gz gipzg-io,

n n
Finally, expressing the complex constant in the exponential form

E =E, /0" =E/ e/
E, =E,/0 =E,e/
we obtain the solution in phasor domain as
E, = E,e e P/’ 4 E,e%e/P7e/
]:[y = ie_aze_jﬁze_jg”ejgv —E—';’e"‘ze”ﬁze""'g"e"gi
n n
which is the form presented by Paul, (2006, Eq. B.65, p. 912).

Electromagnetic Waves

(16.642)

(16.64b)

(16.65a)

(16.65b)

(16.66a)

(16.66b)

Examining the equations (16.66), we can immediately write the time domain solution
by extracting the magnitudes and phases of the complex expressions and inserting them

into the corresponding time domain sinusoids.
E.=E)e* cos(a)t - Bz+0" )
+E, e cos(a)t +pz+60 )

+

E
H,=—"e* cos(a)t—ﬁz+9+ —9,7)
n

En e cos(a)t +PBz+0" -6, )
n
In a lossless medium
a=0
1n=n40

and with the undetermined constants being real

A

E: =}, /0
E, =E, /0
Equations (16.67) become
E, = E, cos(ot — fz)+ E,, cos(wt + fz)
‘ _

H, = i—mcos(wt—ﬁz)—i—mcos(a)t + ﬂz)

(16.67a)

(16.67Db)

(16.68a)
(16.68b)

(16.69a)

(16.69b)

(16.70a)

(16.70b)
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Note that we could obtain the solution in Eqs (16.70) by directly employing the time
domain solution obtained in the previous section

Ex(z,t):Af(t—£j+Bg(t+£j (16.71a)
v v
Hy(z,t):éf(t—fj—gg(t—zJ (16.71b)
n v) n v
Since
f(t - Ej = cos(a)t - Ej (16.72a)
v v
g[t—Echos(wt—Ej (16.72b)
v v
f(t+£}zcos(a)t+iJ (16.72c¢)
v v
g(t+ij =cos(wt+ij (16.72d)
v v
the solution in Eqgs (16.71) becomes
E, (z,t):Acos(a)t—fj+Bcos[a)t+£j (16.73a)
v v
H, (z,t):écos(wt—fj—ﬁcos(a)t—ij (16.73b)
n v) 1 v

Expressing the velocity of propagation as

V=— (16.74)
B
and utilizing the substitutions in Eq. (16.60), we can express Eqs (16.73) as
E, = E, cos(ot — fz)+ E,, cos(wt + fz) (16.75a)
' _
H, =b;7—mcos(a)t—ﬁz)—b;7—mcos(a)t+ﬂz) (16.75b)

which, of course, agree with Eqs (16.70).

16.3 Reflection and Transmission of Uniform Waves at
Boundaries

In the next section we will discuss electromagnetic wave shielding. In order to derive
the equations describing this phenomenon we need to understand the reflection and
transmission of electromagnetic waves at the boundaries of two media.



Medium 1
E. My, €1, 01

Figure 16.3 Reflection and transmission of a uniform wave at the boundary.

y

Medium 2
H2, €3, 03

v
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We will consider a normal incidence of a uniform plane wave on the boundary
between two media, as shown in Figure 16.3.
When the wave encounters the boundary between two media, reflected and transmit-
ted waves are created (Paul, 2006, p. 472).
The incident wave is described by

A

A A
N

E
H; =—e " a, =

A

Uit Uit

E, = E.e "*a, = E,e % /A%a,

Ee*alle*}ﬁlle*ﬂgﬂl a

while the reflected wave is expressed as

A

A

A E. .
Hr = _A_reylzay =
h

E, = E,e/?a, = E,e®e/f%a,

A

E,

T

ealzejﬁlze*/ynl ay

(16.76a)

(16.76b)

(16.77a)

(16.77Db)

where the propagation constant and the intrinsic impedance in medium 1 are given by

7= \/ja’ﬂl(o'l +fa’<91) =y +jp

771 — % — ]7149’71
(o] +](051

The transmitted wave is represented as

E, = E,e *a, = E,e ®*%e /P*a,

. E :
H,=—e""a, =

ie_azze_jﬂ2ze_ja72 ay
Up) Uy

(16.78a)

(16.78b)

(16.79a)

(16.79b)
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where the propagation constant and the intrinsic impedance in medium 2 are given by

7 =.Jjom (Uz +ja)€2) =ay+jp (16.80a)

R Q)
hy= |2 —p, 26, (16.80b)
Oy + J&y

Recall Eq. (13.138), which states that at the boundary of two media, the tangential
component of the electric filed intensity is continuous. Thus,

E +E =E, z=0 (16.81)
or

Ee " +Ee* =Ee ™ z=0 (16.82)
leading to

E +E =L, (16.83)

The boundary condition imposed on the magnetic field, requires that the tangential
component of the magnetic field intensity must be continuous. Thus,

H,+H,=H, z=0 (16.84)
or
Slet _ZLelht=Le Tt 7= (16.85)
h Th Up)
leading to
E, E E
L=t (16.86)
m m m

Substituting Eq. (16.83) into Eq. (16.86) results in

ZioZr St (16.87)
m T Uy
or
E. E E E
T =7t
7Zl 721 722 722
E, E E E
T =
Th T Th T (16.88)

CESAWIEREY
m 1 m 1

E*i(’h —771 J :E*r [ﬁzfﬁl J
1172 yp)

3>
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leading to the definition of the reflection coefficient at the boundary as

A

ferso. =L _=m (16.89)
E 1+

Thus the reflected wave is related to the incident wave by

E =TE, (16.90)
From Eq. (16.83) we get
E =E -E (16.91)

Substituting Eq. (16.91) into Eq. (16.87) results in

5_@22 (16.92)

A A A

Uit m )

or

Eh B _E
ﬁl 771 771 722
E E_E L

+-
’71 771 ’72 Uit (16.93)

. . 1
Ei(%+i]=Et(} A j
m T
131(2] Eﬁ(ﬂ1+772j
Ui mmna

Leading to the definition of the transmission coefficient at the boundary as

Ferso, =L 2 (16.93)
E, mtm

Thus the transmitted wave is related to the incident wave by

E, =TE, (16.94)

16.4 EMC Applications

16.4.1 Electromagnetic Wave Shielding

Metallic shields are often employed in electronic products in order to decrease the radiated
emissions or to increase the radiated immunity. This is shown in Figures 16.4 and 16.5,

respectively.

The shielding effect can be described using the theory of electromagnetic wave
propagation.

Consider a metallic shield of thickness ¢ surrounded on both sides by air (free space),
as shown in Figure 16.6.
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6/ (source of radiation) Q
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Figure 16.4 Shielding to decrease the radiated emissions.
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5
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#
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Radiated
emissions
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antenna

-

External source of radiation

Figure 16.5 Shielding to increase the radiated immunity.

Incident on the left surface of this shield is the uniform plane wave. The incident
wave, (]Aii, H; ), will be partially reflected, (]é,, H, ), and partially transmitted, (ﬁl, H, ),
through the shield. The transmitted wave, (ﬁl, H, ), upon arrival at the rightmost
boundary will be partially reflected, (]éz, H, ), and partially transmitted, (Et, flt)

through the shield.
The incident wave is described by
l:-:‘i = EAiefjﬂ"zax
l:[i =£e_w"zay
o
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Ho€o Hoy€o

Figure 16.6 Electromagnetic wave shielding.

where

Bo = o+ oo (16.96a)

Mo = Ho (16.96b)
&o

The reflected wave is described by

E, =L.e/P%a, (16.97a)
H, = —ie/’f”’ozay (16.97b)
Tlo
The wave transmitted through the left interface is described by
E, =Ee 7/, (16.98a)
H, = i}e‘fzay (16.98b)
n
where
7=\ jou(o+joc)=a+jp (16.99a)
p= L2 (16.99b)

o+ jwe
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The wave reflected at the right interface is described by

E, =E,e/*a, (16.100a)
H,=-"2e""a, (16.100b)
n
Finally, the wave transmitted through the right interface is described by
E, = Ee /P*a, (16.101a)
~ E _ bt
H, =—e /™, (16.101b)
o

The shielding effectiveness, SE, can be determined by evaluating the ratio of the
transmitted field magnitude to the incident field magnitude (Ott, 2009, p. 244),

E,
SEp =1~ (16.102a)
E;
A
SEy =1 (16.102b)
H;
Usually, these are expressed in dB, as
£
SEg, 45 =20logp (16.103a)
H,
SEp,ap =20logyo (16.103b)

i

The relative effectiveness of various shield can be determined by the direct field
measurements. The experimental setup for H field measurements is shown in
Figures 16.7 and 16.8.

Figure 16.7 shows the unshielded switched-mode power supply (SMPS) and the
H-field probe for the field measurements. Figure 16.8 shows a SMPS with a shield.

The following shields were evaluated:

phosphorus-bronze 8 mils
phosphorus-bronze 15 mils
nickel-silver 8 mils
cold-rolled-steel 15 mils

copper tape 3 mils
cold-rolled-steel w/holes 15 mils

The results are shown in Figures 16.9-16.13.



Figure 16.7 SMPS with no shield.

Figure 16.8 SMPS with a shield.
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Figure 16.9 1 - no shield; 2 - phosphorus-bronze 8 mils; 3 - phosphorus-bronze 15 mils.
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Figure 16.11 1 - phosphorus-bronze 15 mils; 2 - cold-rolled-steel 15 mils.
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Transmission Lines

17.1 Transient Analysis

In the previous chapter we reviewed static electric fields due to stationary charge
distributions, and static magnetic fields, due to the charges moving at constant speed,
i.e. dc currents.

A transmission line can be modeled as a distributed parameter circuit consisting a
series of small segments of length Az, as shown in Figure 17.1

The distributed parameters describing the transmission line are:

r — resistance per-unit-length (€2/m)

[ — inductance per-unit-length (H/m)
g — conductance per-unit-length (S/m)
¢ — capacitance per-unit-length (F/m)

The transmission line model in Figure 17.1 describes a lossy transmission line. To gain
an insight into transmission line theory it is very helpful to consider a lossless transmis-
sion line first. Such a transmission line is shown in Figure 17.2.

To obtain the transmission line equations let’s consider a single segment of a lossless
transmission line shown in Figure 17.3.

Writing Kirchhoff’s voltage law around the outside loop results in

Iz,
—V(z,t)+lAz¥+V(z+Az,t)=0 (17.1)
or
al(z,t)
V(z+Az,t)—V(z,t)=—lAzT (17.2)

Dividing both sides by Az and taking the limit gives

lim V(z+Az,t)-V(zt) :_lal(z,t) 17.3)
Az—0 Az Ot

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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rAz 1Az
8Az < cAz =
: Az !

Figure 17.1 Circuit model of a transmission line.

IAz IAz IAz
"""" cAz "~ cAz _— cAz —— TTTTT
i Az i Az i Az i

Figure 17.2 Circuit model of a lossless transmission line.

I(z 1) 1Az I(z+ Az 1)
— i —
. +

Viz 1) :: cAz V(z+ Az 1)

i ]

:"' Az -—:

. ]

p z+ Az

Figure 17.3 Single segment of a lossless transmission line.
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or
oV (z,t ol (z,t
(2t) __jol(zt) (17.4)
0z ot
Writing Kirchhoff’s current law at the upper node of the capacitor results in
oV (z+Az,t
1(z,t):1(z+Az,t)+cAz% (17.5)
or
oV (z+Az,t
I(z+Az,t)—I(z,t)=—cAz% (17.6)
Dividing both sides by Az and taking the limit gives
I(z+Az,t)—1(z,t oV (z+Az,t
i (ZH820) 7120y, OV(z+Azt) (17.7)
Az—0 Az Az—0 ot
or
ol (z,t oV (z,t
(z) _ V(at) (17.8)

oz ot

Equations (17.4) and (17.5) constitute a set of first-order coupled transmission line
equations. These equations can be decoupled as flows.
Differentiating Eq. (17.4) with respect to z gives
0’V (z,t 0*1(z,t
(2t) @ l(=t) (17.9)
0z Otoz

while differentiating Eq. (17.8) with respect to t gives
621(z,t) 62V(z,t)
—c

= 17.10
0z0t ot? (1710
Using Eq. (17.10) in eq. (17.9) produces
O’V (z,t O’V (z,t
(2 ) te (2 ) (17.11a)
0z ot
In a similar manner, we can obtain the second transmission line equation as
0*1(z,t 0*1(z,t
(z:t) _, O°1(z1) (17.11b)

072 or?

The general solutions to these transmission-line equations are (Rao, 2004. Pg. 372)

V(zt)= V+(t—EJ+V[t+Ej (17.12a)

v 14

I(z,t)=T" (t—zj+ 1‘(”5] (17.12b)

1% 14

477



478 | Foundations of Electromagnetic Compatibility
where
It t_ijziw ;2 (17.13a)
v Zc 1%
1(t+5j=—iv(t+fj (17.13b)
v Zc v

Zc is the characteristic impedance of the line

Ze = \ﬁ (17.14)
C

The function V*(¢—z/v) represents a forward-traveling voltage wave traveling in
the +z direction, while the function V™ (¢ +z/ v) represents a backward-traveling voltage
wave traveling in the -z direction (see Chapter 16 for the detailed explanation).

Similar statements are valid for the current waves. The total solution consists of the
sum of forward-traveling and backward-traveling waves.

The velocity of the wave propagation along the line is given by

yobt (17.15)

N

17.1.1 Reflections on Transmission Lines

To simplify the notation in the following discussion, let’s rewrite the solution in Eqs
(17.12) in a concise form (Rao, 2004, p. 372)

V=V"+V~ (17.16a)
I=I"+1I (17.16b)
From Eqs (17.13) we observe that
+
=Y (17.17a)
Zc
oY (17.17b)
Zc

From Eq. (17.17a) we also note that

vt

Zc - (17.18)

Consider a transmission line of length L driven by a constant voltage source Vs with a
source resistance Rs, and terminated by a resistive load Ry, as shown in Figure 17.4.

We assume that no voltage and current exists on the line prior to the switch closing.
When the switch closes at £ =0, forward voltage and current waves originate at z=0 and
travel toward the load.
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Zo V

Z=I0 z=lL

Figure 17.4 Transmission line driven by a constant source and terminated by a resistive load.

Figure 17.5 Voltage and current forward waves originate at the source.

Let’s denote these waves as V" and I', as shown in Figure 17.5.
Writing a KVL for the circuit in Figure 17.5 we get

Vs +RsI"+V* =0 (17.19)

Utilizing Eq. (17.18) we obtain

vt
Ve+ Rs—+V* =0 (17.20)
Zc
or
.
V+ +—RS = VS
c
+ RS
1% [1+—j:vs (17.21)
Zc
v RS +ZC —V,
Zc
and thus
vio_%c v (17.22a)
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Ry I+ Figure 17.6 Equivalent circuit at t=0.
—
+
Vg _|, v g Zc
+
/
z=0
+
AN 7 (17.22b)
ZC RS +Z C

Equations (17.22) specify the initial voltage and current values (at location z=0) that
will propagate towards the load.

Now, consider the circuit shown in Figure 17.6 and look back at Eqs (17.22).

We quickly realize that Eqs (17.22) apply to this circuit. Thus, the circuits shown in
Figures 17.6 and 17.5 are equivalent! We may, therefore, say that the source “sees” the
transmission line as a resistance equal to the characteristic impedance of the line con-
nected across z=0.

Note that the voltage value that propagates towards the load is not equal to the
dc voltage of the source, Vi, but is obtained from it using the voltage divider in
Eq. (17.22a).

The voltage (and current) wave that originated at the source now travels towards the
load, as shown in Figure 17.7.

As this wave travels along the transmission line, the voltage along the line changes
from 0 to V" and remains at that value (for now).

At the time
r=L (17.23)
v

the voltage and current waves reach the load, as shown in Figure 17.8(a).

Applying Ohm’s law to the circuit shown in Figure 17.8(a) we get
V+
= R, (17.23)

We know, however, that the ratio of the forward voltage wave to the forward current
wave must be equal to the characteristic impedance of the line

V+
o Zc (17.24)

This contradiction can only be resolved by postulating the creation of reflected waves
at the load, as shown in Figure 17.8(b). We denote these reflected waves as V" and I,
respectively.
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i
z=0 Z=|L

Figure 17.7 Voltage wave travels towards the load.

(@ (b)
It I +1-
—
+ +
Z=L Z=L

Figure 17.8 Voltage and current waves arrive at the load.

The total voltage across the load and total current through the load are
V=V"+V~ (17.25a)
Il +I (17.25b)
Ohm’s law for the circuit in Figure 17.8(b) produces
Vv :RL(I+ +1‘) (17.26)

We refer to the Eq. (17.26) as the boundary condition at the load. Utilizing Eqs (17.17),
repeated here

.
= (17.27a)
Zc
oY (17.27b)
Zc

we rewrite Eq. (17.26) as

R
Viev =R, | LoV (17.28)
Ze Zc
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or

+ _
V++V_ :RLV——RLV—
Zc Zc
- +
V7+RLV—=RLV——V+
Zc Zc

1)y Ry
Zc Zc

V- R; +ZC vt RL_ZC
Zc Zc

and thus the reflected voltage is related to the incident voltage by

(17.29)

vyt R=Ze (17.30)
R, + ZC

The ratio of the reflected (backward-traveling) wave to the incident (forward-traveling)
wave is defined as the voltage reflection coefficient at the load:

V. _R-Zc (17.31)
vt R +ZC

L=

Therefore the reflected voltage waveform at the load can be found from the incident
wave using the reflection coefficient as

Vo =I,V* (17.32)

The current reflection coefficient at the load is

_ —V/ _
1IT_+ -— Ze _ “; -r, (17.33)
e
Therefore the reflected current waveform at the load can be found from the incident
wave using the reflection coefficient as

I =-T,I" (17.34)

The reflected waves now travel back to the source, as shown in Figure 17.9.
This wave reaches the source at the time

2L (17.35)
14

The reflected voltage and current waves reach the load, as shown in Figure 17.10(a).
Applying KVL to the circuit shown in Figure 17.10(a) produces

s +RS(1+ +1—)+v+ +V =0 (17.36)
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v M
Total voltage
T T — Yt} V-
V+
----------------------- % V7
i
z=0 =L

Figure 17.9 Reflected wave travels towards the source.

(a) (b)
R It +1- RS I*+1 +1°7
S —_—
+ +
VS V++V— VST V++V7+V7+
' !
Z=0 Z=0

Figure 17.10 Reflected voltage and current waves arrive at the source.

This equation leads to the contradictory conclusions shown next. Utilizing
Eqs (17.27), repeated here

I'= Z_ (17.373)
C
- —g (17.37b)
C

we rewrite Eq. (17.36) as

R
Vi + R (;——;—}rv* +V™ =0 (17.38)
C C
or
&(v+ —V‘)+V+ +VT =V (17.39)
Zc

Now, using Eq. (17.32), repeated here

V=T, V* (17.40)
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we rewrite Eq. (17.39) as
&(W —rv+)+v+ +TV =V
Z

C 2 (17.41)
VI = 4141 =V
Zc  Zc

Using Eq. (17.31) repeated here

r, = Re=Zc (17.42)
R +Z¢c
we get
\7a &_RL_ZC&+1+RL_ZC =V (17.43)
ZC RL +ZC ZC RL +ZC
or
. Rg(Ry +Z¢ )~ (R, = Zc )Rs + Zc (R, + Z¢ )+ Ze (R, — Zc' ) v, (17.44)
I Ze(Ry+2c)
which reduces to
| 2(Rs + Ry ) _v, (17.45)
L (RL +ZC)
from which
o RitZe |, (17.46)
2(Rs+Ry)
But from Eq. (17.22a), repeated here, we have
vio_%c v (17.47)
RS +ZC

The only way this inconsistency can be resolved is by postulating the creation of the
(re)reflected waves at the source. These reflected waves are denoted as V™" and 7,
respectively, and shown in Figure 17.11(b).

The total voltage and current at the source are

V=V"+V +V* (17.48a)

I=I"+1 +I" (17.48b)

The re-reflected waves now travel back to the load, as shown in Figure 17.11.
KVL applied to the circuit shown in Figure 17.10(b) produces

—VS+RS(I++I’+I’+)+V++V’+V’+ =0 (17.49)
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%4
Total voltage V*+V +V~*
\% —+
% _______________________
vt v+
V- V-
i
1
z=0 z=L

Figure 17.11 Re-reflected wave travels towards the load.

Utilizing
"
L (17.50a)
Zc
- v (17.50Db)
Zc
—+
=Y (17.50¢)
Zc
in Eq. (17.49) we obtain
ViV 4V =vs—&(v+ —VT V) (17.51)
o
Substituting
ooy, % (17.52)
Re+Zc
in Eq. (17.51) results in
VS—ZC +V VT =V _ R Vs _Ze iy
Re+Z ¢ Zc R+ Z¢
VSL_H/— +V =V _VSL_&(_V—)_&V*
RS +ZC Rg +ZC ZC ZC (17‘53)
ZC RS - —+ RS - RS —+
Vs——C— Vst Vs —— =V =V -5 (V)= 25V
RS + ZC RS + ZC ZC ZC
LR S S VeV —&(—v*)—&v*+
RS + ZC RS + ZC ZC ZC
Now, the left-hand-side of Eq. (17.53) simplifies to
VS ZC + RS 1 :VS ZC +RS_RS_ZC -0 (17.54)
R¢+Zc Rs+Zc Rs+Z¢
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thus
-y -y —&(—V’)—&V’+
Zc Zc
v +&V’+ = +&V’ -V
c Zc

1+& = &_1 \'e
Zc Zc

ZC ZC
or
Vot =y Ry —Z¢
Ry + Z¢

(17.55)

(17.56)

The ratio of the re-reflected (forward-traveling) wave to the incident (backward-

traveling) wave is defined as the voltage reflection coefficient at the source:

FS _ RS _ZC
RS + ZC
Thus,
V=TV~

Next, we will discuss some special cases of the reflection coefficient.

Short-circuited line R,=0 In this case the reflection coefficient is

rR-Ze _0-Zc
RL+ZC O"rZC

The reflected voltage is
Vo=l V' ==V~

The total voltage at the load is
Vit =V +V ™ =V -V =0

(17.57)

(17.58)

(17.59)

(17.60)

(17.61)

The reflected voltage is the negative of the incident voltage, and the total voltage
across the load is zero. This is consistent with what we would expect across a short

circuit.

Open-circuited line R,=o In this case the reflection coefficient is

1_Zc
_Ri—Ze R =1
Ry +Z¢ 1+é
RL R, —>0

(17.62)
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The reflected voltage is
Vo =[V'=v"* (17.63)
The total voltage at the load is
Vit =V +V - =2V" (17.64)

The reflected voltage wave is equal to the incident wave and the two add up to give the
total voltage of double the incident value at the load.

Matched line R,=Z. In this case the reflection coefficient is

FZMZQ (17.65)
Ze+Zc

The reflected voltage is

Vo =T,V*'=0 (17.66)
The total voltage at the load is

Viotat =V +0=V" (17.67)

There is no reflection at the load; the total voltage at the load is equal to the incident
voltage only.

Example 17.1 Transmission line reflections
Consider the circuit shown in Figure 17.12.
The experimental setup reflecting this circuit is shown in Figures 17.13. and 17.14.
A 2V, (open-circuit voltage) pulse signal was sent from the function generator
along the coaxial cable to the resistive load. The voltages at the source (V) and
at the load (V) were measured using oscilloscope probes. The source was
matched to the transmission line and the load resistance was varied as shown in
Table 17.1.

Rg
Function VWY —
) . + *
generator RG58 coaxial cable Load
oa
Ve=2V -" Vs Zc=50Q Vi RL resistor
2=0 2= 12t

Figure 17.12 Circuit for the load reflection measurements.
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Figure 17.13 Experimental setup for the load reflection measurements.

Figure 17.14 Experimental setup - load resistance.

Table 17.1 Resistive load values.

Case 1 R; = (open circuit)
Case 2 R =22Q
Case 3 R; =47 Q

Case 4 R; =216 Q
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Case 1R = First, the load was terminated in an open circuit. When the switch closes,
the initial voltage wave is created at location z=0. The value of this voltage is

50
50+50

Z,
VT =Vs(z=0)=V, C (2
s(2=0) GR5+ZC (2)

and is shown in Figure 17.15. After £=18ns (one-way travel time, 7) this waveform
arrives at the load. The load reflection coefficient is

M:l

FL:
RL +ZC

The reflected voltage at the load is
Vo =T V'=(1)(1)=1V

The total voltage at the load is
V=V +V =1+1=2V

as shown in Figure 17.15. The voltage reflected at the load (V™ =1 V) travels back to the
source and reaches it at £=2 T. The total voltage at the source at t=2T'is

V=V +V =1+1=2V

Since the source is matched, there is no reflection and the voltage stays at the value of
2V, as shown in Figure 17.15.

Y Trgd
) ou
1 2 -2.7o0ns =10.0mV
D -20.Tns 1.oov
A1E.0ns ALY

Invert
o

Figure 17.15 Source and load voltages for R, =co.
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Case2R =222 The initial voltage at location z=0 is
vt =V5(z=0)=1 \%
After t=T this waveform arrives at the load. The load reflection coefficient is

r, = R, —Z¢ _ 22-50 039
R, +Zc 22+50

The reflected voltage at the load is
Vo =T,V*=(-0.39)(1)=-039 V
The total voltage at the load is
Vi=V +V ™ =1-039=0.61V

The voltage reflected at the load (V™ =—-0.39 V) travels back to the source and reaches
itat t=2T. The total voltage at the source at t=2T'is

Ve=V'+V ™ =1-0.39=0.61V

Since the source is matched, there is no reflection and the voltage stays at the value of
0.61V. These results are shown in Figure 17.16.

L
. 10k points -
2 Label .
) 28 Jun 2016

J Mare I 05:08:52

Invert Eandwidih
TR

Figure 17.16 Measurement result for R, =22 Q.
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Case3R, =472 The initial voltage at location z=0 is
Vi=Vs(2=0)=1V

After t=T this waveform arrives at the load. The load reflection coefficient is

R, —Zs 47-50
r,=—ft=¢_ =-0.03
R, +Zc 47+50

The reflected voltage at the load is
V™ =TI V*=(-0.03)(1)=-0.03V
The total voltage at the load is
V=V '+V =1-0.03=0.97V

The voltage reflected at the load (V™ =-0.03 V) travels back to the source and reaches
itat t=2T. The total voltage at the source at t=2T'is

Vs=V"+V ™ =1-0.03=0.97V

Since the source is matched, there is no reflection and the voltage stays at the value of
0.97 V. These results are shown in Figure 17.17.

= it M—
; ! ~3.30m © -10.0mV
F -20.8ns @  9s0mv
A17.5n8 A890mV
R, =47Q

0G5/5
10k paints

Invert | Bandwidih Laksel
on 5 0M Mare

05:17:49

Figure 17.17 Measurement result for R, =47 Q.
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Case4R, =216 2 The initial voltage at location z=0 is
V' =Vs(z=0)=1V
After t= T this waveform arrives at the load. The load reflection coefficient is

roR-Zc_216-50

= = 624
R, +Zc 216+50

The reflected voltage at the load is
VT =TV*'=(0.624)(1)=0.624V
The total voltage at the load is

V=V +V ™ =1+0.624=1.624 V

The voltage reflected at the load (V™ =0.624 V) travels back to the source and reaches

itat t=2T. The total voltage at the source at t=2T'is

Vs=V"+V ™ =1+0.624=1.624V

Since the source is matched, there is no reflection and the voltage stays at the value of

1.624'V. These results are shown in Figure 17.18.

Hfr! Trig’d

—330ns @ 000V
—20.8ns B 1.64V
A17.5ns Al6sv

5.00GSTs
10k points
IIpc ac &1 iMo 500 | On  off | 250MHz More AT

Figure 17.18 Measurement result for R, =216 Q.

Coupling Impedance Invert Bandwidth 1 Label
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R¢=50Q ;=0
. +
RG59 Coaxial cable
Vg =10V — Ze=T5Q vy R;=2160
z=0 z=6ft

Figure 17.19 Circuit used to create bounce diagram.

17.1.2 Bounce Diagram

Consider the circuit shown in Figure 17.19.

When the switch closes, the forward voltage wave travels towards the load and reaches
itat£=T (T = one-way travel time). Since the line and the load are mismatched, a reflection
is created and travels back to the source, reaching it at £=2 T (assuming zero-rise time).
Since the line and the source are mismatched, another reflection is created, which travels
forward to the load, reaching it at t=37.

This process theoretically continues indefinitely; practically, it continues until the steady-
state voltages are reached at the source and at the load. A bounce diagram is a plot of the
voltage (or current) at the source or the load (or any other location) after each reflection.

Let’s create a plot of the voltages at the source and the load for the circuit shown in
Figure 17.19.

The initial voltage at the location z=0is

Zc 10) > _gy

vV*t=V, =
50+75

This is shown in Figure 17.20.
The reflection coefficient at the load is
R -Z:; 216-75

- - =0.4845
R +Zc 216+75

)
The initial voltage wave of 6V travels to the load and reaches it at £=T creating a
reflection
Vo =I,V* =(0.4845)(6)=2.907 V
The total voltage at the load (at¢=T) is
V=V +V ™ =6+2.907=8.907V

This is shown in Figure 17.21.
Voltage reflected at the load (V™ =2.907 V) travels back to the source. The reflection
coefficient at the source is
o Rs=Zc _50-75_ .,
Rs+Zc 50+75
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=y o Trigd
@ 5] ; 18]
! @ -525n 6.00V
® -535ns ~40.0mV
Rg=50Q A9.60ns AB.04V

Figure 17.20 Initial voltage wave at z=0.

£ o Tgd
1 -500ns B 5.04V 2
Re=50Q EErE
ZC= 759
Vi(z=6/1)

10.0ms 5.00G5/%
i+ —514, 00005 [ 10K points

2E Jun 2016
o7

More 3200

Figure 17.21 Voltage at the load at t=T.
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= 1r Trigd
1 ] w#]

| 10.0ns
,. —=514.000n%

[
|10k olnt L
Maore J

Imipeance
1M1

Coupling
| Do FAC A

Ivert

S04 on ol

- Jun 2016
07:41:35

Figure 17.22 Voltage at the sourceat t=2T.

The re-reflected voltage at the source is
VTt =TV~ =(-0.2)(2.907)=-0.5814V

The total voltage at the source at t=2T'is
Vs=V"+V ™ +V " =6+2.907-0.5814 =8.3256 V

This is shown in Figure 17.22.

The voltage reflected at the source (V™" =-0.5814 V) travels towards the load where
it will create another reflection which will travel towards the source. This process will
continue until the steady-state is reached.

The bounce diagram showing the voltages at the source and the load after each reflec-
tion is shown in Figure 17.23.

Figure 17.24 shows the voltages at the source (z=0), while Figure 17.25 shows the
voltage at the load (z=L) during the period 0<¢ < 8T.

It is apparent that the source and load voltages eventually reach the steady state.
Recall that a transmission line can be modeled as a sequence of in-line inductors and
shunt capacitors. Under dc conditions (steady-state when driven by a dc source) induc-
tors act as short circuits and capacitors act as open circuits.

Thus in steady state, the circuit in Figure 17.19 is equivalent to the circuit in
Figure 17.26, where the transmission line is modeled as an ideal conductor.
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Vico  _ B v, ,
(v) Ts=-02 04845 o
- 0 - _0 B
| Lo
0 HI, 7 6*04845:2907 = —'L
6+2.907
7 2T [~ 28907
6+2.907
~0.5814=8.3256 | 377 | 37—
8.907-0.5814

4T+

(=0.282) # ad J' ~0.282=8.044

8.3256-0.282

+0.0564=8.1 l T4 'STW
8.044+0.0564
" 67 6T 1 0.027=8.127

8.1+0027 | |

~0.0054=8.1216 00054+ 0.4845= ‘
L gre 8.127-0.0054
0.0026=8.119

t t

Figure 17.23 Bounce diagram: voltages at the source and the load.

Vz-0
(V)
8.3256
: : 8.1216
| 81—
6
A T SR
I I 1 I I I 1 I l
0 T 2T 3T 4T 5T 6T 7T 8T t

Figure 17.24 Voltage at the source during 0 <t <8T.

The steady state value of the voltage at z=0 is the same as the value at z=L and can be
obtained from the voltage divider as
216

=———(10)=8.1203 V
50+216

SS

17.1.3 Reflections at an Inductive Load

Consider the circuit shown in Figure 17.27 where the transmission line of length 4 is
terminated by an inductor L.
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8.907

8.127 8.119

8.044

i | | | i
1 1 T 1

f 'r T I
5T 6T 1T 8T ¢

T

T 2T 3T 4T

0
Figure 17.25 Voltage at the load during0 <t <8T.

Rg=50Q
V=10V v, T R, =216Q

Z=0
Figure 17.26 Equivalent circuit in steady state.
Zc  t=0 i
—
Vi, i +

Z=0
Figure 17.27 Inductive termination of a transmission line.
The source resistance is matched to the characteristic impedance of the line; it is also

assumed that the initial current in the inductor is zero
(17.68)

iL(07)=0

When the switch closes at £=0, a wave originates at z=0, with
(17.69a)

Vs

Vv, =—

2
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i+, Figure 17.28 Creation of a reflected wave at an
—_— inductive load.
Vi, i +
VitV L
V., i,
|
z=d
.V
p=— (17.69b)
27

and travels towards the load. When this wave arrives at the load (after the time 7), the
inductor current cannot change instantaneously from zero to the value in (17.69b), KCL
is violated at z=d, and thus the reflected wave, v, and i, is created (Rao, 2004, p. 394)
This is shown in Figure 17.28.

The reflected current wave is related to the reflected voltage wave by

Vr

i =— 17.70
Ze ( )
The voltage—current relationship for an inductor produces
d
vi+v, =L—(i;+i. (17.71)
S liti)
or, using Egs (17.69) and (17.70),
Vs py o1 [ Vs v (17.72)
2 dt\2Z: Zc
Since Vg and Z¢ are constant, Eq. (17.72) reduces to
Vs py L dn (17.73)
2 Zc dt
or
Ldv, , Vs v,(O):ﬁ, t>T (17.74)
Zo dt 2 2

This differential equation in v, was solved in Section 5.4.1. with the result (see
Eq.5.111):

v, (d,t)= —% pye e (17.75)
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Figure 17.29 HyperLynx circuit model of a transmission line terminated by an inductive load.

The corresponding solution for the reflected current wave is

i (d, t):—%:i——e(&/ Hen o (17.76)

This reflected voltage wave and reflected current wave travel back to the source; since
the source is matched to the line, there is no reflection at the source. The total voltage
across the inductor is

v(d, t)=v;(d, t)+v,(d, t)
0, t<T (17.77)
—Zc/L|(t-T
Vse(c/ )( ), t>T

The total current through the inductor is
i(d,t)=i/(d, t)+i.(d,t)
0, t<T

= ﬁ[l_ef(zc/L)(th)} (ST
Zc

(17.78)

Figure 17.29 shows the circuit schematic of a transmission line driven by a 5V CMOS
and terminated in an inductive load.
The driver voltage and the voltage across the inductor are displayed in Figure 17.30.

17.1.4 Reflections at a Capacitive Load

Consider the circuit shown in Figure 17.31.
A line of length d is terminated by a capacitor C with zero initial voltage.

vC(O‘):o (17.79)
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Figure 17.30 Driver voltage and the voltage across the inductor.
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ZeV Vi, ; +
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Figure 17.31 Transmission line terminated by a capacitive load.

A constant voltage source with internal resistance equal to the characteristic imped-
ance Z¢ of the line is connected to the line at £ =0. When the switch closes at =0, a
wave originates at z=0, with

v =0 (17.80a)
2
= Vs (17.80b)
27¢

This wave travels down the line to reach the load end at time 7. Upon arriving at the
load the reflected voltage and current waves (v, and i,) are created. The reflected cur-
rent wave is related to the reflected voltage wave by

Vr (17.81)
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Figure 17.32 HyperLynx circuit model of a transmission line terminated by a capacitive load.

The voltage—current relationship for a capacitor produces

i +i, = Ci(vi +v,) (17.82)
dt

or, using Eqs (17.80) and (17.81),

&_V_rzci(ﬁwrj (17.83)
2 Ze di\ 2

Since Vs is constant Eq. (17.83) reduces to

Vs —cz. (17.84)
dt
or
dVr VS VS
CZ +v,=—, v (0)=—, t>T 17.85
“dr 2 (0) 2 (17.85)

Equation (17.85) has the same mathematical form as Eq. (17.73). Thus, the solution of
Eq. (17.85) will have the same mathematical form as the solution of Eq. (17.73).

Figure 17.32 shows the circuit schematic of a transmission line driven by a 5V CMOS
and terminated in a capacitive load.

The driver voltage and the voltage across the capacitor are displayed in Figure 17.33.

17.1.5 Transmission Line Discontinuity

In this section we will consider the effects of the discontinuity along the transmission
line; the discontinuity occurs when the transmission line characteristic impedance
changes, as shown in Figure 17.34.

501



502 | Foundations of Electromagnetic Compatibility

6.000 -
/Dr ver voltqge

5.000 {\/ w \
4.000
H Capacitor voltage \
3.000 f
|
> F X l \
2, 2.000
IS
I S SR P P ISR i I f IS RR—"
1.000 | } | .
0.00 /I - N
—1.000
-2.000
0.00 1.000 2.000 3.000 4.000 5.000 6.000 7.000
Time (ns)

Figure 17.33 Driver voltage and the voltage across the capacitor.
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Figure 17.34 Discontinuity along a transmission line.

Let’s consider voltage and current waves v;; and i;; traveling on transmission line 1
incident to the junction. Upon their arrival at the junction, the reflected waves v,; and
i,1, and the transmitted waves vy, and iy, are created (Paul, 2006, p. 248).

KVL at the junction produces

Vi1 + V1 = Ve (17.86)
while the KCL gives
I i =i (17.87)
We know that
i = Vi (17.88a)
Zci
by = -1 (17.88b)
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. Vi
Iy = (17.88¢)
Zca

Substituting Eq. (17.88) into Eq. (17.87) produces

Vi Y _ Ve (17.89)
Zer Zci Zcy
thus
Z
Via =£(Vi1 _Vrl) (17.90)
Zc

Using Eq. (17.90) in (17.86) results in

VitV = @(Vﬂ _Vrl) (17.91)
Zci
or
VitV = <2 il Zer Vr1
c1 Zcy
Z
Vr1 + = Vil = 2 Vi1 — Vi
c1 Zcy
z 7 (17.92)
(122, (2 4),
C1 C1
(Za +Zc2jv _(Zcz—zaj
rl — il
Zc1 Zcy
and thus

Y _Zea—Zar _ (17.93)

Vi ZcatZca

where I'1; is the voltage reflection coefficient for the wave incident from the left onto
the boundary. In terms of the reflection coefficient, the reflected voltage can be
expressed as

V1= rlzvl’l (17.94)

Thus, to the incident wave, the transmission line to the right looks like its characteristic
impedance Z,, as shown in Figure 17.35.

We also define the voltage transmission coefficient as the ratio of the transmitted
voltage v, to the incident voltage v;;

Ty, =22 (17.95)
Vil

Since
Vi1 t V1 =Ve (17.96)
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Figure 17.35 Incoming wave sees a termination
impedance Zc,.

Figure 17.36 Wave incident from
0 the right.

Figure 17.37 Incoming wave sees a termination
impedance Z¢;.
Ze * /\/ Zes
we have
Vo Va+Va Vi1
T, =22 taTlin g, W (17.97)
Vil Vi1 Vil
or
Ty =1+T7, (17.98)
Utilizing Eq. (17.93) in Eq. (17.98) results in
T, =1+ Zer—Zca _ Zeoy+Zey+Zey—Zey (17.99)
ZeatZc Zea+Ze
or
Ty, = _22c2 (17.100)
Zea+Zc

A similar derivation can be performed for the wave incident on the boundary from

the right, as shown in Figure 17.36.
In this case the voltage reflection coefficient is given by

Vil Zcy—Zcr

Iy, == fe”2a (17.101)

Vi ZcatZc

Again, to the incident wave, the transmission line to the left looks like its characteristic

impedance Z¢;, as shown in Figure 17.37.
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The voltage transmission coefficient for the wave incident from the right is

2ZC1

Ty=—"—""—
Zer+Zco

(17.102)

and the reflection and transmission coefficient for the wave incident from the right are
related by

Ty =1+Ty (17.103)

Example 17.2 Transmission line discontinuity
Consider the circuit shown in Figure 17.38.

The experimental setup reflecting this circuit is shown in Figure 17.39.

A 10 V,, (open-circuit voltage) pulse signal was sent from the function generator
along the 6 ft long RG58 coaxial cable (Z¢ =50 €2) connected to the 6 ft long RG59 coaxial
cable (Z¢=75 Q) and terminated with an open circuit. The rise time of the waveform is
t,=2.5ns.

RG58 RG59
Vg Zc1=50 Q Vp Zo=T5Q v,

=121

Figure 17.39 Experimental setup for the reflection measurements.
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The voltages at the source (Vs), the discontinuity (Vp), and at the load (V) were
measured using the oscilloscope probes. When the switch closes, the initial voltage
wave is created at location z=0. The value of this voltage is

Ze (10) 50

Re+Zc ° 750450
After about £=T'=9ns (one-way travel time along RG 58), this waveform arrives at the
discontinuity, where it gets reflected and transmitted. The reflection coefficient (from
the left) at the discontinuity is

 Zey—Zey 75-50
Zeo+Ze1 75450

5V

Vﬂ:VS(Z:O):VG

l—12

The reflected voltage at the discontinuity is
Vi =Ty =(0.2)(5)=1V

The total voltage at the discontinuity at £ =T is thus
Vop=vi+v,,=5+1=6V

The reflected voltage wave propagates back towards the source and arrives there
about at £=2 T later. The total voltage at the source becomes (after t=2 T+ 2¢,).

VS:VL‘1+Vr1:5+1:6V

The incident wave that arrived at the discontinuity at t=T is also transmitted. The
voltage transmission coefficient for the wave incident from the left is
2Z 2)(75

2 Zey+Zc1 75450

The transmitted voltage at z=6ft is
Vp =y =Tipva =(1.2)(5)=6V

which, of course, is the same as the voltage Vp at £=0. These voltages are shown in
Figure 17.40.

The transmitted voltage wave travels towards the load where it gets reflected with a
load reflection coefficient equal to one (open load). The total voltage at the load is,
therefore, at t=2 T'is (shown in Figure 17.41):

V,=6+6=12V

The reflected voltage at the load (6 V) travels back towards the discontinuity, where it
gets reflected and transmitted. Let’s look at the reflected voltage first. The reflection
coefficient (from the right) at the discontinuity is
_Za~Ze _50-75_

Zc1+Zcy 50475

FZI
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Figure 17.40 Voltages at the source and at the discontinuity at t=Tand t=2T.
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Figure 17.41 Voltage at the load at t=2T.

Transmission Lines
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Figure 17.42 Voltage at the load at t=4T.

The reflected voltage at the discontinuity is
Vo = FZlviZ = (—0.2)(6) =-12V

This reflected voltage wave propagates towards the load where it gets reflected. The
total voltage at the load, at £=4T,

V,=12-12-12=96V

This is shown in Figure 17.42.
The incident wave that arrived at the discontinuity (from the right) at t=3 T is also
transmitted. The voltage transmission coefficient for the wave incident from the right is

2Z¢;_(2)(50) _

Ty, = =0.
N Zeat Zey 75450

The transmitted voltage (from right to left) at z=6ft is
Vi =Tyvip =(0.8)(6)=4.8V

Resulting in a total voltage at the discontinuity of
Vp=6+4.8=10.8V

This is shown in Figure 17.43.
Finally, the transmitted voltage of 4.8V arrives at the source at =4 T, resulting in the
source voltage rising to (Figure 17.43).

Vs=6+4.8=108V

This process continues until the steady state value (of 10V at all locations) is reached.
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Figure 17.43 Voltage at the discontinuity at t=3T and the source at t=4T.

17.2 Steady-State Analysis

17.2.1 Lossy Transmission Lines

In our discussion so far, we have assumed that the transmission line is lossless. We will
now consider the effects of losses. Losses come from two mechanisms: the per-unit-
length resistance of the line conductors, r in £/m, and the per-unit-length conductance
of the surrounding medium, g in S/m.

The per-unit-length equivalent circuit model for a Az section of the line is shown in
Figure 17.44 (Sadiku, 2010, p. 523).

Applying KVL to the outer loop of the circuit in Figure 17.44 results in

V(z,t)=rAzI(z,t)+lAz¥+V(z+Az,t) (17.104)
or
V(z+Az,t)—V(z,t)z_rl(z,t)_lﬁl(z,t) (17.105)
Az ot
Taking the limit as Az — 0 we get
% :—rI(z,t)—lM (17.106)

Applying KCL to the upper node in Figure 17.44 gives

I(z,t)=1(z+Az,t)+Al (17.107)
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Figure 17.44 The per-unit-length model of a lossy transmission line.

Now, Al can be expressed as

8V(z+Az,t)
Al =Ig+1c= gAzV(z+Az,t)+cAzT (17.108)
Substituting Eq. (17.108) into Eq. (17.107) results in
oV(z+Az,t)
I(Z,t):I(z+Az,t)+gAzV(z+Az,t)+cAzT (17.109)
or
I(z+Az,t)-1(z,t) :—gV(z,t)—cM (17.110)
Az ot
Taking the limit as Az — 0, we get
ol(z,t) oV (z.t)
———=—gV(z,t)—c——= 17.111
o VBt (17.111)

Equations (17.106) and (17.111) are the coupled transmission line equations. We can
decouple them as follows. Differentiating Eq. (17.106) with respect to z gives

62V(z,t) _, Gl(z,t) _lézl(z,t)

17.112
oz* 0z Otoz ( )
and differentiating Eq. (17.111) with respect to time results in
0*1(z,t oV(zt) 0V (zt
(o) oVle) V(s o

ot % o o
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Substituting Eq. (17.111) and Eq. (17.113) into Eq. (17.112) gives

2 2
0 ‘;ij, t) =lCa ‘/8522; t) +(lg+rc)%+rg‘/(z, t) (17.114)
and a similar derivation leads to
21 y 21 ’ I ’
0 a(; )0 a(; t)+(lg+rc)¥+rgl(z, t) (17.115)

Equations (17.114) and (17.115) are the general transmission line equations. Under
sinusoidal excitation, we can rewrite them in a phasor form as

d*V (z)

> =—’lcV (2)+ jo(lg +rc)V (2)+rgV (2) (17.116a)
Z
i,
i . \ .
—dd (2Z) =~a’lcl (z)+ jo(lg+rc)I(z)+rgl(z) (17.116b)
VA
or
2
4 ;gz) =(r+ jool)(g+ jox)V (z) (17.117a)
Z
2
dd[(zz) =(r+ jol)(g+ joc)I(z) (17.117b)
V4
or
bl
a ng) =V (z) (17.118a)
dz
d2j(z) o
L =9l(2) (17.118b)
where
z=r+jol (17.119a)
y=g+joc (17.119b)

are respectively the per-unit-length series impedance and shunt admittance of the
transmission line.
Equations (17.118) are often written in the form

dZV(z)
dz*

i
%gz)—yzi(z) =0 (17.120b)

-7V (2)=0 (17.120a)
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where 7 is the propagation constant of the line, defined by

y‘=\/5\/(r+jwl)(g+jwc)=a+jﬁ (17.121)

and «a is the attenuation constant and f is the phase constant. The general solution of
Eqs (17.120) is of the form

V(z) —Vte T Vet = Ve e P et (17.122a)
be A, .

I(z)= ‘{—e_ﬂ - V e’ :‘{—e_“ze"jﬂz —Y—e‘“e’ﬁz (17.122b)
Zc Zc Zc Zc

where the complex characteristic impedance is given by

r+jol
=Zc /0y, (17.123)
gt+joc

The solution in Eqs (17.122) consists of the forward and backward traveling waves

V(2)=V;(2)+Vs(2) (17.124a)
[(2)=1;(2)+1,(2) (17.124b)
where

/i (2)=V e e /P (17.125a)

V,(z)=V e/ (17.125b)

) v .

I(z)=——e e /" (17.125¢)

Zc
7 ‘}7 az jBz
1,(z)=———e"e (17.125d)
Zc
When the line is lossless (@ = 0) the solution in Eq, (17.122) reduces to

V(z)=V'e # 1V el (17.126a)

. VNN Vo

I(z)=——e/P* ———e/F* (17.126b)
Zc Zc

17.2.2 Standing Waves

Consider the transmission line circuit shown in Figure 17.45.
At any location z, the voltage V(z) is the sum of the forward and backward traveling
waves V and Vb

V,=V'te (17.127a)

V, =V er? (17.127b)
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z=0 z=L

Figure 17.45 Transmission line circuit.

At any location z, we define a complex voltage reflection coefficient as the ratio of the
phasor voltages of the backward and forward traveling waves.

Ve oy
F(Z ZA;,:‘{—&‘/Z#Z (17128)
Ve syt

From Eq. (17.128) we obtain
Vo =D(z2)V'e /" (17.129)
Substituting Eq. (17.129) into Eqs (17.126) gives
V(z) =V*e I +1A"(z)\7+e”’2ﬂze"ﬁz
=Vie 1T (z)Vie /- (17.130)
=Vt I [1+f(z)]
and

., .
I(z) z‘{—e_jﬁz —‘{—f(z)\ﬁe*’wzewz

Zc Zc
:Z_;e-fﬂz _g_;f(z)mfﬂz (17.131)
Y i [1-1(2)]

Zc

Thus, the voltage and current at any location z can be expressed in terms of the voltage
reflection coefficient at any location z as

V(z)zV*e’jﬁz[l+lA“(z)J (17.132a)
I(z):Z—Ce 7 [1-1(z)] (17.132b)

Evaluating the voltage reflection coefficient in Eq. (17.128) at the load results in

A

x

+

Pz=1)=F, =L /" (17.133)
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Returning to Eq. (17.128) we may express the voltage reflection coefficient at any
location z as

f(z) V- e }'2ﬂz:£e j2B(z+L-L)

e T (

[ 17.134)
Vv RN j2B(z-L) _ [ e/2A(zL)

1% k

Thus, the voltage reflection coefficient at any location z can be expressed in terms of
the load reflection coefficient as

(z) =1 =) (17.135)

Substituting Eq. (17.135) into Eqs (17.132) gives the expressions for the voltage and
current at any location z as

V(z)=V'e " [1 + fLe"Zf”'(Z*L)] (17.136a)
. o
i)=Y e [1 —rLe’w(z‘L)J (17.136b)
C

The magnitudes of the voltage and current along the line at any distance z away from
the source are

V(2)|=

v

vie [1+1A“Lej2ﬂ(Z*L)J
e—iﬂZH[l +1*—Lefzﬁ(z4)}

[1 +1 /2P0 J

(17.137a)

V+

o o
I(z)‘ = ;—Ce_}ﬁz [I—FLe’zﬂ(z_L)}

V+
Zc
‘}Jr

C

o P2 |:1_1i‘Lej2ﬂ(sz):| (17.137b)

[1_ fLefzﬂ(z—L)J

Thus

‘V(z)‘ =‘\?* (17.138a)

(1ot o0

‘}+

Zc

(17.138b)

-

[l_fLefzﬂ(z—L)J

Now, consider the same transmission line but with the distance measured from the
load to the source, as shown in Figure 17.46.
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Figure 17.46 Transmission line circuit, distance measured from the load to the source.

The two distance variables are related by
d=L-z (17.137a)
z=L-d (17.137b)

In terms of the distance d away from the load, the magnitudes of the voltage and
current can be expressed as

V(@)= |11 ] (17.138a)

i(a)|= ‘;C [1-Fe | (17.138b)
or

v(d)=v* [1+fLe_j2ﬂdJ (17.13%)

i(d)= ‘;C [1-fue ] (17.139b)

There are four important cases of special interest that we will investigate:

1) The load is a short circuit ZAé =0.

2) The load is an open circuit Z; = oo. R

3) The load is matched to the transmission line Z; = Z.
4) Arbitrary resistive load R.

Case 1-Short-circuitedload Z, =0 The load reflection coefficient in the case is
I, =-1 (17.140)

Using Eq. (17.140) in Eqs (13.139) gives

V(@)= [t ]
=‘\7+ e /Pl (e"ﬁd —e /4l )‘: v e’jﬂdj2sin(,8d)| (17.141a)
=[V* e‘jﬁd‘|231n(ﬂd)|:2 v* |sin(ﬂd)|
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and
‘ S+
7 _ 1 -j2d
i(a)- 7 [1+e2]
VW
= Z—C‘eilﬂd (e’ﬂd + ef’ﬂd )‘ = Z—C‘eflﬂdZCOS(ﬁd)‘ (1714-1'3)
v v
_iBd
= Z—C‘e JB H2cos(ﬂd)| = 2Z—C|cos(,[3d)|
or
[V (a)|=2|V*|fsin(84) (17.142a)
S+
i(d)|=2"fcos(8d)| (17.142b)
Zc
The phase constant  can be expressed in terms of the wavelength 4 as
g 2 (17.143)
v Af A
and thus the sine and cosine argument in Eqs (17.142) can be written as
Bd = 27% (17.144)

Using Eq. (17.144) in Eqs (17.142) produces

‘V(d)‘ —olv sin(2n%)‘ (17.144a)
i(a)- 2“/—+ cos[znij (17.144b)
Zc )

The magnitudes of the voltage and current waves for a short-circuited load are shown
in Figure 17.47.

% V()|
— il / {2z
N S NS
il NEL e
/ A ARY ™~
II,:' \','.": .I.' -\L
d 34 54 42 3 i 4 d=0
2 4 4 2 4

Figure 17.47 Magnitudes of the voltage and current for a short-circuited load.
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We observe the following:

1) The voltage is zero at the load and at distances from the load which are multiples of
a half wavelength.

2) The current is maximum at the load and is zero at distances from the load that are
odd multiples of a quarter wavelength.

3) The corresponding points are separated by one half wavelength.

Case 2 - Open-circuitedload Z, =  The load reflection coefficient in the case is

I, =1 (17.145)
Using Eq. (17.140) in Eqs (13.139) gives

‘V(d)‘ = ‘VJ' 1+fLe_j2ﬂd‘ =V 1+e_j2ﬂd‘
=|V*|e P (e’ﬁd +e /P )‘ =V e‘jﬂd2cos(/3d)‘ (17.146a)
= 2‘\7+ |cos(ﬂd)| = 2‘\7+ COS(2TE%)
and
I(d)‘ :“;;‘l—fLejzﬂd‘ :“;—+|1—ej2ﬁd|
V- )
_ Z_‘eﬁ‘ﬂd (eiﬁd _e i )‘ (17.146b)
c
= “;;‘e—jﬂdjzsin(ﬂd)‘ = 2;—+ sin[2n%)‘
c c
or
‘V(d)‘ =2‘\?* cos(2n%)‘ (17.147a)
. ‘VJr ‘ d
I(d)‘ - 2Z_c sm(2nzj‘ (17.147b)

The magnitudes of the voltage and current waves for an open-circuited load are
shown in Figure 17.48.
We observe the following:

1) The current is zero at the load and at distances from the load which are multiples of
a half wavelength.

2) The voltage is maximum at the load and is zero at distances from the load that are
odd multiples of a quarter wavelength.

3) The corresponding points are separated by one half wavelength.

In both cases, the voltage and current waves do not travel as the time advances, but
stay where they are, only oscillating in time between the stationary zeros. In other
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N

V()|

Figure 17.48 Magnitudes of the voltage and current for an open-circuited load.
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d 3 50 42 3 A A d=0
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Figure 17.49 Magnitudes of the voltage and current for a matched load.

words, they do not represent a traveling wave in either direction. The resulting wave,
which is a superposition of two traveling waves with opposite directions of travel, is thus
termed a standing wave.

Case 3 - Matchedload Z, =Z; The load reflection coefficient in the case is
I, =0 (17.148)
Using Eq. (17.140) in Eqs (13.139) gives

V(@) =[V ||+ Ere 7| <[V (17.149a)
pe 2

i(a)- 2—‘1 ~ e 2| = (17.149b)
C C

The magnitudes of the voltage and current waves for matched load are shown in
Figure 17.49.
We observe that the voltage and current magnitudes are constant along the line.

Case 4 - Arbitrary resistive load R The magnitudes of the voltage and current waves for
matched load are shown in Figure 17.50.

We observe that the locations of the voltage and current maxima and minima are
determined by the actual load impedance, but again adjacent corresponding points on
each waveform are separated by one half wavelength.

In all cases, except for the matched load, the magnitudes of the voltage and current
vary along the line. This variation is quantitatively described by the voltage standing
wave ratio (VSWR) defined as
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Figure 17.50 Magnitudes of the voltage and current for an arbitrary resistive load.
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VSWR =

Let’s return to the expressions for the voltage magnitude in Eq. (17.139a), repeated here,

V(a)=|v* [1+1*Le‘i2ﬂd} (17.151)
The maximum of this magnitude is
Via) = [1+fL]‘ (17.152a)
while the minimum of this magnitude is
V(a) =[v*|[1-1.] (17.152b)

Substituting Eqs (17.152) into Eq. (17.150) gives an alternative expression for VSWR as

A

1+,
VSWR =—~ (17.153)
-],
When the load is short-circuited or open-circuited, we have
o0 ZL =0
VSWR = . (17.154)
w Z;=©
When the load is matched, we have
VSWR=1 Z,=2Z¢ (17.155)

In general,

1<VSWR <o (17.156)
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17.3 s Parameters

To characterize high frequency circuits we can use s parameters which relate traveling
voltage waves that are incident, reflected, and transmitted when a two-port network in
inserted into a transmission line. This is depicted in Figure 17.51.

The incident waves (a1, ;) and reflected waves (b, by) used to define s parameters for
a two-port network are shown in Figure 17.52 (Ludwig and Bogdanov, 2009).

The linear equations describing this two-port network in terms of the s parameters are

by = sp1a, + 8120, (17.127)
by = sy1a1 + 530,

or in a matrix form

by _ S Si2 || 4 (17.128)
by a S$21 S22 || 2 ’

where S is the scattering matrix given by

S S
S:|: H u} (17.129)

Recall the general solution for the line voltage and current along a transmission line
in Eq. (17.122):

V(z)=Vte * 4V (17.130a)

Port 1 Port 2
Incident wave . —/\/—>
Circuit

< \/ Transmitted wave

Reflected wave

Figure 17.51 s parameters are related to the traveling waves.

+ TN\’

a 4/\/_, 4_/\ﬁ a,

Device \72

by ¢\ — N\ — b B

< 4+ L:)

Figure 17.52 Incident and reflected waves.
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7+ -7z ‘}_ 7z
—e ——e (17.130b)
Zc Zc

I(z)=

at z=0 Eqgs (17.130) become
V(0)=V*+V~ (17.131a)

1(0)= vV (17.131b)
Ze Zc

V*and V™ in Eq. (17.131) denote the amplitudes of the incident and reflected voltage
waves, respectively. From Eq. (17.131b) we get

Zc(0)=V* -V~ (17.132)
Adding Eqs (17.131a) and (17.132) gives
Zc1(0)+V(0)=2v* (17.133)
while subtracting Eq. (17.132) from Eq. (17.131a) results in
V(0)-Zci(0)=2v" (17.134)
Thus, from Eqs (17.133) and (17.134) we obtain

b _ V(0)+Zc1(0)

v* ; (17.135a)
I’ :w (17.135b)

As we shall soon see, it is convenient to use the normalized incident and reflected
voltages, instead of the ones in Eq. (17.135):

oo V(0)+Zci(0)

- 17.136
N (17.1362)
- V(0)-Zc1(0) (17.136b)

2JZc

We refer to these normalized waves as power waves. Using the notation of Figure 17.46,
we rewrite Eqs (17.136) at each port as

_‘}1+ch1 Vv

a = 4ch (17.137a)
Yoz Jze
p=Vi=Zch _ Vn (17.137b)
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2
a —» —>» ay K
VG Device
by «— «— b,

Figure 17.53 Typical two port circuit.

and
= Vo+Zcly _ Vi (17.138a)
ZVZC \[ZC
_ ‘}2 _ZCj2 _ ‘/7‘2

Cwze Jze

Where V;;, Vj, are the incident voltage waves, and V,;, V,, are the reflected voltage
waves at ports 1 and 2, respectively.

In the typical application of a two-port network, the circuit is driven at port 1 and
terminated by a load at port 2, as shown in Figure 17.53.

Returning to Eq. (17.127), repeated here,

b, (17.138b)

by = si1ay + S04,

17.139
by =snay +$yay ( )
We obtain the individual s parameters as
S11 = b—l (171403)
a a,=0

Thus, s1; is the input port reflection coefficient, when the incident wave at port 2 is
zero, which means that port 2 should be terminated in a matched load (Z; = Z¢) to
avoid reflections. This is shown in Figure 17.55.

Also,

b

1
S12 =—
ap

(17.140b)

a,=0

Thus, 515 is the transmission coefficient from port 2 to port 1, with the input port
terminated in a matched load, as shown in Figure 17.55.
Also,

by
$1 = —
a

(17.140c)

a,=0

Thus, s, is the transmission coefficient from port 1 to port 2, with the output port
terminated in a matched load, as shown in Figure 17.54.
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Figure 17.54 Port 2 termination.
Ze .
® Ps ZG
L a;=0--——-» — @ N
Zy=Zc Device Ve
by —— — by
Figure 17.55 Port 1 termination.
Finally,
b
Spy == (17.140d)

Thus, sy; is the output port reflection coefficient, when the incident wave on port 1 is
zero, as shown in Figure 17.55.

Power waves and generalized scattering parameters Recall: the total voltage and current
on a transmission line can be expressed in terms of the incident and reflected voltage
wave amplitudes as in (17.131), repeated here:

V(0)=V*+V~ (17.141a)
o

i(o)=‘f Y (17.141b)
Ze Zc

The average power delivered to a load can be expressed as

*

Pive :%Re{\}f} =%Re [WH}_J{Z_;_E_J (17.142)

If the line is lossless then its characteristic impedance is real and we have

IR ST RTIR CPYR
Pave = RelVT | 2ZZCR6{[V++V ks ‘: J (17.143)
Re{(w) SV VY (V) }
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The middle two terms inside the brackets in Eq. (17.143) are of the form
A-A"=2jlm(A) (17.144)

and thus are purely imaginary. Thus, the average power delivered to the load is the
difference of the incident and reflected powers.

Pave =55 Rel(V )+ (V) | (v ()| (17.145)

This result is only valid when the line characteristic impedance is real. This result is
not valid when the characteristic impedance is complex, as in the case of a lossy trans-
mission line.

The normalized voltage waves or power can be applied to both lossless and lossy
lines. These power waves will also lead to the so-called generalized s parameters.

Recall the normalized voltage waves, i.e. power waves defined by

ay =t Zch (17.146a)
2/Zc

b = VizZch (17.146b)
27

g, =2t Zch (17.146¢)
2JZc

b= V2 Zch (17.146d)

2zc

Let’s solve Eqs (17.146a,b) for the voltage and current waves in terms of the power
waves amplitudes.

a,2\Zc =V, + Z1, (17.147a)
b2Ze =Vi - Zc1, (17.147b)

Adding Eqs (17.147a) and (17.147b) gives

a2\[Zc + b 2\[Zc =2V, (17.148)
or
Vi = ay[Ze + b Zc _(@th)Zc (17.149)

J7e

Subtracting Eq. (17.147b) from Eq. (17.147a) gives

a2/ Zc —b,2\Zc =271, (17.150)
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or
6[1\IZC —b1\/Z =ch1 (17‘151)
and thus

jl _ al\/ZA_ blx/z _4 b (17.152)
Zc N

Then, using Eqs (17.149) and (17.152) the average power delivered to the load can be
expressed as

Puve :%Re{\}f} —LRe {(“1 +h)Ze }{”1 _bl} (17.153)

i (e v
or
1 .
PAVG = —Re{[(al +b1)ZC:|[(l1 _bl] }
%ZC (17.154)
- 5Re{|a1|2 ~ab; +aiby |’}
and thus
1 1
Pyve =§|ﬂ1 |2 —5|b1|2 (17.155)
Similarly, at port 2, we have
1 1
Pyve =5|612|2 —§|bz|2 (17.156)

If the voltages and currents are expressed in terms of the rms values then the average
power at port 1 is expressed as

Pyve :|ﬂ1|2 —|b1 |2 (17.157)
while at port 2,
Pyve =|612|2 —|b2|2 (17.158)

where |a,|* is the power incident on the input port of the network, |b;|* is the power

reflected from the input port of the network, |a,|* is the power incident on the output

port of the network, and | b,|? is the power reflected from the output port of the network.
Thus, we can relate the s parameters to the powers as follows.

af (17.159a)

a,=0

_ Reflected power at port 1

" Incident power at port 1

525



526

Foundations of Electromagnetic Compatibility

&1

jaaf
2 a,=0

Transmitted power to port 1

Jsiaf” =

Incident power at port 2

_Imf

arf,. .,
Transmitted power to port 2

Jouf” =

Incident power at port 1

o]

oo
1 a,=0

Reflected power at port 2

s =

~ Incident power at port 2

(17.159b)

(17.159¢)

(17.159d)

We can express several gains and losses in terms of s parameters, as follows.
Forward power gain is defined as

or

Bl porogl!

Forward Power Gaingg =10log—-
ﬂl |“1|

Forward Power Gaingg =10log|sy |2 =20log|s,|

Reverse power gain is defined as

or

) o 10106220106
everse Power Gaingg =10log—- =20log;—;
612 |“2|

Reverse Power Gaingg = 1010g|su|2 = 2010g|512|

Insertion loss is defined as

or

o]

oo
Insertion Lossgg =10log—-=20log:—
ST A

Insertion Lossq =20log—

sl

(17.160a)

(17.160b)

(17.161a)

(17.161b)

(17.162a)

(17.162b)
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Return loss is defined as

|2

o o]
Return Lossgg =10log——=20log— (17.163a)
by |b1|
or
1
Return Lossgg = ZOIOgW (17.163b)
S11

17.4 EMC Applications

17.4.1 Crosstalk between PCB traces

In this section we will discuss crosstalk between PCB traces and present the simulation
and measurement results from a PCB shown in Figure 17.56.

Before presenting the results, let’s review the phenomenon of crosstalk.

When two PCB traces (transmission lines) are in the vicinity of one another, a signal
propagating along one line can induce a signal on another line, due to capacitive (electric
field) and inductive (magnetic field) coupling between the two lines. This phenomenon
is called crosstalk.

The cross-section of a PCB with the microstrip transmission lines is shown in
Figure 17.57.

A PCB of thickness d supports two traces separated by distance s. A ground plane
constitutes the reference conductor for the two circuits. This arrangement can be mod-
eled by the circuit shown in Figure 17.58 (Paul, 2006, p. 597).

The generator circuit connects a voltage V() and its source impedance, Rg, to aload R;.
The adjacent receptor line conductors are terminated by the resistances Ry and Rgr at the
near end (NE), and the far end (FE), respectively. The signal present on the generator line
induces the near-end and far-end coupled crosstalk voltages, Ve and Vig.

[

Figure 17.56 PCB used for crosstalk measurements.
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Figure 17.57 Cross-section of a PCB with a

o § Receptor
Generator ¢ - P microstrip line.
. .
d
Ground plane
R lg
—_
+
V. " V ’ § o
s R G
NE VNE Vie = Rre

(@) (b) Cod T dr

[ el R
i NE § Vg Vig § Rpg

Figure 17.59 Inductive coupling between the circuits (a) field model, (b) circuit model.

In order to determine these voltages, let’s briefly describe the physical phenomenon
taking place. The current on the generator line, I, creates a magnetic field that results
inamagnetic flux ¥ crossing the loop of the receptor circuit, as shown in Figure 17.59(a).

If this flux is time varying, then according to Faraday’s law, it induces a voltage Vx in
the receptor circuit. The circuit model of this field phenomenon is represented by a
mutual inductance and is shown in Figure 17.59(b). We refer to this interaction between
the circuits as the magnetic or inductive coupling.

Using the current divider we obtain the induced near-and far-end voltages as

Ve (t) = R dls (17.164a)
Vi (£) = Re als (17.164b)

TR+ Ry " dt
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Figure 17.60 Capacitive coupling between the circuits (a) field model, (b) circuit model.

dl;
V=L
()
+ o/ +

() 1e=c, e
Vne \L_./J R™ =m”™ g Vie =R

Figure 17.61 Inductive and capacitive coupling circuit model.

Similarly, the voltage between the two conductors of the generator circuit, Vg,
has associated with it a charge separation that creates electric field lines, some
of which terminate on the conductors of the receptor circuit, as shown in
Figure 17.60(a).

If this charge (voltage) varies with time, it induces a current in the receptor circuit.
The circuit model of this field phenomenon is represented by a mutual capacitance, and
is shown in Figure 17.60(b). We refer to this interaction between the circuits as the
electric or capacitive coupling.

Using the voltage divider, we obtain the induced near-and far-end voltages as

Ve (t)= Ry R C,, Vs (17.165a)
Vg (£) = RneRee_ o Vo (17.165b)

CRyp R " odt

Superposition of these two types of coupling results in the circuit model shown in
Figure 17.61.
The total induced voltages, by superposition, are given by

Rne dlg + RneRee C A

Ve (£)=—2E 1. ” 17.166a
e (1) Rap+ R " dt  Ryg +Re " dt ( )
vns(t)z—RL mdi+ Rue Ree C,, Vs (17.166b)

If the circuit is electrically small at the highest significant frequency of interest then
the generator voltage and current can be obtained from the circuit shown in Figure 17.62.
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Rg I
—

+

S

Figure 17.62 Electrically short generator circuit model.

Then,
R
Vs(t)= x +LRL Vs(t) (17.167a)
1
Ig(t) = TR, Vs(t) (17.167b)

Substituting Eqs (17.167) into Eqs (17.166) results in

Vie(t)=| —Re__p L RuRe o R \dVs(5) - (7)680)
Inductive Coupling Capacitive Coupling

Vi (t) =] - Reg 1, RueRee o R aVs(t) (17.168b)
Inductive Coupling Capacitive Coupling

Note that the induced crosstalk voltage is proportional to the mutual inductance and
capacitance between the two circuits and the derivative of the source voltage.

The crosstalk circuit model in the frequency domain is shown in Figure 17.63

From this equivalent circuit in the frequency domain, or directly from Eqs (17.168)
we obtain the near-end and far-end phasor crosstalk voltages as

Vi =| —Rve g1 RuRee o R g (17.1692)
Rye+Rpg Rs+R;, Ryp+Rpg  Re+Rp
Inductive Coupling Capacitive Coupling
Vip=| —— Ry 1 ReeRe o R0 (17.169b)

Ryp+Rpe " Rs+R;, Ryr+Rpr | Rs+R;

Inductive Coupling Capacitive Coupling
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Figure 17.63 Inductive and capacitive coupling circuit model in the frequency domain.

Figure 17.64 Experimental set-up for crosstalk verification.

Table 17.2 Board topologies.

Line separation s Distance to Ground Plane d
Case [mils] [mils]
1 25 54.8
2 25 12

75 12

Observe that the crosstalk induced voltages increase at a rate of 20 dB/decade with
frequency.

Figure 17.64 shows the experimental setup to verify the crosstalk derivations
(Adamczyk and Teune, 2009). The source is a 1 V,,,, 1 MHz trapezoidal pulse with a 50%
duty cycle with a 100 ns rise time and 200 ns fall time.

The board with different circuit topologies was investigated and is described in
Table 17.2

The load resistors, as well as the near- and far-end resistors were chosen to be 50 Q.
The characteristic impedances of both the generator and receptor circuits were also 50 Q.
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Figures 17.65-17.70 show the generator (aggressor) signal as well as the resulting
near- and far-end voltages induced on the receptor (victim) line.

Measured and simulated frequency-domain results are shown in Figure 17.66.

Measured and simulated frequency-domain results are shown in Figure 17.68.

Measured and simulated frequency-domain results are shown in Figure 17.70.

We make the following observation in Case 1, presented in Figure 17.65. Voltage
induced on the near end during the rise time is Vyz =1.54mV, while the same voltage
induced during the fall time is Vyz =760uV.

Since the value of the rise time is twice that of the fall time, according to Eq. (17.168),
the induced voltages should differ in magnitude by a factor of two, which indeed is the
case. We also note that the polarities of the two voltages are opposite, which is not
unexpected from Eq. (17.168). Similar observations can be made for the voltages
induced on the far end.

Furthermore, since the coefficients of coupling for the near-end voltage Eq. (17.168a)
are positive, the induced-voltage during the rise is also positive. The far-end voltage is
negative during the rise time, indicating that the inductive coupling dominates the
capacitive one.

Bringing the ground plane closer to the lines, while keeping the distance between the
lines unchanged (Case 2) resulted in the reduction of the induced voltage magnitudes,
as shown in Figure 17.66.

Aggressor signél

: 1
Falll time = 200 ns Ver

_ | . 25 mils ®
*— Rise time = 100ns

54.8 mils

Case 1

Victim line — Ne:ur end
1.54 mV

260 pVv

Victim line — Fair end

560 pV

B s00mv O & 1.00mvVis |[ { ] [1])
L] |

Figure 17.65 Crosstalk induced voltages, Case 1.
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Figure 17.66 FE Crosstalk — Measured and simulated frequency-domain results — Case 1.

Aggressor signal

- 25 mils
Case 2 |12 mils
Victim line — Near end
------------- ---1.54 mV—-740 pVvV

760 pV—=340 pVvV
Victim line — Far end 260 pV—-160pVv

560 PV =460 pV
P Soomv oL @ 1oomvon @ 1.00mvan ][.— ons ][ 0G5/ ]ﬁ. T 0.0
vw — 288 000ns | |10k points
| | | | =0 | =S

Figure 17.67 Crosstalk induced voltages, Case 2.
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Figure 17.68 FE Crosstalk - Measured and simulated frequency-domain results — Case 2.
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Figure 17.69 Crosstalk induced voltages, Case 3.
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Figure 17.70 FE Crosstalk — Measured and simulated frequency-domain results — Case 3.

Case 3 depicts the scenario where the distance to the ground plane is unchanged from
Case 2, but the separation between the lines is increased. This results in negligible
induced voltages.

In all cases the induced crosstalk increased at a rate of 20 dB/decade with the frequency.

17.4.2 LISN Impedance Measurement

This section utilizes the s parameter measurements to confirm that the line impedance
stabilization network (LISN) meets the CISPR 25 requirements. (Note: See Appendix A
for the LISN measurements description.)

CISPR 25 LISN is shown in Figure 17.71.

The CISPR 25 LISN impedance measurement setup is shown in Figure 17.72.

Note that the DC power supply input terminals need to be short circuited. This is
accomplished with a shorting bar, as shown in Figure 17.73.

Before the impedance measurement is taken, the calibration process needs to take
place to characterize the cable used to connect the LISN to the network analyzer. The
calibration involves a calibration kit shown in Figure 17.74, which consists of a short,
open, and 50 Q load.

This calibration kit is used for s;; and s,; calibration measurements, as shown in
Figure 17.75.

Finally, the impedance measurements can be taken as shown in Figure 17.76.

Ideally, the LISN’s impedance should be 50 Q over the entire frequency range of the
measurement. According to CISPR 25, the LISN impedance (measured by the network
analyzer) in the frequency range of 100kHz to 100 MHz should be within the specified
tolerance band.
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Measurement side DC input side

Network analyzer 50Q load

Figure 17.71 CISPR 25 LISN.

SuH
—_— 0.1uF
f— Measurement
Terminals - luF port Netvlvork
short-circuited El.na )l)zer
in place
(normally 500 of gUT)
DC power 1000Q load
supply)
CISPR 25 LISN

Figure 17.72 CISPR 25 LISN measurement setup.
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Figure 17.73 Shorting bar for impedance T—
measurement.

Figure 17.74 Calibration kit.

Let’s recall the definition of the s;; parameter utilizing Figure 17.77.

S11 =ﬁ (17.170)

a 4,=0
Adapting this figure to the LISN impedance measurement setup, we arrive at the

Figure 17.78.

The ideal LISN would present 50 Q impedance to the network analyzer (over the

entire frequency range) and thus the reflected voltage wave would equal in magnitude

to the incident voltage wave resulting in the ratio.
by

s =—=1=0g
431

(17.171)
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Figure 17.76 Test setup for the impedance measurement.

When both b; and a; are the voltage magnitudes, we can refer to s; as the (voltage)
reflection coefficient,

s11 = Reflection coefficient (b1 =voltage, a; = voltage) (17.172)
When b; is a voltage magnitude and a; is the current magnitude (i.e. voltage/resistance

ratio calculated internally by the network analyzer when the units of Q are chosen) then
the s;; coefficient describes the impedance,
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Device Z=Z¢

L]
L ]

Network

analyzer LISN

URRY

\ A

Lin Mag 10.000/ Ref 0.000U [F1 Zr]

300.00000 kHz 8.5586 U
1.0021120 MHz 25.177 U
10.223413 MHz 49.575 U
300.00000 kHz 8.5586 U

IFBW 30 kHe

Figure 17.79 s;; measurement - LISN impedance.

$11 = Impedance (bl =voltage, a; = current) (17.173)

This is what is displayed when we measure LISN impedance over the frequency (on a
linear scale). Figure 17.79 shows the s;; measurement of the LISN impedance over the
frequency range.
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17.4.3 Preamp Gain and Attenuator Loss Measurement

Preamp gain measurement and attenuator loss constitute an s,; measurement with a
network analyzer. Figure 17.80 shows the test setup for the preamp gain measurement.

The s5; gain of the preamp measurement is shown in Figure 17.81.

As expected, the gain of the preamp is close to 32dB over the range of the specified
frequency.

Figure 17.82 shows the test setup for the attenuator loss measurement.

Note: Before this measurement is taken, both cables should be calibrated, as shown in
Figure 17.83.

The s,; attenuator loss measurement is shown in Figure 17.84.

As shown, the attenuator loss is 10 dB over the specified frequency range.

[ COM-POWER . POWER ON

PA-103 PREAMPLIFIER
1-1000MHz 3248 GAIN

OuUTPUT
5060

Marker 3

I) 521 Log Mag 10.00de/ Ref 0.000d8 [RT]
50.00

1 1,0000000 MHz 30.495 dg
2 1.0000000 GHz 30.310 de
40.00 >3 50.000000 MHz 31.181 dB

20.00

IFBW 30 kHz

Meas | Stop | ExtRef | Sve | 2016-06-24 03:02

Figure 17.81 Preamp gain measurement.
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Figure 17.82 Test setup for the attenuator loss measurement.

Figure 17.83 511, 525, and sy; (through) calibration.
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1 Active ChfTrace 2 Response 3 Stimulus 4 MkrfAnalysis S Instr State
$21 Leg Mag 10.00d8/ Ref 0.000d8 [RT]

50.00

10.00

0,000 M

Return

Star 300 kHz IFBIN 30 kHz Stop 15 GH: [
Meas ExtRet | Sve | 2016-06-24 02:50

Figure 17.84 Attenuator loss measurement.
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Antennas and Radiation

18.1 Bridge between the Transmission Line
and Antenna Theory

In this section we will use the theory of the standing waves on transmission lines
discussed in the previous chapter to build a bridge between transmission line theory
and the fundamental antenna structure of a dipole antenna.

Consider a standing wave pattern in lossless two-wire transmission line terminated in
an open, as shown in Figure 18.1.

When the incident wave arrives at the open-circuited load, it undergoes a complete
reflection. The incident and reflected waves combine to create a pure standing wave
pattern as shown in Figure 18.1.

The current reflection coefficient at an open-circuited load is -1, and the current in
each wire undergoes a 180° phase reversal between adjoining half cycles (this is shown
by the reversal of the arrow directions).

The current in a half-cycle of one wire is of the same magnitude but 180° out-of-phase
from that in the corresponding half-cycle of the other wire. If the spacing between the
two wires is very small (s < 1), the fields radiated by the current of each wire are can-
celled by those of the other. Effectively, there is no radiation from this transmission line.

Now, let’s flare the terminal section of the transmission line, as shown in Figure 18.2
(Balanis, 2205, p. 18).

It is reasonable to assume that the current distribution is essentially unaltered in form
in each of the wires of the transmission line. Since the two wires are no longer parallel
and close to each other, the radiated fields do not cancel each other and there is a net
radiation from the flared section.

Continuing the flaring process, we arrive at the structure shown in Figure 18.3.

The fields radiated by the two vertical parts of the transmission line will reinforce
each other, as long as the total length of the flared section is

0<i<A (18.1)

The maximum radiation (in the direction shown in Figure 18.2, i.e. broadside to this
antenna) occurs for the total length of both vertical part equal to

1= (18.1)

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure 18.1 Standing wave pattern in a transmission line terminated with an open.

Figure 18.2 Transmission line with terminal
y W section flared.
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This is shown in Figure 18.3.

The radiating structure shown in Figure 18.4 is referred to as a half-wave dipole, dis-
cussed in the next section. The dipole antenna fields and parameters are derived from
the Hertzian (electric) dipole fields, presented next.

18.2 Hertzian Dipole Antenna

In Section 6.7.3 we defined vector magnetic potential as a vector related to the magnetic
flux density vector B by
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Figure 18.3 Transmission line with terminal section flared.
B=VxA (18.3)

Subsequently, we showed that once A is known, the electric field intensity E can be
obtained from

E:—ﬂu&—jzi;v(V~A) (18.4)

and the magnetic field intensity can be obtained from H from

f=lvxA (18.5)
Y7

Alternatively, once H is obtained from Eq. (18.5), E can be obtained from H:

E=fl—vXH (18.6)
jos

In Section 6.7.4 we considered a Hertzian dipole, shown in Figure 18.5. A Hertzian (or
electric) dipole consists of a short thin wire of length /, carrying a phasor current 7,
positioned symmetrically at the origin of the coordinate system and oriented along the
z axis.
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o~

Figure 18.4 Maximum radiation broadside to the antenna.

z 1 Figure 18.5 Hertzian dipole.

~ W

T I

Utilizing Eqs (18.4)—(18.6) we derived the expressions for the electric and magnetic
field intensities at a distance r from a Hertzian dipole as

E, = 2&17)/32 cos@{

1 .
—j——|e7P 18.7a
py 52 J } (18.7a)

ﬂ3r3
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L ., . j 1 1 B
E)y=— sin@| =+ - e /Pr 18.7b
E;=0 (18.7¢)
and
H, =0 (18.7d)
Hy =0 (18.7¢)
H¢:ﬂﬁ2sin9 L+% e /P (18.7f)
4 Br  B°r

The expressions in Eqs (18.7) apply at any distance r from the antenna. They can be
simplified at a “large enough” distance for the antenna. To determine what large enough
corresponds to, consider a positive number x.

. 1 1 1
if x<1 = —=>—5>—
x® x o (18.8)
. 1 1 1
if x>1 = —>—=>—
X x°  x

Thus, for very small x, (x < 1), the terms 1/x* and 1/x* will dominate. On the other
hand, for large #, (x> 1), the terms 1/x* and 1/x”* will be negligible compared to the
1/x term.

Now let

x=pBr (18.9)

Thus, at a small distance from the antenna (referred to as the near field)
1 1 1

Br<l o> —< 5 < 3 (18.10)
() ()
At a large distance from the antenna (referred to as the far field)
pr>1 = i>;>L (18.11)

o ]

and the terms 1/(fr)* and 1/(8r)* will be negligible compared to the 1/8r term. The
boundary between the near field and the far field is
1 1 A 1

x=1 or fBr=1 = r=—=——=—=-4 (18.12)
p 2m/A 2m 6

We should point out that 1/2x is the boundary between the near and far fields. To be
in the far field, we need to be further away from this boundary. How much further? We
will address this in the next section.
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In the far field, the expressions for the electric and magnetic field intensities at a
distance r from a Hertzian dipole are

E =0 (18.13a)
~ipr
Ey = jlolg sinQ[e j (18.13b)
4m r
E, =0 (18.13¢)
and
H, =0 (18.13d)
Hy =0 (18.13e)
~ipr
H, =1'1—°lﬁsin9[e j (18.13f)
4r r

18.3 Far Field Criteria

In this section we will derive the far field criteria for the wire-type and surface-type
antennas.

18.3.1 Wire-Type Antennas

Recall that the Hertzian dipole expressions for the 6§ component of the E field and ¢
component of the complete fields are

Lol o J 1 1 -j
Eg =—"np*sinf| =+ — s lePr 18.14a
0 4n77ﬁ [ﬁr 5 ]ﬂ3r3 ( )
H, =2 g ing Loy L e (18.14b)
4n Br  B°r

With the radiated wave we associate the wave impedance defined as

Zy = E (18.15)
H,

A far-field criterion for the Hertzian dipole (and other wire-type antennas) is derived
from the requirement that the wave impedance in the far field is equal to the intrinsic
impedance of free space:

A

A

Z, = Eo =1, 2377Q (18.16)
H‘/’
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In free space, n =1y, 8 = By, and we have

Il 1 1 ,
. Uoﬁo sm9[; +——j ]e’ﬁ‘)’
Z,=Lo - for_for " Bir’
H, —,Bo sm6’(1+ 21 5 ]e’ﬁ“’
Bo Bor

(11.1Jil+1_j1
o par ) (B (B () i) g1

=To
R 1 j(Bor)’
(lﬂor Bar? ] ](ﬂof)+(,30r)2

]/(ﬂor)3 j(Bor)’ _j/(ﬁorf
_ (Bor) (,30’”) (ﬁo’”)3 B —(ﬁ07)2+j(ﬁor)+1
=To 3 =To 7.
]J(ﬁoi’) J(Bor) ~(Bor)” + j(Bor)
(Bor) (ﬂo’”)2
Letting,
B, =% (18.18)
we obtain
(271;’}2 (2nr]
1- +
y=Lo : Ll (18.19)

Evaluating this expressions at different distances (in terms of the wavelength) from
the antenna we get

Z, =0.7071,4 - 45°, r= 2ﬁ (18.20a)
T

Z, =375.93/-0.01°=17,, r=34 (18.20b)

The result in Eq. (81.20b) leads to the far-field criterion for the wire-type antennas as
A far fietd =340 (18.21)

18.3.2 Surface-Type Antennas

Consider a radiated wave away from a point source, as shown in Figure 18.6.

This wave resembles a spherical wave at distances away from a point source. It is
reasonable to assume that in the far field, this spherical wave can be approximated by a
uniform plane wave in the vicinity of the receiving antenna.
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The approximation criterion can be stated as the allowable difference A (expressed in
terms of the wavelength) between the ideal plane wave and the actual spherical wave:

A=—
k

Utilizing Figure 18.7, we get
2
d*=(d-A) +[2j
2
or
D?
dz =d2 —ZdA+A2 +T

resulting in

2
—2dA+A2+%:O

A
Spherical wave _.|

Surface
antenna

Point
source

Figure 18.6 Radiating point source.

. ave
SpherlcaI wav

Surface
antennd

Point
source

Figure 18.7 Radiating point source geometry.

(18.22)

(18.23)

(18.24)

(18.25)
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It is reasonable to make the following assumption:

A<d = A <2dA (18.26)

Then, we may approximate the expression in Eq. (18.25) as

2

2dA ~ DT (18.27)

or using Eq. (18.22) as

Zd(%j;%z (18.28)

resulting in

g kD? (18.29)
84

A reasonable value for k is

k=16 (18.30)

Utilizing Eq. (18.30) in Eq. (18.29) results in the far-field criterion for the surface-type
antennas as

2D*
Afar field =—— (18.31)
Jar fi o

18.4 Half-Wave Dipole Antenna

A half-wave dipole consists of a thin wire fed or excited at the midpoint by a voltage
source. The total length of the dipole equals half a wavelength. Each leg of a dipole has
a length equal to a quarter of a wavelength, as shown in Figure 18.8.

Often the voltage source is connected to the antenna via transmission line, as shown
in Figure 18.9.

The far fields of the half-wave dipole can be obtained by dividing the dipole antenna
into infinitesimal dipoles of length dz, as shown in Figure 18.10.

Treating each infinitesimal dipole as a Hertzian dipole, we use the previously derived
results

i(z)d K
dE, = j (2) ZﬂﬂosinQ'[e—] (18.32a)
47 r
i(z)d o
dH, = j (z)dz ﬂosinﬁ’{e—] (18.32b)
47 r'

where the current distribution is sinusoidal and given by (Paul, 2006, p. 430)
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Figure 18.8 Half-wave dipole.

|~

Il

Figure 18.9 Half-wave dipole connected to a transmission line.

-+

Transmission line

Figure 18.10 Half-wave dipole subdivision into infinitesimal dipoles.
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fosinﬂo(i—zj, 0<z<A1/2
i(2)= 4

1 (18.32a)
Iosinﬁo(z+z), -A1/2<z<0

Adding the contributions from all infinitesimal elements (after some mathematical
manipulations) we can obtain the results for the far fields of the half-wave dipole as

N 7 a—ibor
E,= j%F(a (18.33a)
2nr
N IAoe_lﬁor
H,=j F(6 18.33b
0=/ 2nr ( ) ( )
where, the so-called space factor is
cos(;cow)
F(0)=—"—7— (18.34)

sin6

The radiation pattern of a half-wave dipole is shown in Figure 18.11.
The electric field is at maximum broadside to the antenna (6 =90°). In this case, the
space factor equals unity.

cos(incos@) cos(;ﬂ:cos90°j cos(O) 1
F(0)= = = =—=1 (18.35)
sin@ sin90° sin90° 1

Figure 18.11 Radiation pattern of
a half-wave dipole.
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18.5 Quarter-Wave Monopole Antenna

A quarter-wave monopole can be obtained from a half-wave dipole by replacing one of
the arms of the dipole by an infinite ground plane, as shown in Figure 18.12.

An infinite ground plane is, of course, not realistic; a practical quarter-wave antenna
is shown in Figure 18.13.

The radiation pattern of a quarter-wave monopole above the ground plane is the
same as that for the half-wave dipole, as discussed in the next section.

18.6 Image Theory
In image theory, a radiating antenna (actual source) is placed at some distance / from a
perfect conducting plane. An image of this antenna (virtual source) is placed below the

conducting plane at the same distance /, as shown in Figure 18.14 (Balanis, 2005, p. 185).

_____ A Figure 18.12 Quarter-wave dipole.

Figure 18.13 A practical monopole antenna.
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Figure 18.14 Hertzian dipole and its image.

Because of the reflecting ground plane, the total field at an observation point P is the
sum of the direct wave and the reflected wave. Obviously, there is no field below the
ground plane.

Instead of obtaining the total field by summing the actual direct and the reflected
waves, we add the direct waves from the actual source and the direct wave from its
image (virtual source) to obtain the same result (above the ground plane). When con-
sidering the virtual direct wave, we pretend that the ground plane does not exist and
therefore the virtual wave has a direct unobstructed path to the observation point.

Why are we using this approach? Because the calculation of the fields using the actual
waves is quite complicated, whereas the calculations using the image theory are quite
simple, as we shall see.

Consider the geometry shown in Figure 18.15

The source is an infinitesimal dipole of length /, carrying a constant current ;. The
observation point P is in the far field. Using the previously derived results, the direct
component of the E field at the observation point is

Ef =

—jBori
= jno Msin@ (18.36a)

4nn

The virtual component is

. 1 le‘jﬁorz
= jno ﬁO 0
)

E) sin6, (18.36b)

The total field at the observation point is

1.l —jPori Il —jBors
Bolole sin, + jno Bolole

Ey = E§ +Ej = jno
f1951 47tr,

sinf, (18.37)
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Figure 18.15 Direct waves from the Hertzian dipole and its image.

Using the law of cosines we have

n :\/r2 +h* —2rhcos@ (18.38a)

n =\/r2 +h* =2rhcos(n—0) (18.38b)
In the far field, » > & and the Eqgs (18.38) can be approximated as

n=r—hcos6 (18.39a)

r =r+hcos0O (18.39b)

Geometrically, Eqs (18.39) represent parallel lines, as shown in Figure 18.16. This is
often referred to as the parallel-ray approximation.
Obviously, we have

0, =0 (18.40a)
0,=0 (18.40Db)

We will use the approximations in Eqs (18.39) and (18.40) when substituting for ; and
ry in the phase component of the expressions in Eq. (18.37). That is,

e P ~ g iPo(r=hcos0) (18.41a)
e*/ﬁorz ~ e—jﬁo(r+hc050) (184-1]3)
When approximating the amplitude components, we may further approximate r;

and r, as
n=r (18.42a)

B=r (18.42b)
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Figure 18.16 Parallel-ray approximation.

Utilizing Eqs (18.41) and (18.42) in Eq. (18.37) we get

77[30’”1 *iﬁo"z
Ey=E§ +Ej = jn, —ﬁOIZl:r sin@, + jno Bolole 77 01"1;
1 p)
—jBo(r—hcos6) —jBo(r+hcos)
= o Bolole sin0+ o Bolole
4mr 4nr

= o [iolol sine[e—jﬁo(r—hcose) +e—/’ﬁ0(r+hcos(9):| (18.43)
nr

. 1 le_jﬁof
o Podole 2
4mr

sin 62

sinf@

Sine[ej/iohcosﬂ +e—jﬁ0hcos(9:|
. Bol le P
= jno OZTsme[Zcos(,BohcosQ)}
That is,

_ Bolole P
E, = moTsmB[cos(ﬁohcow)], z20 (18.44)

0, z<0
This result can be extended to the case of a quarter-wave monopole (Paul, Pg. 429).
18.7 Differential- and Common-Mode Currents
and Radiation

18.7.1 Differential- and Common-Mode Currents

Consider a typical circuit model shown in Figure 18.17.
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Figure 18.17 A typical circuit model.
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Figure 18.18 A realistic circuit model.
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Figure 18.19 Circuit model showing the total currents.

If there were no other circuits or sources or paths of coupling present external to this
circuit, the forward current would equal the return current. In virtually any practical
circuit a different scenario takes place, as shown in Figure 18.18.

I is referred to as the differential-mode (DM) current, while I¢ is referred to as the
common-mode (CM) current. The DM currents are usually the functional currents; they
are equal in magnitude and of opposite directions. The CM currents are equal in mag-
nitude and flowing in the same direction. (In the next section, we will show an example
of a circuit in which CM currents are created.)

In the analysis of the DM and CM currents we often use the circuit model shown in
Figure 18.19, showing, in addition to the DM and CM currents, the total currents /; and

I, flowing in the same direction.
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These two total currents are related to the DM and CM currents by

L=Ic+1Ip (18.45a)

L=1--1p (18.45b)
Adding and subtracting Eqs (18.45a) and (18.45b) gives

I +1, =21 (18.46a)

I -1, =2Ip (18.46b)

Thus, in terms of the total currents, the DM and CM currents can be expressed as

i =%(i1 —iz) (18.47a)
I = %(il +1, ) (18.47b)

We are now ready to discuss the radiation from the DM and CM currents.

18.7.2 Radiation from Differential- and Common-Mode Currents

Consider the circuit in Figure 18.20, showing the differential-mode currents and the
corresponding radiated E fields in the far field of these radiating elements.

If we treat the conductors as Hertzian dipoles, or half-wave dipoles, the maximum
radiated E field is broadside to the antenna (0 =90°) and in the z direction, as shown.

z

Conductor 1 Conductor 2 y

-

E,

p

Total field E T ' ‘
Observation point

P in far field
E,

Figure 18.20 Differential-mode radiation.
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The radiated fields due to both conductors are of opposite directions, giving a small
total radiated field as shown.

The total radiated field at the observation point in the far field can be obtained by
treating the two-conductor structure as a small loop antenna (Ott, 2009, p. 465) or by
treating each of them as a small dipole antenna and superimposing the fields (Paul,
2006, p. 506).

Now, consider the circuit in Figure 18.21, showing the CM currents and the corre-
sponding radiated E fields in the far field of these radiating elements.

The radiated fields due to both conductors are of the same direction, thus reinforcing
each other to give the total radiated field as shown.

It should be noted that the CM currents could be several orders of magnitude smaller
than the DM currents, yet the radiation from them could exceed the regulatory limits.

The total radiated field at the observation point in the far field can be obtained by
treating each of the conductors as a small dipole antenna and superimposing the fields
(Paul, 2006, p. 515).

We will calculate the total fields using the approach described by Paul (2006, p. 506).
In order to calculate the DM and CM radiation, consider the scenario shown in
Figure 18.22.

The two linear antennas shown are placed along the x axis, carrying the currents in
the z direction. We will determine the radiated field due to both antennas broadside to
them (i.e. in the xy plane, or for 8 =90°.

The total radiated electric field at an observation point P in the far field will be the
sum of the field of each conductor

7
<

Conductor 1 Conductor 2 y

<

.,;‘\

Observation point
in far field

P

E] EZ

Total field E

Figure 18.21 Common-mode radiation.
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Figure 18.22 Far fields of the two-wire antennas.

Eg=Ep +Ey, (18.48)

Treating each conductor as a Hertzian dipole and utilizing Eq. (18.13) we have

. ‘ ill ) ~jPori

Ey = j—nofysinb (18.49a)
4T n

A 7 —jpor

Epr = 2000 sinﬁ(e ] (18.49b)
47 Iy

Thus, the total field in Eq. (18.48) equals

.0l (e P LI o (eibm
Ep=j"Lnop sm@( ]Hinoﬂo smé’( ]
47 41

. " (18.50)
1 ‘ ( fe /A [ e ibm j ’
= j—10fosind +
47 n n
Using the parallel-ray approximation discussed in previous section we have
s
n= r—Ecosqﬁ (18.51a)

Iy =r+§cos¢ (18.51b)
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Substituting Eqs (18.51) into the exponential phase terms in Eq. (18.50) and substituting
n=r (18.52a)
B=r (18.52b)

into the denominators of Eq. (18.50) we obtain
A i V*ECOS(ﬂ . —jiP r+£cos¢;
E—'L fosind he ( i )+12e ( ’ ]
0= g 0 r P (18.53)

e_jﬁ°r[A +foscosp i /ﬁo;COS(ﬂj

= ]Lnoﬂo sin@ Ile 2 + 1re
4m r

Thus broadside to the antennas (sin0 = 1) the total radiated field is

A —ibor (-, ‘ﬂoicos A - 'ﬂoicos
Ep=jtnopS [lle“ 2% e ””J (18.54)
47 r

The maximum radiation will occur in the plane of the wires and on the line perpen-
dicular to the conductors, thus for ¢ = 0° or ¢ =180° (Paul, 2006, p. 509). Using ¢ = 180°
in Eq. (18.54) we obtain

A [ LU Ny A
Ea=j4—770,30e [he "2 1 he 2] (18.55)
T r

Next, we will apply Eq. (18.55) to the DM and CM currents shown in Figures 18.19
and 18.20, respectively.

Differential-mode radiation Letting
I =Ip (18.56a)
I, =—1Ip (18.56b)

and replacing the distance r by 4 (taken from the midpoint between the conductors) in
Eq. (18.55) we obtain

, [ ePd (o st L pd
Ey=j— Ipe 2-1Ipe 2
0 ]471770'80 y [D D J
1 Ipe P4 —jps il
:]_UOﬂODT[e 2 _e 2]
an (18.57)

1 fDe—iﬂod o ( S]
=j— ———j2sin —
]47t 0o 4 ] Bo 5

l i pe Pl ( s j
= L _sin| fy—
. n0So p Po >



Utilizing

21
fo=2"
Ao

in Eq. (18.57) we obtain
) P ifed

EQZLUOZT:ID@ sin 27 s

21 Ay d Ao 2

T o/hd
= %—IDed sin(nij

For electrically small spacing between the line, i.e.

s<Kly or 2«1
we use the approximation
sin| t— [=2n—
Ao o
Using Eq. (18.61) in Eq. (18.59) results in

_Ing IADe”'/"“d s

E, EDA T
A d Ao
Now,
S S
rlo :1201'[

Using Eqs (18.63) in Eq. (18.62) produces

o Ipe P s
o d A
120l f jDe—jﬂodn of
3x10° d  3x10°
_120m L, s e /P

2
= Is
9x10' Slslp d

=131.59x107% f2Isi )

Ey

e’jﬁ?)d

The magnitude of the total field is

E,=131.59x107%° fZiDS
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(18.58)

(18.59)

(18.60)

(18.61)

(18.62)

(18.63a)

(18.63b)

(18.62)

(18.63)

This corresponds to the equivalent formulas in Ott (2009, p. 466, Eq. (12—1)) and Paul

(2006, p. 510, Eq. (8.12)).
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Common-mode radiation Letting
I =1 (18.64a)

A

I, =1 (18.64b)

and replacing the distance r by d (taken from the midpoint between the conductors) in
Eq. (18.55) we obtain

N —jpod [, SiBs . ps
Ey:/f’?oﬂoe [lce} 2+1ce] 2J
T

d
[ e iPd( _ips gt
:/Lﬂoﬂolce (e }ﬂ2+elﬁ2]
4 d (18.65)
1 L [ sj
=j— 2cos —
]47[ 0o p Bo 5
1 IACe”ﬁ"d [ s)
=j— cos| fBy—
J o n0So P Po 5
Utilizing
21
Bo=— (18.66)
Ao
in Eq. (18.65) we obtain
5 1 2 ce /P 21 s
Eg=12—770/10 g y ”OS(/L) 2}
T (18.67)
:],ln_o—lce cos(nij
A d Ao
For electrically small spacing between the line, i.e.
s<K Ay or i <1 (18.68)

we use the approximation
S
cos[n—j ~1 (18.69)
Ao

Using Eq. (18.69) in Eq. (18.67) results in

S 177() jce_jﬂod

E _ 18.62
6=] Zo p ( )
Again,
Vo 3X 108
A=—= (18.644)
S f
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no =1207 (18.65b)
Using Eqs (18.65) in Eq. (18.67) produces

_ lﬂ IACe’lﬁnd

E,
o d
1207l f } g-ifnd
. c
= —~ 18.62
"3x10° 4 (1862
o . e Pl
=125.66x10° fli,
The magnitude of the total field is
E, =125.66x10"% ﬂ“cé (18.63)

This corresponds to the equivalent formulas in Ott (2009, p. 477, Eq. (12-6)) and Paul
(2006, p. 515, Eq. (8.16a)).

18.8 Common Mode Current Creation

In this section we present an example of how the common-mode current is created in a
differential signaling circuit. In order to facilitate this discussion, we begin with a simple
circuit configuration and augment it to reflect high-speed digital circuits.

18.8.1 Circuits with a Shared Return Path

Consider the circuit shown in Figure 18.23.

The current Iz,4.q leaves the source, arrives at the load and the same amount of cur-
rent, L, flows back to the source. Note that the load voltage is the same as the source
voltage.

The scenario shown in Figure 18.23 is an idealized one. In high-speed digital circuits,
we often encounter the arrangement shown in Figure 18.24, where we need to account

Figure 18.23 Load driven by a source. Lorward

—

I Load

Source

-—
I

return
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Figure 18.24 Finite impedance in the connections and ground path.

for the finite impedances of the source and load connections to the reference plane,
which itself has a non-zero impedance (Johnson and Graham, 2003, p. 365).

Z; and Z, in Figure 18.24 represent the finite impedances of the IC package pins or
balls to make the connection to the ground reference plane, and Zgyp represents the
finite impedance in the return path.

Writing KVL for the circuit shown in Figure 18.24 we get

Vs =V +Va+Vonp +V1 (18.64)
Since

Vi = Zii (18.652)

Vi = Zii (18.65b)
Equation (18.64) can be rewritten as

Vs =V, + Zoi+ Venp + Zii (18.66)

or
Vy, =V — Zoi—Venp — Zii (18.67)

Note that the load voltage is not equal to the source voltage (as is the case in
Figure 18.23). The voltage across the load is lower than the source voltage by the various
voltage drops along the current loop. Also, if the return path is shared with other
circuits, as shown in Figure 18.25, then there is the potential for common impedance
coupling between the circuits.

We have considered the finite impedance of the ground connections and Zgyp in the
ground plane, but a similar scenario occurs in power planes, as shown in Figure 18.26.

Currents flowing in a power plane affect the power voltages in the same way as the
currents flowing in the ground plane affect the ground voltages. Whether we are more
concerned with the power plane or the ground plane, noise voltage depends on whether
the circuit uses the power rails or the ground rail as the internal reference for logic
signals (Johnson and Graham, 2003, p. 368).
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Figure 18.25 Common ground-plane impedance coupling.
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Figure 18.26 Common power-plane impedance coupling.

Another example of common-impedance coupling is shown in Figure 18.27.

The driver for the second circuit, (Vs,), shares the same physical IC package as the
load for the first circuit. Thus, they share a common ground connection Z,. As the
return current i, enters the package through Z,, it will affect the voltage at the load of
the first circuit.

A variation of the circuit shown in Figure 18.27 is shown in Figure 18.28.

The driver for the second circuit, (Vs,), shares the same physical IC package as the
load for the first circuit but now each circuit has its own ground connection. Obviously,
this eliminates the shared common-impedance coupling between the driver and the
load in the same package.

Let’s assume that no current flows through the ground connections, as shown in
Figure 18.29.

Under this assumption, in each circuit, the forward current will be equal in magni-
tude and opposite in direction to the return current, just like the scenario in the very
first, idealized circuit in Figure 18.23.

Also, each of the drivers no longer relies on the reference voltage with respect to the
ground plane. The reference voltage, Vs, is simply the voltage difference between the
two wires. Finally, each circuit is immune to any type of interference that affects both
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Figure 18.27 Another example of common impedance coupling.
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Figure 18.28 A variation of the previous circuit.
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Figure 18.29 No current flows through the ground connections.

wires equally. That is, the potential of each wire is shifted by the same amount, the
potential difference between the wires remains the same.

These very desirable characteristics will no longer be true if the currents through the
connection impedances Z; and Z, are non-zero. Thus, in a practical circuit, we would
want these currents to be minimized to insignificant levels. Even if this is accomplished,
another problem arises in high-speed digital circuits: capacitive coupling to other
conducting paths or metallic objects. This is shown in Figure 18.30.
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Figure 18.31 Differential signaling circuit.

The return current now has a choice of two paths back to the source: the intended
path through the return wire or the parasitic path through the impedance Z; or Z,. This
leads us to the topic of differential signaling discussed in the next section.

18.8.2 Differential Signaling

Consider the circuit shown in Figure 18.31.
Writing KVL for the circuit shown gives

_VS - VS + VL = 0 (18.68)
or
Vi =2Vg (18.69)
A simple remedy resulting in the load voltage equal the source voltage is shown in
Figure 18.32, or in Figure 18.33 with the bottom source polarity reversed.
Thus, the differential signaling results in equal and opposite voltages (with respect to the

reference ground) and equal and opposite currents flowing in the forward and return paths.
Figure 18.33 shows dc voltages, but of course the same discussion holds for ac voltages.
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Figure 18.32 A variation of the previous circuit.
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Figure 18.33 Equivalent differential signaling circuit.

18.8.3 Common-Mode Current Creation

Let’s add the coupling between the differential pair and the ground plane as in

Figure 18.34.

If the layout is symmetrical, then both wires couple equally to the reference ground
plane (through Zrand Zy), and ac currents induced in the ground plane by one wire will
be counteracted by equal and opposite currents induced by the other wire. Thus, there
will be no net parasitic current in the reference plane.

If the differential-pair voltages are not precisely complementary, or the stray imped-
ances Zrand Zp are not well balanced, then some stray current will flow in the reference

plane. This is shown in Figure 18.35.
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Figure 18.34 Coupling to the ground plane.
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Figure 18.35 Stray current flow.

We refer to this stray current as the common-mode current and designate it in cir-
cuits as shown in Figure 18.36.

18.9 Antenna Circuit Model

18.9.1 Transmitting-Mode Model

A physical model of an antenna in a transmitting mode is shown in Figure 18.37.

A corresponding circuit model of an antenna in a transmitting mode is shown in
Figure 18.38.

Input impedance of an antenna, Z;,, is the impedance presented by an antenna (to the
generator circuit) at its input terminals A-B.
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Figure 18.36 Common-mode current flow.
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Figure 18.37 Physical model of an antenna in a transmitting mode.
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Figure 18.38 Circuit model of an antenna in a transmitting mode.
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Figure 18.39 Detailed circuit model of an antenna in transmitting mode.

Figure 18.39 shows more details of this circuit model.
The input impedance of an antenna is

Zin =R+ jXin [Q] (18.70)
where
Riyy = Ripss + Ryaa (18.71)

R, .. is the radiation resistance, and X;, the radiation reactance of the antenna.

Recall that in Section 6.7.5 (Eq. 6.176), we calculated the radiated power of a Hertzian
dipole as

P, =80r* [LJZ I (18.72)
L) 2

The radiation resistance is a fictitious resistance that dissipates the same power as
that radiated by the Hertzian dipole when carrying the same current. Thus,

Ig
Proig =Rea 7 (18.73)

Therefore, the radiation resistance of a Hertzian dipole is

2
R =801* Gj (18.74)

The radiation resistance of a half-wave dipole is 73 , while the radiation reactance is

j42.5 Q (Paul, 2006, p. 435). The values for the quarter-wave monopole are the half of
those for the half-wave dipole.

The circuit models (assuming no losses) of a half-wave diploe and a quarter-wave
monopole are shown in Figure 18.40, and Figure 18.41, respectively.

18.9.2 Receiving-Mode Model

A physical model of an antenna in a receiving mode is shown in Figure 18.42.
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Figure 18.40 Circuit model of a half-wave dipole.
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Figure 18.42 Physical model of an antenna in a transmitting mode.

A corresponding circuit model of an antenna in a receiving mode is shown in
Figure 18.43.

A visual model of the half-wave dipole receiving antenna operation is shown in
Figure 18.44.

An oscillating EM wave (E field shown) arrives at the antenna and is directed along its
arms. This E field exerts a force on the electrons in the antenna arms, causing them to
move back and forth between the antenna ends, charging them alternatively positive
and negative. This oscillating current flows through the receiver resulting in a voltage
reading.
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Figure 18.43 Circuit model of an antenna in a receiving mode.

Figure 18.44 Half-wave dipole in a receiving mode.

18.10 EMC Applications

18.10.1 EMC Antenna Measurements

Figure 18.45 shows a log-periodic antenna used for radiated emissions measurements.

The antenna is connected through a high-quality coaxial cable to a receiver as shown
in Figure 18.46 (the measurement setup conforms to CISPR 25 requirements).

A simplified test setup is shown in Figure 18.47.

The wave radiating from the equipment under test (EUT) is captured by the measur-
ing antenna, connected through a coax cable to the receiver (spectrum analyzer or EMI
receiver).

The voltage measured by this receiver is V.. In order to relate this voltage reading to
the actual electric field measured by the antenna, E;,., we need the so-called antenna

factor (supplied by the antenna manufacturer).
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Figure 18.45 Log-periodic antenna for 300-1000 MHz frequency range measurements.
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Figure 18.46 Log-periodic antenna connected to a measuring receiver.
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Figure 18.47 Simplified radiated emissions setup.

Antenna factor is defined as

A
Einc

A

V}’EC

AF =

(18.75)

’

V received

V/m in incident wave ( 1 j
m

That is, the antenna factor is the ratio of the incident electric field at the surface of the
measurement antenna to the received voltage at the antenna terminal.
The antenna factor is usually given in dB:

AF; =dBuV/m (incidentwave |—dBuV |received voltage (18.76)
8

It is provided by the antenna manufacturer, either as a table or a plot vs frequency.
Figure 18.48 shows the antenna factor for a log-periodic antenna.
From Eq. (18.76) we get

dBuV/m (incident wave |=dBuV (received voltage |+ AF,;3 (18.77)
u u g

In order to account for the cable loss, we need to modify the above equation to

dBuV/m (incident wave) =dBuV (received voltage) + AF;z +cablelossgg
(18.78)
18.10.2 Antenna VSWR and Impedance Measurements

Consider the model of an antenna system in the receiving mode shown in Figure 18.49.

The spectrum analyzer is matched to the coaxial cable. If the antenna’s radiation
resistance was 50 Q over the measurement frequency range then the voltage induced at
the base of the antenna would appear at the spectrum analyzer (assuming no cable loss).

If the antenna’s resistance differed from 50 Q then some of the power received by the
antenna would be reflected back or reradiated, and the reading at the spectrum analyzer
would be lower.

It is therefore very useful to know the impedance of the antenna over its measurement
range. One very good indicator of the antenna impedance is obtained by measuring the
VSWR of the antenna.
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Antenna calibration

Antenna type: Log periodic
Model: AL-100
Serial number: 16276
Calibration date: (mm/dd/yy) 04/11/07
Certificate number: 031121
Frequency Gain Factor
MHz dBi dB/m
300.0 4.3 15.4
400.0 5.8 16.5
500.0 5.8 18.4
600.0 34 22.4
700.0 59 21.2
800.0 6.0 22.3
900.0 6.0 23.3
1000.0 6.2 24.0
Calibration: 3 meters
Polorization Horizontal
Figure 18.48 Antenna factor for a log-periodic antenna.
A
50Q
Spectrum Antenna
analyzer L
Incident wave
B
Figure 18.49 Antenna in the receiving mode.
A
00 :;__“; Rmd
Network =
analyzer
—I XCI)II
B

Figure 18.50 Antenna SVWR measurement setup.
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Log-periodic antenna Coax cable inside the chamber

Figure 18.51 Log-periodic antenna measurement setup inside the chamber.

Consider the setup shown in Figure 18.50.

If, in a given frequency range, the antenna’s resistance is 50 Q then the VSWR reading
will be 1. The more the impedance of the antenna differs from 50 Q the higher the
VSWR reading.

Figures 18.50 and 18.51 show the actual setup for measuring VSWR of the log-
periodic antenna.

The VSWR measurement for this antenna is shown in Figure 18.53, while the imped-
ance measurement is shown in Figure 18.54.

Note that the VSWR is very close to the value of one in the frequency range 300 MHz
to 1 GHz, which is the intended frequency range of this antenna.

Note that the impedance measurement is very close to the value of 50 Q in the
intended frequency range of this antenna.

18.10.3 Comb Transmitter Measurements

To evaluate the radiated emissions measurement setup, we often use a comb generator,
shown in Figure 18.55.

A comb generator is a transmitting antenna that produces signals of (ideally) the same
amplitude, equally spaced in frequency. Figure 18.56 shows the comb generator meas-
urement results in the frequency range 30—300 MHz, which is the intended frequency
range for the biconical antenna.
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Figure 18.52 Measurement setup outside the chamber.
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Figure 18.53 Log-periodic antenna VSWR measurement results.
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Figure 18.56 Comb generator measurement results.
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Appendix A

EMC Tests and Measurements

This appendix presents a description of the basic setups for radiated and conducted
emissions, radiated and conducted immunity, and electrostatic discharge (ESD).
A representative sample of commercial EMC regulations is used to explain the basics of
EMC measurements. Pictures of the typical test setups, equipment, and facilities are
presented. Each test is supported by the examples of the real test data, many of them
illustrating the “pass” and “fail” results.

This presentation is not intended to review all existing EMC regulations or to discuss
the details of each test procedure and the required documentation. The intent is simply
to discuss each test and the equipment required to perform it, to the extent needed to
gain a basic understanding of and to interpret the test results.

A.1 Introduction - FCC Part 15 and CISPR 22 Standards

EMC standards and regulations have been imposed by various government regulatory
bodies and various industries to control allowable emissions from electronic products.
In the USA, the Federal Communications Commission (FCC) regulates the use of radio
and wire communications. Part 15 of the FCC Rules and Regulations sets forth technical
standards and operational requirements for RF devices.

The most widely outside the USA is CISPR 22, which sets limits on the radiated and
conducted emissions of information technology equipment, which basically includes all
digital devices in the similar meaning as for the FCC (CISPR — Comité International
Spécial des Perturbations Radioélectriques — International Special Committee on Radio
Interference).

The limits are divided into Class A (commercial devices) and Class B equipment
(residential devices), and their meaning is essentially the same as the FCC definitions.

A.1.1 Peak vs Quasi-Peak vs Average Measurements

Most radiated and conducted limits in EMC testing are based on quasi-peak detection
mode. Quasi-peak detectors weigh signals according to their repetition rate, which is a
way of measuring their “annoyance factor” High amplitude low repetition rate signals
could produce the same output as low amplitude high repetition rate signals.

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure A.1 An EMI receiver and its typical screen output.

As the repetition rate increases, the quasi-peak detector produces a higher voltage
output, i.e. a response on spectrum analyzer or EMI receiver. Figure A.1 shows an EMI
receiver and its typical screen output.

Quasi-peak detector readings will be less than or equal to the peak detection. An average
detector will be less than or equal to the quasi-peak detection. This is shown in Figure A.2.
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Figure A.2 Relationship between the detectors.

LimitA [~
LimtB |
43=
N )
a1 |
0 Al
- Ly
o L
Esrf e
’5
35 1
M- T
32 [ ||| L
- i i i 1
014 016 018 02 0.2 0.4 0.26 028 03
Frequency (MHz)
Has

Figure A.3 Peak detector measurement.

Because quasi-peak readings are much slower (by two or three orders of magnitude
compared with peak) it is very common to scan initially with the peak detection, and then
if this is marginal or fails, switch and run the quasi-peak measurement against the limits.

This approach is illustrated in Figures A.3—A.5 which show the current probe
measurements.

Since the peak detector measurement failed, it was followed by the average and the
quasi-peak measurements, which passed.

A.1.2 FCCand CISPR 22 Limits

Maybe the easiest way to begin the discussion of EMC regulations and test limits is
to start with the FCC and CISPR 22 conducted emission limits, since these two are
the same (this is not the case in general).
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Figure A.4 Average detector measurement.

Figure A.5 Quasi-peak detector measurement.

Figure A.6 shows the Class A conducted emissions limits, while Figure A.7 shows
the limits for Class B.

Note that the conducted emission testing is performed in the frequency range of
0.15-30 MHz.
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Voltage
(dBuV)
79
P
66
(AV)
150 kHz 500 kHz 30 MHz f
0.15-0.5 8912.5 (1995) 79 (66)
0.5 -30 4467 (1000) 73 (60)

Figure A.6 FCC and CISPR 22 Class A conducted emissions limits.

Voltage
(dBuV)
66
)P
56 e (0P)
46 b N (AV)
150 kHz 500 kHz 5 MHz 30 MHz f
0.15 1995 (631) 66 (56)
0.5 631 (199.5) 56 (46)
0.5-5 631 (199.5) 56 (46)
5-30 1000 (316) 60 (50)

Figure A.7 FCC and CISPR 22 Class B conducted emissions limits.

The FCC and CISPR 22 conducted emissions limits are the same. This is not the case
with the radiated emission limits.

CISPR 22 radiated emissions limits are specified at a 10m distance for both Class A
and Class B devices. FCC radiated emission limits are specified at a 10m distance
for Class A devices but at a distance of 3m for Class B devices.
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30 - 230 31.6 (QP) 30 (0P)
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Figure A.8 CISPR 22 Class B radiated emissions limits.

Figure A.8 show the CISPR 22 Class A and Class B radiated emissions limits.

The FCC Class A radiated emissions limits are shown in Figure A.9, while the Class B
radiated emissions limits are shown in Figure A.10.

Finally, Figure A.11 compares the CISPR 22 and FCC radiated emissions limits for
Class A devices.

A.2 Conducted Emissions

Conducted emissions are the noise currents generated by the EUT (or DUT - device
under test) that propagate through the power cord or harness to other components/
systems or power grid.

FCC and CISPR 22 set the limits on the ac conducted emissions. CISPR 25 (automotive
standard), MIL-STD-461 (military standard) set the limits on the dc conducted emissions.

To measure the conducted emissions the artificial network (AN) or the line imped-
ance stabilization network (LISN) is used. (LISN looks like a 50 Q resistor to the EUT
and basically acts as an LC low pass filter).

Figure A.12 shows an ac LISN and Figure A.13 shows its schematic.

There are several variations of the dc LISNs. Figures A.14 and A.15 show two of them.

FCC and CISPR 22 require two conducting planes (horizontal and vertical), shown in
Figure A.16, and use the voltage method to measure the conducted emissions.
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Figure A.9 FCC Class A radiated emissions limits.
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Figure A.10 FCC Class B radiated emissions limits.
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Figure A.11 Comparison of the CISPR 22 and FCC Class A radiated emissions limits.

Figure A.12 FCC/CISPR22 ac LISN.
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Figure A.13 ac LISN schematic.

Figure A.14 CISPR 25dc LISN.

From spectrum Dummy load
analyzer or EMI resistor
receiver
5 uH
—— 0.1uF
—— 1uF b
1000 Q ?
E
B
CISPR 25

CISPR 25 requires a screen room, shown in Figure A.17, and specifies two methods:
voltage method and current probe method.

A.2.1 FCCand CISPR 22 Voltage

Method

The details of the FCC/CISPR 22 conducted emissions voltage method setup are shown
in Figure A.18. (for clarity, the vertical ground plane is not shown).
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Figure A.15 MIL-STD-461dc LISN.

Non-conductive table

Figure A.16 FCC/CISPR 22 conducted emissions test setup.

Horizontal ground
reference plane

Figure A.19 shows a DUT (laptop) positioned on the test table (dimensions not to

scale) in a screen room setup for the conducted emissions testing.

The ac conducted emissions are measured on both the line and the neutral lines. An
example of the line conducted emissions is shown in Figure A.20, while the emissions
on the neutral line are shown in Figure A.21.

A.2.2 CISPR 25 Voltage Method

The details of the CISPR 25 conducted emissions voltage method setup are shown in

Figure A.22. and A.23
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Figure A.17 Screen room for CISPR 25 conducted emissions measurements.

Non-conductive table

Device under test
(rear of DUT flushed
10 em with rear of table top)

¥

40 cm to vertical
reference place

Horizontal ground
reference plane

Figure A.18 The details of the FCC/CISPR 22 voltage method setup.

CISPR 25 categorizes the devices into five classes; the classification is based on the
physical location of the device in a vehicle and the severity of the exposure to the EM
environment. Class 1 limits are the least severe and the Class 5 limits are the most
severe, as shown in Tables A.1 and A.2.
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Figure A.20 An example of the line conducted emissions.
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Neutral 150kHz — 2 MHz

Neutral 2 MHz — 30 MHz

Figure A.21 An example of the neutral conducted emissions.

Note in Table A.1 that the peak limit for Class 3 device in the frequency range of
41-88 MHz is 46 dBpV.

CISPR 25dc conducted emissions are measured on both the battery and the ground
lines in the frequency range 150 kHz to 108 MHz.

Figure A.26 shows an example of the CISPR 25 conducted emissions voltage method
(fail) peak detector results on a battery line for a Class 3 device. Figure A.25 shows the
(pass) results for the ground line.
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Figure A.22 The details of the CISPR 25 voltage method setup.
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(low €,)

Figure A.23 More details of the CISPR 25 voltage method setup.

Note that in both Figures A.24 and A.25, the limit line for the Class 3 device in the
frequency range 41-88MHz is set at 46 dBpV, which, of course, is consistent with
the limits specified in Table A.1.

A.2.3CISPR 25 Current Probe Method

The details of the CISPR 25 conducted emissions current probe method setup are
shown in Figure A.26. and A.27.

Class 1 through Class 5 limits for the current probe method are shown in Tables A.3
and A 4.

Note that in Table A.3 the peak limit for Class 5 device in the frequency range of
41-88 MHz is 0 dBpA. Table A.4 shows that the average limit for Class 5 device in the
frequency range of 41-88 MHz is —10 dBpA.



Table A.1 CISPR 25 voltage method - peak and quasi-peak limits.

Appendix A

Levels (dBpV)

Class 1 Class 2 Class 3 Class 4 Class 5
Service/Band  Frequency MHz ~ PK QP PK QP PK QP PK QP PK QP
LW 0.15-0.3 110 97 100 87 9 77 80 67 70 57
MW 0.53-1.8 86 73 78 65 70 57 62 49 54 41
SwW 59-6.2 77 64 71 58 65 52 59 46 53 40
M 76 - 108 62 49 56 43 50 37 44 31 38 25
TV Band 1 4] - 88 58 - 52 - 46 - 40 - 34 -
CB 26 - 28 68 55 62 49 56 43 50 37 44 31
VHF 30 - 54 68 55 62 49 56 43 50 37 44 31
VHF 68 - 87 62 49 56 43 50 37 44 31 38 25

Table A.2 CISPR 25 voltage method - average detector limits.
Levels (dBpV)
Class 1 Class 2 Class 3 Class 4 Class 5

Service/Band Frequency MHz AVG AVG AVG AVG AVG
Lw 0.15-0.3 90 80 70 60 50
MW 0.53-1.8 66 58 50 42 34
SwW 59-6.2 57 51 45 39 33
M 76 - 108 42 36 30 24 18
TV Band 1 41 - 88 48 42 36 30 24
CB 26 - 28 48 42 36 30 24
VHF 30 - 54 48 42 36 30 24
VHF 68 - 87 42 36 30 24 18

Figure A.28 shows an example of the CISPR 25 conducted emissions current method
peak detector (pass) results for a Class 5 device. Figure A.29 shows the (fail) results for

the average detector.

Note that in Figure A.28 the limit line for Class 5 device in the frequency range
41-88 MHz is set at 0 dBpA, while in Figure A.29 the limit line in the same frequency
range is at —10 dBpA. This, of course, is consistent with the limits specified in Tables A.3

and A.4.
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Figure A.24 CISPR 25 conducted emissions voltage method - peak detector results on a battery line

for a Class 3 device.

i ot A gt s

70 75
Frequency (MHz)

=
=]
=

=
3|

Emissions.

3

Ambient
Emissions Limit
Ambient Limit

Failure Points

| Test Date & Time
1
10:45:33.511 AM
32312016

Chart Name
| [CEVCIsPRs Ea3
Class 3 PK 30MHz-
108MHz A GND plot

Figure A.25 CISPR 25 conducted emissions voltage method - peak detector results on a ground line

for a Class 3 device.
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Figure A.26 The details of the CISPR 25 current probe method setup.
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Figure A.27 More details of the CISPR 25 current probe method setup.
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Table A.3 CISPR 25 current probe method - peak and quasi-peak limits.

Levels (dBpA)

Class 1 Class 2 Class 3 Class 4 Class 5

Service/Band  Frequency MHz  PK QP PK QP PK QP PK QP PK QP

Lw 0.15-0.3 90 77 80 67 70 57 60 47 50 37
MW 0.53-1.8 58 45 50 37 42 29 34 21 26 13
SwW 59-6.2 43 30 37 24 31 18 25 12 19 6
FM 76 - 108 28 15 22 9 16 3 10 -3 4 -9
TV Band 1 41 - 88 24 - 18 - 12 - 6 - 0 -
CB 26 - 28 34 21 28 15 22 9 16 3 10 -3
VHF 30 - 54 34 21 28 15 22 9 16 3 10 -3
VHF 68 - 87 28 15 22 9 16 3 10 -3 4 -9

Table A.4 CISPR 25 current probe method - average detector limits.

Levels (dBpA)
Class 1 Class 2 Class 3 Class 4 Class 5
Service/Band Frequency MHz AVG AVG AVG AVG AVG
LW 0.15-0.3 70 60 50 40 30
MW 0.53-1.8 38 30 22 14 6
SwW 59-6.2 23 17 11 5 -1
FM 76 - 108 8 2 -4 -10 -16
TV Band 1 41 - 88 14 8 2 -4 -10
CB 26 - 28 14 8 -4 -10
VHF 30 - 54 14 8 2 -4 -10
VHF 68 - 87 8 2 -4 -10 -16

A.3 Radiated Emissions

CISPR 22 specifies that the measurement of the radiated emissions from products be
performed at an OATS (open area test site), shown in Figure A.30, while CISPR 25
requires the measurements to be performed in a semi-anechoic test chamber (also
referred to as absorber-lined shielded enclosure — ALSE), shown in Figure A.31.
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Figure A.28 CISPR 25 conducted emissions current probe method - peak detector results for a
Class 5 device.
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Figure A.29 CISPR 25 conducted emissions current probe method - average detector results for a
Class 5 device.
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Figure A.30 An open area test site (OATS).

A.3.1 Open-Area Test Site (OATS) Measurements

The ideal OATS is a flat piece of land, free of overhead wires and nearby reflective
structures, away from any and all external signals, with a perfectly reflective ground
plane. Weather protection is usually needed, but the structure should not contain any
metallic material (beams, nails, door hinges, etc.).

Since the OATS should be away from all reflective structures, this requires the control
room to be remotely located or located underneath the ground plane. The measure-
ments should be made with a quasi-peak measuring receiver in the frequency range
30 MHz to 1 GHz (peak measurements are permitted).

The test site should be sufficiently large to permit antenna placing at the specified
distance. The ground plane should extend at least 1 m beyond the periphery of the EUT
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Figure A.31 A semi-anechoic chamber for radiated emissions.

and the largest measuring antenna, and cover the entire area between the EUT and the
antenna. The boundary of the area is defined by an ellipse, as shown in Figure A.32.

When performing the radiated emissions measurements at an OATS, it is critical that
the ambient measurement is taken first, in order to determine the electromagnetic
environment present. Such a measurement is shown in Figure A.33.

After having taken the ambient measurement and identifying any external noise
sources present, the DUT emission measurement is taken. Such a measurement is
shown in Figure A.34.

A.3.2 Semi-Anechoic Chamber Measurements

CISPR 25 radiated emissions measurements are performed in a semi-anechoic chamber
in the frequency range of 150kHz to 2.5GHz. In the frequency range of 150kHz to
30 MHZ a vertical monopole antenna, shown in Figure A.35, is used.

The details of the CISPR 25 radiated emissions setup using a monopole antenna
are shown in Figures A.36. and A.37.
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Figure A.33 OATS ambient measurement.

Figure A.38 shows an example of the CISPR 25 radiated emissions, Class 5, peak
detector, monopole antenna measurement.

In the frequency range of 30—300 MHZ a biconnical antenna, shown in Figure A.39,
is used.

The details of the CISPR 25 radiated emissions setup using a biconnical antenna are
shown in Figure A.40. and A 41.
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Figure A.36 The details of the CISPR 25 setup with a monopole antenna.

Load
simulator EUT

-

v
+
(=3
i

o~
Antenna
h + (+10/-20)
900 £ 100 matching
unit

Styrofoam
(low ¢,)

Front view Side view

Figure A.37 More details of the CISPR 25 monopole antenna setup.

Figure A.42 shows an example of the CISPR 25 radiated emissions, Class 5, peak
detector, biconical antenna measurement.

In the frequency range of 300-1000 MHZ a log-periodic antenna, shown in
Figure A .43, is used.

The details of the CISPR 25 radiated emissions setup using a log-periodic antenna are
shown in Figure A.44. and A 45.

Figure A.46 shows an example of the CISPR 25 radiated emissions, Class 5, peak
detector, log-periodic antenna measurement.
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Figure A.40 The details of the CISPR 25 setup with a biconical antenna.
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Figure A.41 More details of the CISPR 25 biconical antenna setup.

A.4 Conducted Immunity - ISO 11452-4

ISO 11452-4 specifies the conducted immunity testing using a bulk current injection
(BCI) method. BClI is a method of carrying out immunity tests by inducing disturbance
signals directly into the wiring harness by means of a current injection probe.

The injection probe is a current transformer through which the wiring harness of the
device under test (DUT) is passed, as shown in Figure A.47.
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Figure A.44 The details of the CISPR 25 setup with a log-periodic antenna.

Load
simulator

Styrofoam/
(low €,)

EUT

vy

H
(=}
vy

=

900 + 100

Measuring
instrument

Simulation
and
monitoring
system

Front view

Side view

Figure A.45 More details of the CISPR 25 log-periodic antenna setup.

Immunity tests are carried out by varying the test severity level and frequency
(1MHz — 400 MHz) of the induced disturbance. BCI testing is performed in a screen
room; the immunity tests require several pieces of additional equipment outside the
screen room. These include signal generator, power amplifier, power meter, power
sensors, directional coupler, simulation and monitoring system, and computer control.
The external equipment pieces and their interconnections are shown in Figure A48.

Figure A.49 shows the location of the equipment external to the screen room used for
the immunity testing.
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Figure A.46 CISPR 25 radiated emissions, log-periodic antenna - peak detector results for a
Class 5 device.

Injection probe Wiring harness

Figure A.47 1SO 11452-4 BCl test setup.

The measurement setup inside the screen room is shown in Figure A.50.

The internal setup shown in Figure A.50 accommodates two types of BCI test
methods specified in ISO 11452-4 the substitution method and the closed-loop method
with power limitation. These will be discussed next.
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Figure A.50 BCl setup inside the screen room.

A.4.1 Substitution Method

In the substitution method a calibration fixture is used to record the power needed to
produce the required current in the 50 Q load. Then, during the testing, that power is
applied over the frequency range.

The details of the ISO 11452-4 conducted immunity testing setup using the substitu-
tion method are shown in Figures A.51 and A.52.

ISO 11452-4 specifies five test severity levels as shown in Table A.5.

Note in Table A.5 that in the frequency range of 3—-200 MHz the test level I limit is
60 mA while the test level IV limit is 200mA. This is reflected in the limit lines shown
in Figures A.53 and A.54, which show the ISO11542-4 conducted immunity test results
using the substitution method.

A.4.2 Closed-Loop Method with Power Limitation

In this method a calibration fixture is used to record the power needed to produce the
required current in the 50 Q environment. Then during the testing, power is applied
until the required current is measured or the power limit is reached (Pt = 4 X Pealibration)-

The details of the ISO 11452-4 conducted immunity testing setup using the closed-
loop method with power limitation are shown in Figures A.55 and A.56.
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Figure A.51 The details of the ISO 11542-4 setup using the substitution method.
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Figure A.52 More details of the of the ISO 11542-4 setup using the substitution method.

Table A.5 ISO 11542-4 test severity levels.

Frequency Test

band MHz TestlevelImA  Testlevel Il mA Testlevel lmA  Testlevel VmA  level V mA

1-3 60 x f(MHz)/B 100 x f(MHz)/3 150 x ﬁMHz)/g 200 x f(MHz)/3 Spectﬁc

3-200 60 100 150 200 values agreed
between the

200-400

60 200/f(MHz) 100 x 200/f(MHz) 150 200/f(MHz) 200 x 200/fMHz) ysers of this

part of ISO
11452
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Figure A.53 1SO11452-4 BCl test result (fail) using the substitution method.
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Figure A.54 1SO11452-4 BCl test result (pass) using the substitution method.

A.5 Radiated Immunity

ISO 11452-11 specifies that the measurement of the radiated immunity be performed
in a reverberation chamber, while ISO 11452-12 requires the use of a semi-anechoic test
chamber (also referred to as an absorber-lined shielded enclosure — ALSE). These
chambers are shown in Figure A.57.

A.5.1 Radiated Immunity - 1SO 11452-11

ISO 11452-11 requires a reverberation chamber for radiated immunity testing. A rever-
beration chamber is a shielded highly conductive enclosure. Unlike the semi-anechoic
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Figure A.56 More details of the of the ISO 11542-4 setup using the closed-loop method with power
limitation.

or fully anechoic chamber it is not lined with an absorbing material, as shown in
Figure A.58. The metallic walls are highly reflective to the electromagnetic waves.

Just like the conducted immunity tests, this radiated immunity test requires several
pieces of additional equipment outside the reverberation chamber. These are shown in

Figure A.59.
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Reverberation chamber — ISO 11452-11 Semi-anechoic chamber — ISO 11452-2

Figure A.57 Reverberation and semi-anechoic chambers for radiated immunity.

Figure A.58 Reverberation chamber is a highly reflective enclosure.

The details of the ISO 11452-11 radiated immunity testing setup are shown in
Figure A.60.

Reverberation chamber dimensions should be large compared to the wavelength; the
larger the chamber the lower the usable frequency for testing. A mechanical tuner/
stirrer, shown in Figure A.61, should have one dimension that is at least one-quarter
wavelength at the lowest frequency.
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Figure A.60 The details of the ISO 11542-11 setup for radiated immunity testing.



Figure A.61 Mechanical tuner/stirrer.
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Figure A.62 I1SO 11452-2 external equipment.
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Power meters

Power sensors

Directional coupler

The mechanical tuner should be shaped asymmetrically to maximize the non-
repetitive reflections generated by the transmitting antenna inside the chamber.

A.5.2 Radiated Inmunity - 1ISO 11452-2

ISO 11452-12 requires a semi-anechoic chamber for radiated immunity testing. Just
like the radiated immunity test described in the previous section, this test requires a
standard immunity equipment external to the chamber, as shown in Figure A.62.
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Figure A.63 1SO 11452-2 setup for radiated immunity testing using biconical antenna.

The details of the ISO 11452-2 radiated immunity test setup are shown in Figure A.63
when using a biconical antenna, and in Figure A.64 for log-periodic antenna.

Figures A.65 and A.66 show the ISO11452-4 conducted immunity test results using
the substitution method.

A.6 Electrostatic Discharge (ESD)

An ESD test is performed with an ESD gun, as shown in Figure A.67.

Typical RC cartridge combinations are shown in Figure A.68.

The ESD gun reflects the human body circuit model shown in Figure A.69.

The human body model is based on the human body resistance and capacitance (see
Chapter 13). The human body model simulates the ESD event when a charged body
directly transfers an electrostatic charge to the ESD sensitive device.

ESD specifications define several terms related to the testing methods:

Contact discharge method — a method of testing, in which the electrode of the test
generator is held in contact with the EUT, and the discharge actuated by the discharge
switch within the generator.

Air discharge method — a method of testing, in which the charged electrode of the test
generator is brought close to the EUT, and the discharge actuated by a spark to the EUT.

Direct application — application of the discharge directly to the EUT.
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Figure A.64 SO 11452-2 setup for radiated immunity testing using log-periodic antenna.
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Figure A.66 1SO 11452-2 radiated immunity test result (pass).

ESD gun Figure A.67 ESD gun and RC cartridge.

RC cartridge

Indirect application — application of the discharge to a coupling plane in the vicinity
of the EUT.

These terms are used when specifying the details of the ESD testing, as shown in
Tables A.6 and A.7.

An ESD test table-top setup in a screen room is shown in Figure A.70.

The details of the ISO 10605 powered DUT, direct ESD test setup are shown in
Figure A.71.



PLUG-IN

Typical R and © combinations:

330pF —
R=3300, C=150pF

R=3300), C=330pF
R=20000, C=150pF

R=2000Q, C=330pF
2 K2

Figure A.68 Typical RC cartridge combinations.

ESD gun

R
L
-_%
l
4 o

Figure A.69 Human body circuit model.

Table A.6 ISO 10605 - ESD generator parameters.

Parameter Characteristic
Output voltage range contact discharge mode 2kVto 15kV
Output voltage range air discharge mode 2kV to 25kV
Output polarity Positive and negative
Storage capacitances 150pE 330pF

Storage resistance 330 Q, 2000 Q

Appendix A
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Table A.7 I1SO 61000-4-2 - Test levels and ESD generator parameters.

IEC 61000-4-2 Test Levels and ESD generator parameters

Contact discharge Air discharge

Level Test voltage (kV) Level Test voltage (kV)

1 2 1

2 4 2

3 6 3

4 8 4 15
Storage capacitance Storage resistance
150pF 330 Q

Battery (ISO 10605)

Vertical ground plane (IEC 61000-4-2)

Figure A.70 ESD table-top test setup.

The details of the ISO 10605 powered DUT, indirect ESD test setup are shown in
Figure A.72.

Packaging and handling ISO 10605 test setup details are shown in Figure A.73.

Finally, the details of the ISO 61000-4-2 test setup for table-top equipment are shown
in Figure A.74.
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Figure A.71 1SO 10605 powered DUT, direct ESD test setup.
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Figure A.72 1SO 10605 powered DUT, indirect ESD test setup.
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Figure A.73 1SO 10605 packaging and handling, ESD test setup.
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Figure A.74 1SO 61000-4-2 ESD test setup for table-top equipment.

Final remarks about ESD testing

The testing should be performed by direct and indirect application of discharges to the
EUT, according to a test plan. This should include:

1) representative operating conditions of the EUT
2) whether the EUT should be tested as table-top or floor-standing
3) the points at which discharges are to be applied
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4) at each point, whether contact or air discharges are to be applied
5) the test level to be applied
6) the number of discharges to be applied at each point for compliance testing.

The test results should be classified on the basis of the operating conditions and the
functional specifications of the EUT, as in the following, unless different specifications
are given by the product committees or product specifications:

1) normal performance within the specification limits

2) temporary degradation or loss of function or performance which is self-recoverable

3) temporary degradation or loss of function or performance which requires operator
intervention or system reset

4) degradation or loss of function which is not recoverable due to damage to equipment
(components) or software, or loss of data

References
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a
Absolute capacitance, 380
Absolute potential, 369
Absorber-lined shielded enclosure
(ALSE), 600
Ampere’s law, 406
Antenna:
circuit model, 573
measurements, 575
radiated power, 238, 573
radiation resistance, 573, 577
Attenuator loss measurement, 541
Average power:
phasor form, 147
resistive load, 147
sinusoidal steady state, 146

b

Bandwidth, 347

Biot-Savart’s law, 405

Bode plots, 272

Bounce diagram, 493

Bulk current injection (BCI) method, 608

4
Capacitance calculations:
coaxial cable, 378
isolated sphere, 379
parallel-plate capacitor, 376
spherical capacitor, 379
two-wire transmission line, 377
Capacitance definition, 376
Capacitive coupling, 394, 529

629

Capacitor:
energy stored, 156
phasor-domain relationship, 157
s-domain relationship, 160
time-domain relationship, 155
Charge-current continuity equation, 441
Charge distributions, 355
CISPR 22, 583
CISPR 25, 600
Class A limits, 587
Class B limits, 587
CMOS inverter, 75
Comb transmitter, 579
Common-impedance coupling, 448
Common-mode:
choke, 255
creation, 570
current, 196, 558
radiation, 560
Complex conjugate, 112
Complex numbers:
exponential form, 119
operations, 113
polar form, 111
properties, 118
rectangular form, 109
Conducted emissions, 588
current-probe method, 596
voltage method, 592
Conducted immunity, 608
closed-loop method with power
limitation, 613
substitution method, 613

Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk.
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Constant-coordinate surfaces, 45
Coordinate systems:
Cartesian, 23
cylindrical, 25
spherical, 27
transformations, 29
Coulomb’s law, 356
Cramer’s rule, 12
Crosstalk:
far-end voltage, 529
model, 14, 183
near-end voltage, 529
PCB traces, 527
Current:
distributions, 405
divider, 174, 179, 183
probes, 423
return path, 444
wave, 100

d
Decoupling capacitors, 310
Derivative:

definition, 37

formulas, 37

partial, 39

properties, 38
Determinant, 7, 25, 27, 29
Differential elements:

length, 40

surface, 43

volume, 45
Differential-mode currents, 558

radiation, 559
Differential operators:

curl, 52

divergence, 51

gradient, 50

Laplacian, 54
Differential signaling, 569
Displacement current density, 443
Divergence theorem of Gauss, 71

e

Eddy currents, 439

Electric boundary conditions, 380
Electric coupling see Capacitive coupling
Electric dipole antenna, 544

radiated fields, 33, 128, 547, 548

radiated power, 137
Electric field intensity, 358, 359

coaxial transmission line, 367

cylinder of charge, 366

line of charge, 365

plane of charge, 364

point charge, 361

sphere of charge, 362
Electric flux density, 359
Electric flux lines, 373
Electromagnetic wave equation, 57
Electrostatic discharge, 385, 620
EMC filters:

cascaded LC, 319

first-order low-pass, 319

LC low-pass, 319

x filter, 320

T filter, 320
EMC measurements, 583
Equipotential surface, 373
Euler formula, 119

f

Faraday’s law, 412

Far field, 547

Far field criteria, 548, 549, 551

Federal Communications Commission
(FCC) part 15, 583

Fourier series representation, 236,
329, 335

Frequency transfer function, 267

g
Gauss’s law, 360

Ground bounce, 78

h

Half-wave dipole antenna, 551

Helmbholtz wave equation, 95

Hertzian dipole antenna see Electric
dipole antenna

Human-body model, 392

I
Image theory, 554
Impedance:
parallel connection, 178
phasor domain, 161



s domain, 163
series connection, 177
Inductance:
loop, 72
mutual, 243
partial, 74
self, 243
Inductance calculations:
coaxial cable, 416
parallel wires, 417

Inductive coupling see Magnetic coupling

Inductor:
energy stored, 155
phasor-domain relationship, 158
s-domain relationship, 160
time-domain relationship, 154

Insertion loss, 318, 526

Intrinsic impedance, 460

ISO 10605, 622

ISO 11452-2, 619

ISO 11452-4, 608

ISO 11452-11, 615

ISO 61000-4-2, 624

k

Kirchhoff’s current law:
phasor-domain, 168
s-domain, 168
time-domain, 165

Kirchhoff’s voltage law:
phasor-domain, 168
s-domain, 169
time-domain, 166

I
Laplace transform:
definition, 147
inverse, 150
pairs, 148
properties, 149
Lentz’s law, 413
Line impedance stabilization network
(LISN), 535, 591
Line integral, 61
Lorentz condition, 127

m
Magnetic boundary conditions, 418
Magnetic coupling, 428, 529

Magnetic field intensity, 404
coaxial line, 408
line of current, 408
Magnetic flux density, 403
Magnetic vector potential see Vector
magnetic potential
Matrix:
addition, 4
equality, 4
identity, 7
inverse, 9
multiplication, 5
scalar multiplication, 4
Maximum power transfer:
resistive circuits, 220
sinusoidal steady state, 223
Maxwell’s equations:
differential form, 56, 124
integral form, 72, 124
phasor form, 123
static fields, 410
Mesh current method, 192

n

Near field, 547

Node voltage method, 189
Norton equivalent circuit, 217

o
Ohm’s law, 152
Open-Area Test Site (OATS), 600

p

Parallel-ray approximation, 556
Passive filters:
parallel RLC bandpass, 287
parallel RLC band reject, 291
RC high-pass, 282
RC low-pass, 279
RL high-pass, 281
RL low-pass, 278
series RLC bandpass, 284
series RLC band reject, 289
Passive sign convention, 144
Phasor, 121
Power rail collapse, 78
Power supply filters:
common-mode current circuit
model, 196

Index
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Power supply filters: (contd)
differential-mode current circuit
model, 198
general topology, 196
Preamp gain measurement, 540
Propagation constant, 461

q
Quarter-wave monopole antenna, 554

r
Radiated emissions, 600
semi-anechoic chamber, 603
Radiated immunity, 615
Radiated susceptibility test, 17
RC circuit, 81
Reflection coefficient, 467, 482, 486, 503
Resistors:
parallel connection, 172
phasor-domain relationship, 156
s-domain relationship, 159
series connection, 169
time-domain relationship, 152
Resonance, 294
Resonant frequency, 294
Return loss, 527
Reverberation chamber, 615
RLC circuit:
parallel, 94
series, 85
RL circuit, 83

S
Scalar product, 13, 25, 27, 29
Self-resonant frequency, 309
Shield break frequency, 436
Shielding, 400, 433
effectiveness, 470
electromagnetic wave, 467
Source transformation, 207
s parameters, 20, 240, 520
Spectral bounds, 345
Standing waves, 512, 544
Stokes’s theorem, 71, 73
Superposition, 203, 529
Surface integral, 67

t
Thevenin equivalent circuit, 211
Transfer function, 259
Transfer impedance, 424
Transformers,
air-core, 250
iron-core, 251
Transmission coefficient, 467, 503
Transmission line, 475
capacitive termination, 184
characteristic impedance, 478
crosstalk model, 14, 185, 248
discontinuity, 501
equations, 55, 125, 477
inductive termination, 99
ringing, 103
transient analysis, 475
Triboelectric list, 386
Two-port networks, 224

u
Uniform plane wave, 453
Unit vectors, 24, 26, 28

v
Vector:
components, 23, 26, 28
decomposition, 23, 26, 28
product, 13
Vector magnetic potential, 33, 73,
125,411
Voltage calculations:
coaxial cable, 372
concentric spheres, 373
line charge, 370
plane of charge, 371
Voltage definition, 368
Voltage divider, 170, 178
Voltage standing wave ratio(VSWR),
519, 577
Voltage wave, 100
Volume integral, 71

w
Wave impedance, 549



