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A few years ago when I was about to teach another EMC fundamentals course for 
the industry, I was contacted by some of the participants asking about a textbook for the 
course. Then I realized that there is no single self‐contained book covering the topics 
of mathematic, electric circuits and electromagnetics with the focus on EMC. There 
is a plethora of books devoted to each of these subjects separately and each written for 
a general audience. It was then that the idea of writing this book was born.

This text reviews the fundamentals of mathematics, electric circuits, and electromag-
netics specifically needed for the study of EMC. Each chapter reviews the material per-
tinent to EMC and concludes with practical EMC examples illustrating the applicability 
of the discussed topics. The book is intended as a reference and a refresher for both the 
practicing professionals and the new EMC engineers entering the field.

This book also provides a background material helpful in following the two classical 
texts on EMC: Clayton Paul’s “Introduction to Electromagnetic Compatibility” (Wiley, 
2006) and Henry Ott’s “Electromagnetic Compatibility Engineering” (Wiley, 2009). 
Many formulas in those two books (presented without derivations) are derived from 
basic principles in this text.

This approach provides the reader with the understanding of the underlying assump-
tions and the confidence in using the final results. This insight is invaluable in the field 
of EMC where so many design rules and principles are based on several approximations 
and are only valid when the underlying assumptions are met.

The author owes a great deal of gratitude for the insight and knowledge gained 
from  the association with colleagues from the EMC lab at Gentex Corporation 
(Bill  Spence and Pete Vander Wel) and the EMC specialists and friends at E3 
Compliance LLC (Jim  Teune and Scott Mee). The author would also like to thank 
Mark Steffka for his  guidance and help over the past ten years. Finally, the author 
would like to acknowledge the support of Grand Valley State University and especially 
its engineering dean Paul Plotkowski who was instrumental in the creation of the 
EMC Center, greatly contributing to the EMC education and the publication of 
this book.

Bogdan Adamczyk
Grand Rapids, Michigan, September 2016
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1

Matrices and determinants are very powerful tools in circuit analysis and electromag-
netics. Matrices are useful because they enable us to replace an array of many entries as 
a single symbol and perform operations in a compact symbolic form.

We begin this chapter by defining a matrix, followed by the algebraic operations and 
properties. We will conclude this chapter by showing practical EMC‐related applica-
tions of matrix algebra.

1.1  Basic Concepts and Operations

A matrix is a mathematical structure consisting of rows and columns of elements (often 
numbers or functions) enclosed in brackets (Kreyszig, 1999, p. 305).

For example,

	

A
6 5 2
3 2 0
7 1 4

	 (1.1)

The entries in matrix A are real numbers. Matrices L and C in Eq. (1.2) are the matrices 
containing per‐unit‐length inductances and capacitances, respectively, representing a 
crosstalk model of transmission lines (Paul, 2006, p. 567). (We will discuss the details of 
this model later in this chapter.)

	
L C

l l
l l

c c c
c c c

G m

m R

G m m

m R m
, 	 (1.2)

We denote matrices by capital boldface letters. It is often convenient, especially when 
discussing matric operations and properties, to represent a matrix in terms of its gen-
eral entry in brackets:

	

A a

a a a
a a a

a a a

ij

n

n

m m mn

11 12 1

21 22 2

1 2

�
�

� � � �
�

	 (1.3)

Matrix and Vector Algebra
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Here, A is an m × n matrix; that is, a matrix with m rows and n columns.
In the double‐subscript notation for the entries, the first subscript always denotes the 

row and the second the column in which the given entry stands. Thus a23 is the entry in 
the second row and third column.

If m = n, we call A an n × n square matrix. Square matrices are particularly important, 
as we shall see.

A matrix that has only one column is often called a column vector. For example,

	
V Iz t

V z t
V z t

z t
I z t
I z t

G

R

G

R
, 

, 
, 

, 
, 
, 

, 	 (1.4)

Here, V and I are the column vectors representing the voltages and currents, respec-
tively, associated with the crosstalk model of transmission lines (Paul, 2006, p. 566).

Equality of Matrices  We say that two matrices have the same size if they are both m × n.
Two matrices A = [aij] and B = [bij] are equal, written A = B, if they are of the same 

size and the corresponding entries are equal; that is, a11 = b11, a12 = b12, and so on. For 
example, let

	
A B

a a
a a

11 12

21 22

7 4
2 8, 	 (1.5)

Then A = B implies that a11 = 7, a12 = −4, a21 = 2, and a22 = 8.

Matrix Addition and  Scalar Multiplication  Just like the matrix equality, matrix addition 
and scalar multiplication are intuitive concepts, for they follow the laws of numbers. 
(We point this out because matrix multiplication, to be defined shortly, is not an 
intuitive operation.)

Addition is defined for matrices of the same size. The sum of two matrices, A and B, 
written, A + B, is a matrix whose entries are obtained by adding the corresponding 
entries of A and B. That is,

	
A B A B

a a
a a

b b
b b

a b a11 12

21 22

11 12

21 22

11 11
, ,

112 12

21 21 22 22

b
a b a b 	 (1.6)

The product of any matrix A and any scalar k, written kA, is the matrix obtained by 
multiplying each element of A by k. That is,

	
A A

a a
a a k

ka ka
ka ka

11 12

21 22

11 12

21 22
, 	 (1.7)

From the familiar laws for numbers, we obtain similar laws for matrix addition and 
scalar multiplication.

	 A B B A	 (1.8a)

	 k k kA B A B	 (1.8b)
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	 A 0 A 	 (1.8c)

	 A A 0	 (1.8d)

	 1A A	 (1.8e)

	 0A 0	 (1.8f )

There is one more algebraic operation: the multiplication of matrices by matrices. 
Since this operation does not follow the familiar rule of number multiplication we 
devote a separate section to it.

1.2  Matrix Multiplication

Matrix multiplication means multiplying matrices by matrices. Recall: matrices are 
added by adding corresponding entries, as shown in Eq. (1.6). Matrix multiplication 
could be defined in a similar manner:

	
A B AB

a a
a a

b b
b b

a b a11 12

21 22

11 12

21 22

11 11 12
, ,

bb
a b a b incorrect

12

21 21 22 22
	 (1.9)

But it is not. Why? Because it is not useful.
The definition of multiplication seems artificial, but it is motivated by the use of 

matrices in solving the systems of equations.

Matrix Multiplication  If A [ ]aij  is an m × n matrix and B [ ]bij  is an n × p matrix, then 
the product of A and B, AB C [ ]cij , is an m × p matrix defined by

	

c a b a b a b a b

i m j p

ij
k

n

ik kj i j i j in nj
1

1 1 2 2

1 2 1 2



, , , ; , , ,
	 (1.10)

Note that AB is defined only when the number of columns of A is the same as the 
number of rows of B. Therefore, while in some cases we can calculate the product AB, 
of matrix A by matrix B, the product BA, of matrix B by matrix A, may not be defined.

We also observe that the (i,j) entry in C is obtained by using the ith row of A and the 
jth column of B.
	

a a a
a a a

a a a

a a a

n

n

i i in

m m mn

11 12 1

21 22 2

1 2

1 2

�
�

� � � �
�

� � � �
�

b b b b
b b b b

b b b b

j p

j p

n n nj n

11 12 1 1

21 22 2 2

1 2

� �
� �

� � � � � �
� � pp

p

p

ij

m m mp

c c c
c c c

c
c c c

11 12 1

21 22 2

1 2

�
�

� � �
�

	 (1.11)



Foundations of Electromagnetic Compatibility6

Example 1.1  Matrix multiplication

	

A B

AB

7 2
1 8

6 4
5 2

7 2
1 8

6 4
5 2

, ,

77 6 2 5 7 4 2 2
1 6 8 5 1 4 8 2

52 32
46 20 	 ▪

Example 1.2  Multiplication of a matrix and a vector

	

4 2
1 8

3
7

4 3 2 7
1 3 8 7

26
59

	

whereas 
3
7

4 2
1 8  is undefined.

▪
It is important to note that unlike number multiplication, multiplication of two square 

matrices is not, in general, commutative. That is, in general, AB ≠ AB

Example 1.3  Multiplication of matrices in a reverse order
Using the matrices from Example 1.1, but multiplying them in a reverse order, we get

	

A B

BA

7 2
1 8

6 4
5 2

6 4
5 2

7 2
1 8

, ,

66 7 4 1 6 2 4 8
5 7 2 1 5 2 2 8

46 44
37 26 	

which differs from the result obtained in Example 1.1.
▪

1.3  Special Matrices

The most important special matrices are the diagonal matrix, the identity matrix, and 
the inverse of a given matrix.

Diagonal Matrix  A diagonal matrix is a square matrix that can have non‐zero entries 
only on the main diagonal. Any entry above or below the main diagonal must be zero.

For example,

	

A
4 0 0
0 3 0
0 0 7

	 (1.12)
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Identity Matrix  A diagonal matrix whose entries on the main diagonal are all 1 is called 
an identity matrix and is denoted by In or simply I.

For example,

	

I
1 0 0
0 1 0
0 0 1

	 (1.13)

The identity matrix has the following important property

	 AI IA A	 (1.14)

where A and I are square matrices of the same size.
Also, for any vector b we have

	 Ib b	 (1.15)

where the identity matrix is of the appropriate size.

1.4  Matrices and Determinants

If we were to associate a single number with a square matrix, what would it be? The 
largest element, the sum of all elements, or maybe the product? It turns out that there is 
one very useful single number called the determinant.

For a 2 × 2 matrix, we can obtain its determinant using the following approach:

	
det A

a a
a a a a a a

11 12

21 22
11 22 21 12	 (1.16)

Note that we denote determinant by using bars (whereas we denote the matrices by 
using brackets).

Example 1.4  Determinant of a 2 × 2 matrix

	

3 5
2 6 3 6 2 5 8

	 ▪

The procedure for obtaining the determinant for a 3 × 3 matrix is a bit more involved.
Let the matrix A be specified as

	

A
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

	 (1.17)
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Its determinant

	

det A
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

	 (1.18)

can be obtained using the following procedure. Let’s create an augmented “determi-
nant” by rewriting the first two rows underneath the original ones:

	

detaug

a a a
a a a
a a a
a a a
a a a

A

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

	 (1.19)

then the value of det A can be obtained by adding and subtracting the triples of numbers 
from the augmented determinant as follows:

	

det A =

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

a
11

a
12

a
13

a
21

a
22

a
23

= a
11

a
22

a
33  

+ 
 
a

21
a

22
a

13 
+ a

31
a

12
a

23

–a
21

a
12

a
33 

– a
11

a
32

a
23 

– a
31

a
22

a
13 	 (1.20)

Example 1.5  Determinant of a 3 × 3 matrix
Calculate determinant of a matrix A given by

	

A
6 1 3
7 2 5
9 8 4

	

Solution:  Create and evaluate the augmented determinant.

	

6 1 3
7 5

det A = 8 4
6 1 3
7 –2 5

–2
–9

= (6) (–2) (4) + (7) (8) (3) + (–9) (1) (5)
–(7) (1) (4) – (6) (8) (5) – (–9) (–2) (3) = –247	 ▪
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Why do we need to know how to obtain a second‐ or third‐order determinant? 
Obviously, we could use a calculator or a software program to do that for us. There are 
numerous occasions when the software or a calculator would not be able to handle the 
calculations.

As we will later see, when discussing capacitive termination to a transmission line, we 
will need to obtain a symbolic solution in a proper form; even if we had access to a 
symbolic‐calculation software, its output, in most cases, would not be in a useful form.

When discussing Maxwell’s equations, we will need to evaluate a third‐order determi-
nant whose entries are vectors, vector components, and differential operators. This can 
only be done by hand.

1.5  Inverse of a Matrix

An inverse of a square matrix A (when it exists) is another matrix of the same size, 
denoted A−1. This new matrix, is perhaps, the most useful matrix in matrix algebra.

The inverse of a matrix has the following property of paramount importance

	 AA A A I1 1 	 (1.21)

Given a square matrix of numbers we can easily obtain its inverse using a calculator 
or an appropriate software package. In many engineering calculations, however, we 
need to obtain the inverse of a 2 × 2 matrix in a symbolic form.

Let

	
A

a a
a a

11 12

21 22
	 (1.22)

Then the inverse of A can be obtained as

	
A

A
1 22 12

21 11

1
det

a a
a a 	 (1.23)

Example 1.6  Inverse of a 2 × 2 matrix
Obtain the inverse of

	
A

4 3
2 5

	

Solution:  According to Eq. (1.23) the inverse of A is

	

A 1
14 3

2 5
1

4 3
2 5

5 3
2 4

1
20 6

5 3
2 4

5
14

3
14

2
14

4
14 	
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Verification:

	

AA 1
4 3
2 5

5
14

3
14

2
14

4
14

20 6
14

12 12
14

100 10
14

6 20
14

1 0
0 1

	 ▪

1.6  Matrices and Systems of Equations

We will now explain the reason behind the “unnatural” definition of matrix multiplica-
tion. Consider a system of equations:

	

a x a x a x b
a x a x a x b
a x a x a x

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 bb3

	 (1.24)

Let’s define three matrices as follows:

	

A x
a a a
a a a
a a a

x
x
x

11 12 13

21 22 23

31 32 33

1

2

3

, ,, b
b
b
b

1

2

3

	 (1.25)

Then the system of equations (1.24) can be written in compact form using matrices 
defined by Eq. (1.25) as

	 Ax b	 (1.26)

Since

	

Ax
a a a
a a a
a a a

x
x
x

a

11 12 13

21 22 23

31 32 33

1

2

3

111 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

x a x a x
a x a x a x
a x a x a x

b
b
b

1

2

3

b

	 (1.27)

and two matrices are equal when their corresponding entries are equal. Thus, Eqs (1.24) 
and (1.27) are equivalent.

Equation (1.26) shows one of the benefits of using matrices: a system of linear equa-
tion can be expressed in a compact form. An even more important benefit is the fact 
that we can obtain the solution to the system of equations by manipulating the matrices 
in a symbolic form instead of the equations themselves. This will be shown in the next 
section.
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1.7  Solution of Systems of Equations

Consider a system of equations:

	 Ax b	 (1.28)

If the inverse of A exists, then premultiplication of Eq. (1.28) by A 1 results in

	 A Ax A b1 1 	 (1.29)

Since A−1A = I, it follows

	 Ix A b1 	 (1.30)

Because Ix = x, we obtain the solution to Eq. (1.28) as

	 x A b1 	 (1.31)

Example 1.7  Solution of systems of equations using matrix inverse
Obtain the solution of

	

4 3 12
2 5 8

1 2

1 2

x x
x x 	

using matrix inversion.

Solution:  Our system of equations in matrix form can be written as

	

4 3
2 5

12
8

1

2

x
x

	

According to Eq. (1.31), the solution, therefore, can be written as

	

x
x

1

2

14 3
2 5

12
8

	

Utilizing the result of Example 1.6, we have

	

x
x

1

2

14 3
2 5

12
8

5
14

3
14

2
14

4
14

12
8

5
14

12 3
14

8

2
14

122 4
14

8

6
4

	 ▪
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1.8  Cramer’s Rule

As we have seen, we can obtain a solution to a system of equations using matrix inver-
sion. When dealing with 2 × 2 matrices, it is sometimes more expedient to use an alter-
native approach using Cramer’s rule.

Let the system of equations be given by

	

a x a x b
a x a x b

11 1 12 2 1

21 1 22 2 2
	 (1.32)

or in a matrix form:

	 Ax b	 (1.33)

where

	
A x b

a a
a a

x
x

b
b

11 12

21 22

1

2

1

2
, , 	 (1.34)

The main determinant of the system is

	
D

a a
a a

11 12

21 22
	 (1.35a)

Let’s create two additional determinants D1 by replacing the first column of D with 
the column vector b, and the determinant D2 by replacing the second column of D 
by the column vector b. That is,

	
D

b a
b a1

1 12

2 22
	 (1.35b)

	
D

a b
a b2

11 1

21 2
	 (1.35c)

Then the solution of the system of equations in (1.32) is

	
x D

D
x D

D
D1

1
2

2 0, , 	 (1.36)

Example 1.8  Solution of systems of equations using Cramer’s rule
We will use the same system of equations as in Example 1.7.

	

4 3 12
2 5 8

1 2

1 2

x x
x x 	
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Using Cramer’s rule we obtain the solutions as

	

x

x

1

2

12 3
8 5

4 3
2 5

12 5 8 3
4 5 2 3

6

12 3
8 5

4 3
2 5

44 8 2 12
4 5 2 3

4

	
which, of course, agrees with the solution of the previous example.

▪

1.9  Vector Operations

In this section we define two fundamental operations on them: scalar product and 
vector product.

1.9.1  Scalar Product

Scalar product (or inner product, or dot product) of two vectors A and B, denoted A B, 
is defined as

	 A B A B cos 	 (1.37)

where 0  is the angle between A and B (computed when the vectors have their 
initial points coinciding).

Note that the result of a scalar product, as the name indicates, is a scalar (number).
Also note that when two vectors are perpendicular to each other, their scalar product 

is zero.

	 if 90 0cos 	 (1.38)

The order of multiplication in a scalar product does not matter, that is,

	 A B B A	 (1.39)

1.9.2  Vector Product

Vector product (or cross product) of two vectors A and B, denoted A B, is defined as a 
vector V whose length is

	 V A B sin 	 (1.40)

where γ is the angle between A and B, and whose direction is perpendicular to both 
A and B and is such that A, B, and V, in this order, form a right‐handed triple.
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Note that a vector product results in a vector. Also note that when two vectors are 
parallel to each other, their vector product is a zero vector.

	 if 0 0sin 	 (1.41)

The order of multiplication in a vector product does matter, since

	 A B B A	 (1.42)

1.10  EMC Applications

1.10.1  Crosstalk Model of Transmission Lines

In this section we will show how the matrices can be used to describe a mathematical 
model of the crosstalk between wires in cables or between PCB traces.

Crosstalk occurs when a signal on one pair of conductors couples to an adjacent pair 
of conductors, causing an unintended reception of that signal at the terminals of the 
second pair of conductors. Figure 1.1 shows a PCB specifically designed to produce this 
phenomenon.

PCB geometry is shown in Figure 1.2(a) and the corresponding circuit model is shown 
in Figure 1.2(b).

A pair of parallel conductors called the generator (aggressor) circuit connects a source 
represented by VS and Rs to a load represented by RL. Another pair of parallel conduc-
tors is adjacent to the generator line. These conductors, the receptor (or victim) circuit, 
are terminated at the near and far end. Signals in the generator circuit induce voltages 
across the receptor circuit terminations (Adamczyk and Teune, 2009). This is shown in 
Figure 1.3.

The generator and receptor circuits have per‐unit‐length self inductances lG and lR, 
respectively, associated with them, and a per‐unit‐length mutual inductance lm between 
the two circuits. The per‐unit‐length self‐capacitances between the generator conduc-
tor and the reference conductor and between the receptor conductor and the reference 
conductor are represented by cG and cR, respectively. The per‐unit‐length mutual 

Figure 1.1  PCB used for creating crosstalk between traces.
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capacitance between the generator and receptor conductors is represented by cm. This 
is shown in Figure 1.4.

Differential equations describing the model in Figure 1.4 are (Paul, 2006, pp. 565–566):

	
V z t

z
l

I z t
t

l
I z t

t
G

G
G

m
R, , , 

	 (1.43a)

	
V z t

z
l

I z t
t

l
I z t

t
R

m
G

R
R, , , 

	 (1.43b)

	
I z t

z
c c

V z t
t

c
V z t

t
G

G m
G

m
R, , , 

	 (1.43c)

Generator IG(z, t)

VG(z, t)

Generator conductorReceptor

Receptor conductor

Ground plane Reference conductor

IG(z, t) + IR(z, t)

Vs(t)

Rs

RL
RFEVFERNE VNE

IR(z, t)
VR(z, t)

Z = 0 Z = L

(a) (b)

+ +

+

–

– –

+

–

+

–

Figure 1.2  Three‐conductor transmission line: (a) PCB arrangement; (b) circuit model.

Run

Aggressor signal

Case 1

25 mils

54.8 mils

Victim line – Near end

Fall time = 200 ns

Trig′d

1.54 mV

200 ns 5.00 GS/s
10 k points

0.001
–288.000 ns

1Vpp

500 mV ΩB
V 1.00 mV ΩB

V 1.00 mV ΩB
V

760 μV

560 μV

260 μV
Victim line – Far end

Rise time = 100 ns

Figure 1.3  Crosstalk induced by the aggressor circuit in the victim circuit.
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I z t

z
c

V z t
t

c c
V z t

t
R

m
G

R m
R, , , 

	 (1.43d)

Let’s introduce the following matrices:

	
V z t

V z t
V z t

G

R
, 

, 
, 

	 (1.44a)

	
I z t

I z t
I z t

G

R
, 

, 
, 

	 (1.44b)

	
L

l l
l l
G m

m R
	 (1.44c)

	
C

c c c
c c c

G m m

m R m
	 (1.44d)

Equations (1.43) can now be written in a matrix form as:

	 z
z t

t
z tV L I, , 	 (1.45a)

	 z
z t

t
z tI C V, , 	 (1.45b)

To appreciate the usefulness of this matrix form, we will compare it to the two‐
conductor transmission lines equations (Paul, 2006, p. 183):

Generator conductor

Reference conductor

Receptor conductor

IG(z + Δz, t)

IG(z, t) + IR(z, t)

IR(z, t)

VR(z, t)

VG(z, t)

IR(z + Δz, t)

VR(z + Δz, t)

VG(z + Δz, t)

cG ΔzcRΔz

cmΔzlmΔz

lRΔz

lGΔz

z + Δzz

IG(z, t)

+

+

–

+

––

+

–

Figure 1.4  Per‐unit length circuit model of three‐conductor transmission line.
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V z t

z
l

I z t
t

, , 
	 (1.46a)

	
I z t

z
c

V z t
t

, , 
	 (1.46b)

Notice that the equations in matrix form (1.45) have an appearance identical to that 
of the transmission‐line equations (1.46) for a two‐conductor line. Equations of the 
same mathematical form have solutions of the same mathematical form. This is a very 
powerful result since two‐conductor transmission line theory easily provides consider-
able insight into the theory of multiple‐line conductors.

1.10.2  Radiated Susceptibility Test

Radiated susceptibility test RS 101 of MIL STD‐461‐G and ISO 11452‐8 standards 
utilizes the radiating loop fixture shown in Figure 1.5.

The fixture used can be modeled as magnetically coupled coils of a transformer 
shown in Figure 1.6.

Figure 1.5  Radiating loop fixture.

Î1

V1 V2

L1 L2

Î2

+

ˆˆ

–

+

–

M
Figure 1.6  Coupled coils in the frequency domain.
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In Chapter 10 we will derive the following equations governing this circuit

	 1 1 1 2
ˆ ˆ ˆV j L I j MI 	 (1.47a)

	 2 1 2 2
ˆ ˆ ˆV j MI j L I 	 (1.47b)

In matrix form, Eq. (1.47) can be written as

	

1 1 1

22 2

ˆ ˆ

ˆ ˆ
V j L j M I

j M j LV I 	 (1.48)

The solution of Eq. (1.48) can be obtained by matrix inversion or by Cramer’s rule 
discussed in this chapter. Let’s present both methods.

Matrix Inversion Approach  Using matrix inversion, the solution of Eq. (1.48) is

	

1
1 1 1

22 2

ˆ ˆ

ˆ ˆ
I j L j M V

j M j LI V 	 (1.49)

The inverse of the matrix is obtained according to Eq. (1.23) as

	

j L j M
j M j L j L j M

j M j L

j L j M
j M j L

1

2

1

1

2

21
1

1
2

1 2
2

2

1

2
2

1 2

L L M

j L j M
j M j L

j L
L L 22 2

1 2
2

2
1 2

2
1

2
1 2

2

M
j M

L L M
j M

L L M
j L

L L M
jL

M L L
jM

M L L
jM

M L L
jL

M L L

2

1 2 1 2

1 2

1

1 2

	 (1.50)

And thus

	

2

1 1 2 1 2 1

12 2

1 2 1 2

ˆ ˆ

ˆ ˆ

j L j M

I M L L M L L V
j M j LI V

M L L M L L

	 (1.51)
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resulting in

	

2
1 1 2

1 2 1 2

ˆ ˆ ˆj L j M
I V V

M L L M L L 	 (1.52a)

and

	

1
2 1 2

1 2 1 2

ˆ ˆ ˆj M j L
I V V

M L L M L L 	 (1.52b)

Cramer’s Rule Approach  Now we will solve the system of equations

	

1 1 1

22 2

ˆ ˆ

ˆ ˆ
V j L j M I

j M j LV I 	 (1.53)

using the Cramer’s rule approach.
The main determinant of the matrix in Eq. (1.53) is

	

j L j M
j M j L L L M

1

2

2
1 2

2 	 (1.54a)

The remaining two determinants are

	

1
1 2 1 2

2 2

ˆ
ˆ ˆ

ˆ
V j M

j L V j MV
V j L 	 (1.54b)

	

1 1
2 1 2 1

2

ˆ
ˆ ˆ

ˆ
j L V

j L V j MV
j M V 	 (1.54c)

Therefore,

	

2 1 21
1 2 2

1 2

2
1 2

1 2 1 2

ˆ ˆ
ˆ

ˆ ˆ

j L V j MV
I

L L M
j L j M

V V
M L L M L L

	 (1.55a)

	

1 2 12
2 2 2

1 2

1
1 2

1 2 1 2

ˆ ˆ
ˆ

ˆ ˆ

j L V j MV
I

L L M
j M j L

V V
M L L M L L

	 (1.55b)

The solutions (1.52) and (1.56) are, of course, identical.
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1.10.3  s Parameters

To characterize high‐frequency circuits, scattering parameters, or s parameters, are 
used (Ludwig and Bogdanov, 2009). Just like the other sets of parameters (z, y, h, g, to be 
discussed in Chapter  9), the s parameters completely describe the performance of a 
two‐port network.

Unlike the other sets of parameters, s parameters do not make use of open‐circuit or 
short‐circuit measurements, but rather relate the traveling waves that are incident, 
reflected, and transmitted when a two‐port network is inserted into a transmission line. 
(We will discuss travelling waves in Chapter 16 and transmission lines in Chapter 17.)

Figure 1.7 shows a two‐port network (circuit or device) together with the incident, 
reflected, and transmitted waves.

The incident waves (a1, a2) and reflected waves (b1, b2) used to define s parameters for 
a two‐port network are shown in Figure 1.8.

The linear equations describing this two‐port network in terms of the s parameters are

	

b s a s a
b s a s a

1 11 1 12 2

2 21 1 22 2
	 (1.56)

Or in a matrix form,

	

b
b

s s
s s

a
a

1

2

11 12

21 22

1

2
	 (1.57)

where S is the scattering matrix given by

	
S

s s
s s
11 12

21 22
	 (1.58)

We will discuss s parameters in detail in Chapter 17.

Port 1

Incident wave

Reflected wave
Transmitted wave

Circuit

Port 2

Figure 1.7  Two‐port network and the travelling waves.

a1 a2

b1 b2

+
–

ZG
ˆ

VG
ˆ ZL

ˆ
Device

Figure 1.8  Incident and reflected waves at port 1 and port 2.
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2

In this chapter we discuss three coordinate systems frequently encountered in electro-
magnetics: Cartesian, cylindrical, and spherical. In each system we define the relevant 
operations and properties. We conclude by showing the transformations between the 
systems. These transformations are necessary when deriving the radiation from a 
Hertzian dipole, as shown in the EMC applications section at the end of this chapter.

2.1  Cartesian Coordinate System

Cartesian coordinate system is shown in Figure 2.1.
Unit vectors in this system, denoted ax, ay, and az, are usually drawn at the origin (but 

can be drawn at any point in space). They point in the direction of the increasing coor-
dinate variables, and are orthogonal to each other.

A point P can be represented as a triple of numbers

	 P x y z: , , 	 (2.1)

where x, y, and z are called the coordinates of P.
The ranges of the coordinate variables are

	

x

y

z

	

(2.2)

A vector A can be represented as a triple

	 A A A Ax y z, , 	 (2.3)

where Ax, Ay, and Az are called the components of A.
A vector A can be decomposed into a sum of three vectors along the coordinate 

directions, as shown in Figure 2.2.
This decomposition can be expressed as

	 A A A Ax y z 	 (2.4)

This seemingly obvious decomposition is extremely useful when evaluating line and 
surface integrals, as we shall see.

Coordinate Systems
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In terms of its components, we can also write

	 A a a aA A A A A Ax y z x x y y z z,  ,  	 (2.5)

where the unit vectors in terms of their own components are defined as

	 ax 1 0 0, , 	 (2.6a)

	 a y 0 1 0, , 	 (2.6b)

	 az 0 0 1, , 	 (2.6c)

Since the unit vectors are perpendicular, it follows

	 a a a a a ax y y z z x 0	 (2.7a)

	 a a a a a ax x y y z z 1	 (2.7b)

x

y

z

z

P (x, y, z)

x

y

az

ax

ay

Figure 2.1  Cartesian coordinate system.

x

Ax

Az

Ay

A

y

z Figure 2.2  Vector decomposition.



Coordinate Systems 25

In many electromagnetics problems, we need to determine the direction of a vector 
resulting from a vector product of two vectors along the coordinate directions. The 
following equations show this result.

	 a a ax y z	 (2.8a)

	 a a ay z x	 (2.8b)

	 a a az x y	 (2.8c)

These cross products can be easily obtained with the help of the cyclic permutations 
(Sadiku, 2010, p.15) shown in Figure 2.3.

If A and B are represented in terms of components, say, A ( )A A Ax y z,  ,   and 
B ( )B B Bx y z,  ,  , their scalar product is given by

	 A B A B A B A Bx x y y z z 	 (2.9)

The vector product can be obtained by evaluating the following “determinant” (using 
the approach discussed in Section 1.5).

	

A B
a a ax y z

x y z

x y z

A A A
B B B

	 (2.10)

Note that

	 A A AA A Ax y z
2 2 2 2	 (2.11)

and thus, the magnitude of a vector is

	 A A A Ax y z
2 2 2 	 (2.12)

Also,

	 A A 0	 (2.13)

2.2  Cylindrical Coordinate System

The cylindrical coordinate system is an extension of a polar system from plane to space. 
The cylindrical coordinate system, shown in Figure 2.4, is very convenient whenever we 
are dealing with problems having cylindrical symmetry (e.g. coaxial cable).

ax

ay

az

Figure 2.3  Cross product using cyclic permutations.
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Unit vectors in this system, denoted aρ, aφ, and az, are usually not drawn at the origin 
but at a convenient point in space. They point in the direction of the increasing coordi-
nate variables, and are orthogonal to each other.

A point P can be represented as a triple of numbers

	 P z: , , 	 (2.14)

where ρ, φ, and z are called the coordinates of P.
The ranges of the coordinate variables are

	

0
0 2

z
	 (2.15)

A vector A can be represented as a triple

	 A A A Az, , 	 (2.16)

where Aρ, Aφ, and Az are called the components of A.
A vector A can be represented as

	 A A A A a a az z zA A A 	 (2.17)

The unit vectors in terms of their own components are defined as

	 a 1 0 0, , 	 (2.18a)

	 a 0 1 0, , 	 (2.18b)

	 az 0 0 1, , 	 (2.18c)

x

y

z

z

φ ρ

ρ

aφ

aρ

az

Figure 2.4  Cylindrical coordinate system.
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It also follows that

	 a a a a a az z 0	 (2.19a)

	 a a a a a az z 1	 (2.19b)

With the help of Figure 2.5 we obtain

	 a a az 	 (2.20a)

	 a a az 	 (2.20b)

	 a a az 	 (2.20c)

If A and B are represented in terms of components, say, A ( )A A Az, ,  and 
B ( )B B Bz, , , their scalar product is given by

	 A B A B A B A Bz z	 (2.21)

The vector product can be obtained by evaluating the following “determinant”:

	

A B
a a az

z

z

A A A
B B B

	 (2.22)

The magnitude of the vector is

	 A A A Az
2 2 2 	 (2.23)

2.3  Spherical Coordinate System

The spherical coordinate system, shown in Figure 2.6, is very convenient whenever we 
are dealing with problems having spherical symmetry (e.g. Hertzian dipole described in 
Section 2.5).

aρ

aϕ

az

Figure 2.5  Cross product using cyclic permutations in cylindrical 
system.
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Unit vectors in this system, denoted ar, aθ, and aφ, are usually not drawn at the origin 
but again at a convenient point in space. They point in the direction of the increasing 
coordinate variables, and are orthogonal to each other.

A point P can be represented as a triple of numbers

	 P r: , , 	 (2.24)

where r, θ, and φ, are called the coordinates of P.
The ranges of the coordinate variables are

	

0
0
0 2

r
	 (2.25)

A vector A can be represented as a triple

	 A A A Ar , , 	 (2.26)

where Ar, Aθ, and Aφ are called the components of A.
A vector A can be represented as

	 A A A A a a ar r rA A A 	 (2.27)

The unit vectors in terms of their own components are defined as

	 ar 1 0 0, , 	 (2.28a)

	 a 0 1 0, , 	 (2.28b)

	 a 0 0 1, , 	 (2.28c)

x

y

z

r

φ

θ

aφ
aθ

ar

Figure 2.6  Spherical coordinate system.
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It also follows that

	 a a a a a ar r r 0	 (2.29a)

	 a a a a a ar r 1	 (2.29b)

With the help of Figure 2.7 we obtain

	 a a ar 	 (2.30a)

	 a a ar 	 (2.30b)

	 a a ar 	 (2.30c)

If A and B are represented in terms of components, say, A ( )A A Ar , ,  and 
B ( )B B Br , , , their scalar product is given by

	 A B A B A B A Br r 	 (2.31)

The vector product can be obtained by evaluating the following “determinant”:

	

A B
a a ar

r

r

A A A
B B B

	 (2.32)

The magnitude of a vector is

	 A A A Ar
2 2 2 	 (2.33)

2.4  Transformations between Coordinate Systems

In this section we discuss transformations between Cartesian and cylindrical systems, 
as well as the transformations between Cartesian and spherical systems.

2.4.1  Transformation between Cartesian and Cylindrical Systems

The relationships between the variables (x, y, z) of the Cartesian coordinate system and 
those of the cylindrical system (ρ, ϕ, z) are easily obtained from Figure 2.8.

aθ

aϕ

arFigure 2.7  Cross product using cyclic permutations in spherical 
system.
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Coordinate Transformations from Cartesian to Cylindrical System

	

x y
y
x

z z

2 2

1tan 	 (2.34)

Coordinate Transformations from Cylindrical to Cartesian System

	

x
y
z z

cos
sin 	 (2.35)

From Figure  2.8 we can geometrically obtain the relationships between the vector 
components in the two coordinate systems.

Vector Components Transformations from Cartesian to Cylindrical System (Sadiku, 2010, p. 36)

	

A
A
A

A
A
Az

x

y

z

cos sin
sin cos

0
0

0 0 1

	 (2.36)

Vector Components Transformations from Cylindrical to Cartesian System

	

A
A
A

A
A
A

x

y

z z

cos sin
sin cos

0
0

0 0 1

	 (2.37)

x

y

y = ρ sin φ 

x = ρ cos φ 

z = r cos θ

ρ = r sin θ

z

r

φ

θ

ρ

P (x, y, z) = P (ρ, φ, z) = P (r, θ, φ)  

Figure 2.8  Relationship between 
Cartesian and cylindrical variables.
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Example 2.1  Coordinate transformations from Cartesian to cylindrical system
Express the point P : , ,1 4 3  in cylindrical coordinates.

Solution:

	

x y

y
x

z z

2 2

1 1

1 16 4 1231

4
1

75 96

3

.

tan tan .

	

Thus,

	 P P: , , : . , . ,1 4 3 4 1231 75 96 3    	
▪

Note: The transformation ( ) ( )A A A A A Az x y z, , , ,  as given by Eq. (2.37) is not 
complete. To complete it we need to express sinϕ and cosϕ in terms of x, y, and z.

From Eq. (2.35) we get

	
cos x x

x y2 2
	 (2.38a)

	
sin y y

x y2 2
	 (2.38b)

And thus the transformation ( ) ( )A A A A A Az x y z, , , ,  can be expressed as

	

A
A
A

x

x y

y

x y
y

x y

x

x y

x

y

z

2 2 2 2

2 2 2 2

0

0

0 0 1

A
A
Az

	 (2.39)

The cylindrical variables appearing in (Aρ, Aφ, Az) need to be expressed in terms of 
Cartesian variables before the matrix operation takes place, as illustrated by the follow-
ing example.

Example 2.2  Component transformation from cylindrical to Cartesian system
Convert the following vector to Cartesian coordinates:

	 C a a az z zsin cos   2 	
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Using Eq. (2.39) we have

	

C
C
C

x

x y

y

x y
y

x y

x

x y

x

y

z

2 2 2 2

2 2 2 2

0

0

0 0 1

C
C
C

x

x y

y

x y
y

x y

x

x y
z

2 2 2 2

2 2 2 2

0

0

0 0 1

z

z

sin
cos
2

Now that the cylindrical variables appearing in (Cρ, Cφ, Cz) need to be expressed in 
terms of the Cartesian variables before the matrix operation takes place.

Using the relationships. (2.34) and (2.38) we obtain

	

C
C
C

x

x y

y

x y
y

x y

x

x y

x

y

z

2 2 2 2

2 2 2 2

0

0

0 0 1

z y

x y

x y x

x y

z x y

2 2

2 2
2 2

2 22

	

and thus

	

C
C
C

xyz
x y

xy

x y
zy

x y
x

x y
z x y

x

y

z

2 2 2 2

2

2 2

2

2 2

2 22

	

2.4.2  Transformation between Cartesian and Spherical Systems

Coordinate Transformations from Cartesian to Spherical System (Sadiku, 2010, p. 36)

	

r x y z

x y
z

y
x

2 2 2

1
2 2

1

tan

tan

	 (2.40)
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Coordinate Transformations from Spherical to Cartesian System

	

x r
y r
z r

sin cos
sin sin
cos

	 (2.41)

Vector Components Transformations from Cartesian to Spherical System

	

A
A
A

r sin cos sin sin cos
cos cos cos sin sin

sin cos 0

A
A
A

x

y

z

	 (2.42)

Vector Components Transformations from Spherical to Cartesian System

	

A
A
A

x

y

z

sin cos cos cos sin
sin sin cos sin cos

ccos sin 0

A
A
A

r

	 (2.43)

2.5  EMC Applications

In this section we will show an important EMC application of the Cartesian‐to‐spherical 
systems transformations: derivations of the electric and magnetic fields radiated by a 
Hertzian (electric) dipole antenna.

2.5.1  Radiation Fields of an Electric Dipole Antenna

The electric or Hertzian dipole is perhaps the most fundamental antenna that facilitates 
the derivation of expressions for electric and magnetic field intensities of many practical 
antennas, like the monopole antenna used in EMC compliance testing shown in 
Figure 2.9.

We model the Hertzian dipole as a very short current element of length l, carrying a 
constant current I0. The current element is positioned symmetrically at the origin of the 
coordinate system and oriented along the z axis, as shown in Figure 2.10.

In Section 6.7.3 we will show that the electric and magnetic field intensities can be 
calculated from the vector magnetic potential A, shown in Figure 2.10. At a distance r 
from the dipole, the vector magnetic potential is given by

	
A ax y z I l

r
jkr

z, , e0

4
	 (2.44a)

where

	 r x y z2 2 2 	 (2.44b)
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The vector magnetic potential in Eq. (2.44a) is expressed in Cartesian coordinate 
system – with the substitution of Eq. (2.44b) into it. To derive electric and magnetic 
field intensities at a distance r from the dipole, it is more convenient to express A in 
spherical coordinate system. This transformation is accomplished through:

	

A
A
A

r sin cos sin sin cos
cos cos cos sin sin

sin cos 0

A
A
A

x

y

z

	 (2.45)

Figure 2.9  Monopole antenna used in EMC 
compliance testing.

x

y

z

r

φ

θ
Î0

l

Er

Eθ

Hφ

A ˆ

ˆ

ˆ

ˆ

Figure 2.10  Hertzian dipole.
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For this problem A Ax y 0, and thus Eq. (2.45) becomes

	

A
A
A

r sin cos sin sin cos
cos cos cos sin sin

sin cos 0

0
0

4
0I l
r

jkre

	 (2.46)

Therefore, in spherical coordinate system, the vector magnetic potential is expressed as

	

A
A
A

I l
r

I l
r

r

jkr

jkr

0

0

4

4
0

e

e

cos

sin 	 (2.47)

We will use this result in Section  6.7.4 to derive the radiation fields of a Hertzian 
dipole, (Paul, 2006, pp. 422–423):

	
H I dl j

r r
j r0

0
2

0 0
2 24

1 1
0sin e 	 (2.48a)

	
E I dl

r r
j

r
r

j r2
4

1 10
2 0 0

2

0
2 2

0
3 3

0cos e 	 (2.48b)

	
E I dl j

r r
j
r

j r0
0 0

2

0 0
2 2

0
3 34

1
0sin e 	 (2.48c)
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3

3.1  Derivatives

3.1.1  Basic Definition and Formulas

Derivatives describe the rate at which things change. The derivative is defined as

	
f x

f x x f x
xx

lim
0

	 (3.1)

(We will use this definition when deriving transmission line equations at the end of this 
chapter.)

Other Notations for Derivatives  Let y be the function of x, that is, y = f (x). We often use 
the shorthand notation y′ or f ′(x) to denote the derivative of y (Simon, 1982, p. 115). 
This notation does not indicate the variable with respect to which the derivative is 
evaluated (y could be a function not only of x but also of other variables). In many 
applications, it is important to identify that variable. We therefore use the alternative 
notation dy

dx
 or df x

dx
 to indicate that derivative of y is computed with respect to the 

variable x.

Derivative Formulas  Computing derivatives using the definition (3.1) can be tedious. 
Fortunately, such computations are usually unnecessary because there are derivative 
formulas that enable us to find the derivatives without computing limits.

Next we will state several useful formulas for derivatives

	
f x const f x 0	 (3.2a)

	
f x x f x 1	 (3.2b)

	
f x x f x axa a 1	 (3.2c)

	
f x f xx xe e 	 (3.2d)

	
f x f x aax axe e 	 (3.2e)

Vector Differential Calculus
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f x x f x

x
xln ,1 0	 (3.2f )

	
f x x f x xsin cos 	 (3.2g)

	 f x ax f x a axsin cos 	 (3.2h)

	
f x x f x xcos sin 	 (3.2i)

	 f x ax f x a axcos sin 	 (3.2j)

Derivative Properties:

	 af af 	 (3.3a)

	 f g f g 	 (3.3b)

	 fg f g fg 	 (3.3c)

	

f
g

f g fg
g 2

	 (3.3d)

Example 3.1  Derivative of a product
Let f x x x( ) 2 43  and g x x a( ) 2 1 . Find the derivative of their product.

Solution A:  Let’s first multiply the functions out and then take the derivative.

	 ( ) ( )( )fg x x x x x x x x x x2 4 1 2 2 4 4 2 2 43 2 5 3 3 5 3
	

Thus

	
d
dx

fg d
dx

x x x x x x x( ) ( ) ( ) ( )2 2 4 2 5 2 3 4 10 6 45 3 4 2 4 2

	

Solution B:  Let’s make use of Eq. (3.3c).

	

f x x f x

g x g x

2 4 6 4

1 2

3 2

2

,

, 	

Thus,

	

fg f g fg x x x x x

x x x x

6 4 1 2 4 2

6 6 4 4 4

2 2 3

4 2 2 4 8 10 6 42 4 2x x x 	
which, of course, agrees with the Solution A.� ▪
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Example 3.2  Derivative of a quotient
Let f x x2 4 and g x x4 1. Find the derivative of their quotient.

Solution:

	

f
g

f g fg
g

x x

x
x x

x2 2

2 4 1 2 4 4

4 1
8 2 8 16

4 1 2 2
18

4 1x 	 ▪

Second‐Order Derivatives
It is often useful to know the derivative of f ′; that is, (  f ′)′. This is called the second 

derivative of f. The notation used is f ″ or d f
dx

2

2
.

Example 3.3  Second derivative
Find the second derivative of y x x x6 4 25 3 2.

Solution:

	

y x x x

y x x

30 12 4

120 24 4

4 2

3
	

3.1.2  Composite Function and Chain Rule

The composite function of f (x) and g(x) is a function f (g(x).
For instance:

	

f x x g x x f g x x

f x x g x x f g x

cos , . cos

sin , .

Then

Then2 sin x g g f x2 2and sin 	

Chain Rule – Derivative of a composite function

	 f g x f g x g x 	 (3.4)

Example 3.4  Chain rule
Use the chain rule to differentiate ( )3 42 2x x

Solution:

	
3 4 2 3 4 6 42 2 2x x x x x

	

3.1.3  Partial Derivative

When we have a function of several variables, say f = f (x, y, z) we can obtain partial 
derivatives. A partial derivative of a function of several variables is its derivative with 
respect to one of those variables, with the other variables treated as constants.
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A partial variable of f(x, y, z) with respect to x is often denoted as f
x

, while that with 

respect to y is denoted by f
y

, and so on.

Example 3.5  Partial derivatives
Let f x y z x y yz, , 3 22 . Determine the partial derivatives of f with respect to x, 
y, and z.

Solution:

	

f
x

xy f
y

x z f
z

y6 3 2 22, ,
	 ▪

3.2  Differential Elements

In the study of electromagnetics we often need to perform line, surface, and volume 
integrations. We will discuss these integrals in Chapter 4. The evaluation of these integrals 
in a particular coordinate system requires the knowledge of differential elements of 
length, surface, and volume. In the following subsections we describe these differential 
elements in each coordinate system.

3.2.1  Differential Length Element

In Section 4.1 we will introduce and learn how to evaluate line integrals of the form

	 c

dF l	 (3.5)

The vector, dl, appearing on the right‐hand side of the scalar product in Eq. (3.5) is 
called the differential length vector, or the differential displacement vector.

Differential Length in Cartesian System  Differential displacement (or length) dl in Cartesian 
coordinate system is a vector defined by

	 d dl dl dl d d dx y z x y zl l l l, ,    	 (3.6)

and is shown in Figure 3.1. The figure shows a decomposition of a differential displace-
ment vector dl into the differential displacement vectors along the coordinate axes.

x

y

z

dlx dlz

dly

dl

Figure 3.1  Differential displacement in the Cartesian system.
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In terms of unit vectors, the differential displacement vectors along the coordinate 
directions can also be expressed as

	 d dl dl dlx x y y zl a a az	 (3.7)

In Cartesian system, the differential amount of displacement, dlx, dly, and dlz, is sim-
ply dx, dy, and dz, respectively, thus we may express the differential displacement vector 
in (3.7) in terms of the coordinate variables as

	
d dx dy dz dx dy dzx yl a a az, , 	 (3.8)

Differential Displacement in Cylindrical System  Differential displacement (or length) dl in 
cylindrical coordinate system is a vector defined by

	
d dl dl dl d d dz zl l l l, , 	 (3.9)

The differential displacement vectors along the coordinate directions are shown in 
Figure 3.2.

In terms of unit vectors, the differential displacement vectors along the coordinate 
directions can also be expressed as

	 d dl dl dlzl a a az	 (3.10)

When the angle φ increases by the amount of dφ the differential displacement dlφ 
increases by ρdφ as shown in Figure 3.3.

Thus,

	 dl d 	 (3.11)

Therefore, in terms of the coordinate variables, we may express the differential dis-
placement vector in (3.10) as

	
d d d dz d d dz zl a a a, , 	 (3.12)

x

y

z

z

dlz

dlφ

dlρ

φ ρ

ρ

Figure 3.2  Differential displacement in cylindrical system.
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Differential Displacement in  Spherical System  Differential displacement (or length) dl in 
spherical coordinate system is a vector defined by

	 d dl dl dl d d dr rl l l l, , 	 (3.13)

The differential displacement vectors along the coordinate directions are shown in 
Figure 3.4.

In terms of unit vectors, the differential displacement vectors along the coordinate 
directions can also be expressed as

	 d dl dl dlr rl a a a 	 (3.14)

In spherical coordinate system, both θ and φ are the angular coordinates, thus,

	 dl rd 	 (3.15a)

	 dl d r dsin 	 (3.15b)

In terms of the coordinate variables, the differential displacement vector in (3.13) can 
be expressed as

	 d dr rd r d dr rd r drl a a a, , sin sin 	 (3.16)

φ
dφ

ρdφ
ρ

Figure 3.3  Differential displacement in φ direction.

x

y

z

r

φ

θ

dlφ
dlθ

dlr

Figure 3.4  Differential displacement in spherical system.
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3.2.2  Differential Surface Element

Differential surface element dS (or differential surface area) is a vector that we will 
encounter when evaluating surface integrals of the form

	 S

dF S	 (3.17)

Consider a surface S, and a differential amount of it, dS, as shown in Figure 3.5.
With this differential surface dS, we may associated a differential surface vector dS 

whose magnitude is equal to dS, and whose direction is perpendicular to the differential 
surface dS (Sadiku, 2010, p. 59)

	 d dS nS a 	 (3.18)

where an is a unit vector normal to the surface.
(There are, of course, two normal vectors to any such surface, so which one do we 

choose? In all instances when we will use such vectors, it will be clear from the problem 
description which perpendicular vector is of interest to us.)

In the next section we will decompose the differential surface vector into three 
component vectors along the coordinate directions in each of the three coordinate 
systems.

Differential Area in Cartesian System  In Cartesian coordinate system, the differential area 
may, in general, be expressed as

	 d d d d dS dS dSx y z x x y y z zS S S S a a a 	 (3.19)

This decomposition is shown in Figure 3.6.
The differential area vector dSx is perpendicular to the differential surface area dSx 

which lies in the yz plane. This differential surface area is equal to the product of two 
differential displacements in the yz plane: dlx and dlz. Thus, we may write,

	 dS dl dl dydzx y z 	 (3.20a)

Similarly,

	 dS dl dl dxdzy x z 	 (3.20b)

	 dS dl dl dxdyz x y 	 (3.20c)

Surface S

dS

dS

Figure 3.5  Differential surface vector.
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Therefore, we may alternatively, express the differential surface area as

	

d dydz dxdz dxdy
dydz dxdz dxdyx y z

S
a a a
, ,    	 (3.21)

Differential Area in  Cylindrical System  In cylindrical coordinate system, the differential 
area may be expressed as

	 d d d d dS dS dSz z zS S S S a a a 	 (3.22)

where

	 dS dl dl d dzz 	 (3.23a)

	 dS dl dl d dzz 	 (3.23b)

	 dS dl dl d d d dz 	 (3.23c)

Therefore, in cylindrical system, we may alternatively, express the differential surface 
area as

	

d d dz d dz d d
d dz d dz d d z

S
a a a
, ,

	 (3.24)

Differential Area in Spherical System  In spherical coordinate system, the differential area 
may be expressed as

	 d d d d dS dS dSr r rS S S S a a a 	 (3.25)

where

	
dS dl dl rd r d r d dr sin sin2 	 (3.26a)

	
dS dl dl dr r d r drdr sin sin 	 (3.26b)

	 dS dl dl dr rd rdrdr 	 (3.26c)

Therefore, in spherical system, we may alternatively, express the differential surface 
area as

x

y

z

dSy = dSyay 

dSz = dSzaz 

dSx = dSxax 

Figure 3.6  Differential surface 
vector decomposition.
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d r d d r drd rdrd

r d d r drd r

S

a a

2

2

sin , sin ,

sin sin ddrd a
	 (3.27)

3.2.3  Differential Volume Element

We will encounter differential volume element, dv, in the volume integrals of the form

	 v

Fdv	 (3.28)

The differential volume element, dv, is defined as a scalar equal to the product of 
three differential displacements in each coordinate system.

Differential Volume in  Cartesian System  Differential volume dv, in Cartesian system is 
defined as the scalar

	 dv dl dl dlx y z	 (3.29a)

or in terms of the coordinate variables:

	 dv dxdydz 	 (3.29b)

Differential Volume in Cylindrical System  Differential volume dv, in cylindrical system is 
defined as the scalar

	 dv dl dl dlz 	 (3.30a)

Or in terms of the coordinate variables:

	 dv d d dz d d dz	 (3.30b)

Differential Volume in  Spherical System  Differential volume dv, in spherical system is 
defined as the scalar

	 dv dl dl dlr 	 (3.31a)

or in terms of the coordinate variables:

	

dv dr rd r d

r drd d

sin

sin2
	 (3.31b)

3.3  Constant‐Coordinate Surfaces

In this section we discuss a special class of surfaces, called constant‐coordinate surfaces. 
These surfaces in Cartesian, cylindrical, or spherical coordinate systems are easily gener-
ated by keeping one of the coordinate variables constant and allowing the other two to vary.

These surfaces are extremely useful when evaluating line and surface integrals, as we 
will see in Chapter 4.
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3.3.1  Cartesian Coordinate System

In the Cartesian system, we have three families of constant‐coordinate surfaces (planes) 
defined by

	

x const y z
y const x z
z const x y

,
,
,

	 (3.32)

These surfaces are shown in Figure 3.7.
The intersection of any two such planes is a line parallel to one of the coordinate axes. 

For instance, x = const and y = const is the line parallel to the z axis. These lines are 
constant‐coordinates lines.

3.3.2  Cylindrical Coordinate System

Orthogonal surfaces in cylindrical coordinates are described by:

	

const z
const z

z const

, ,
, ,
, ,

0 2
0
0 0 2

	 (3.33)

and are shown in Figure 3.8.

x

x = const

y = const

z = const

y

y

y

y

x

x

y

y

Figure 3.7  Constant‐coordinate surfaces in a Cartesian system.
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Note that ρ = const is a circular cylinder; φ = const is a semi‐infinite plane with 
its edge along the z axis; z = const is the same infinite plane as in a Cartesian 
system.

The intersection of any two surfaces is a curve – either a line or a circle: ρ = const 
and z = const is a circle of radius ρ; z = const and φ = const is a semi‐infinite 
line originating at the z axis and passing through P; ρ = const and φ = const is an infinite 
line parallel to the z axis and passing through P. These curves are constant‐coordinates 
curves.

3.3.3  Spherical Coordinate System

Orthogonal surfaces in spherical coordinates are described by:

	

r const
const r
const r

, ,
, ,
, ,

0 0 2
0 0 2
0 0

	 (3.34)

and are shown in Figure 3.9.
Note that r = const is a sphere with its center at the origin; θ = const is a circular cone 

with the z axis as its axis and the origin as its vertex; φ = const is the semi‐infinite plane 
as in a cylindrical system.

A curve is formed by the intersection of any two surfaces; for example: r = const and 
φ = const is a semi‐circle. These curves are constant‐coordinates curves.

x

ρ = const

ϕ = const

z = const

y

y

y

y

x

x

y

y

Figure 3.8  Constant‐coordinate surfaces in a cylindrical system.
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3.3.4  Differential Elements on Constant Coordinate Surfaces

Recall: Constant‐coordinate surfaces in Cartesian, cylindrical, or spherical coordinate 
systems were obtained by keeping one of the coordinate variables constant and allowing 
the other two to vary.

The consequence of keeping one of the coordinate variables constant is the fact that 
the differential displacement along that variable direction is zero. Let’s look at the resulting 
differential surface and displacement vectors in all three coordinate systems.

Cartesian Coordinate System  In Cartesian, the differential surface vector is given by

	 d dydz dxdz dxdyS , ,    	 (3.35)

On the constant coordinate surfaces we have:

	 x const dx d dydz0 0 0S , ,    	 (3.36a)

	 y const dy d dxdz0 0 0S , ,    	 (3.36b)

	 z const dz d dxdy0 0 0S , ,    	 (3.36c)

x

θ = const

r = const

ϕ = const

y

y

y

y

x

x

y

yy

Figure 3.9  Constant‐coordinate surfaces in a spherical system.
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Recall: the differential displacement vector, in general, is given by

	 d dx dy dzl , ,      	 (3.37)

Since the intersection of two constant‐coordinate surfaces produces a constant 
coordinate line (parallel to the coordinate axes), it follows that on a constant‐coordinate 
line two‐out‐of‐three components of dl in (3.37) are zero. That is,

	 d dx or d dy or d dzl l l, , , , , ,            0 0 0 0 0 0 	 (3.38)

Cylindrical Coordinate System  In cylindrical coordinate system, the differential surface 
vector is given by

	 d d dz d dz d dzS , ,    	 (3.39)

On the constant coordinate surfaces we have:

	 const d d d dz0 0 0S , ,    	 (3.40a)

	 const d d d dz0 0 0S , ,    	 (3.40b)

	 z const dz d d dz0 0 0S , ,    	 (3.40c)

Also, the differential displacement vector is, in general, given by

	 d d d dzl , ,    	 (3.41)

Since the intersection of two constant‐coordinate surfaces produces a constant coordinate 
curve, it follows that on a constant‐coordinate curve two‐out‐of‐three components of 
dl in (3.41) are zero. That is,

	 d d or d d or d dzl l l, , , , , ,            0 0 0 0 0 0 	 (3.42)

Spherical Coordinate System  In spherical coordinate system, the differential surface 
vector is given by

	 d r d d r drd rdrdS 2 sin , sin ,    	 (3.43)

On the constant coordinate surfaces we have:

	 r const dr d r d d0 0 02S sin , ,    	 (3.44a)

	 const d d r dr0 0 0S , sin ,    	 (3.44b)

	 const d d rdrd0 0 0S , ,    	 (3.44c)

Also, the differential displacement vector is, in general, given by

	 d dr rd r dl , , sin    	 (3.45)

Since the intersection of two constant‐coordinate surfaces produces a constant coordi-
nate curve, it follows that on a constant‐coordinate curve two‐out‐of‐three components 
of dl in (3.44) are zero. That is,

	 d dr or d rd or d r dl l l, , , ,            0 0 0 0 0 0, , sin 	 (3.46)
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3.4  Differential Operators

In this section we will introduce several differential operators: gradient, divergence, 
curl, and Laplacian. These operators appear in Maxwell’s equations and in the wave 
equation which we will study later in this text.

3.4.1  Gradient

Given a scalar function we can create a vector function. The operation involved is that 
of taking the “gradient”. We will next define the gradient operation in Cartesian system, 
and subsequently in the cylindrical and spherical systems.

Gradient in Cartesian Coordinates  The gradient of given scalar function f(x, y, z), grad f, is 
the vector function defined by (Kreyszig, 1999, p. 446)

	
grad f f

x
f
y

f
zx y za a a 	 (3.47)

If we introduce the differential operator

	 x y zx y za a a 	 (3.48)

we may write

	
grad f f f

x
f
y

f
zx y za a a 	 (3.49)

Gradient in  Cylindrical Coordinates  The gradient of a given scalar function f (ρ, φ, z), 
grad f, is the vector function defined by (Sadiku, 2010, p. 70)

	
f f f f

z za a a1 	 (3.50)

Gradient in Spherical Coordinates  The gradient of given scalar function f (r, θ, φ), grad f, 
is the vector function defined by

	
f f

r r
f

r
f

ra a a1 1
sin

	 (3.51)

Example 3.6  Gradient of a scalar function
Determine the gradient of the following scalar fields:

a)	 	f x y xyz2 3 	

b)	 	f z z2 2 2 2sin cos 	

c)	 	f r2 cos sin 	
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Solution:

a)	 	 f f
x

f
y

f
z

f x y xyz

f xy yz x xz

x y z

x

a a a

a a

, 2

2

3

2 3 3 yy zxy3 a

	

b)	 	 f f f f
z

f z z

f z

za a a1 2

2 2

2 2 2, sin cos

sin a a a1 2 2 2 22 2z z z zcos cos sin sin cos

	

c)	 	 f f
r r

f
r

f f r

f r

ra a a1 1

2

2

sin
, cos sin

cos sin a a ar r
r

r r
1 12 2sin sin

sin cos cos

�

▪

3.4.2  Divergence

Given a vector function we can create a scalar function. The operation involved is that 
of taking the “divergence”. We will next define the divergence operation in Cartesian 
system, and subsequently in the cylindrical and spherical systems.

Divergence in  Cartesian Coordinates  The divergence of given vector function 
E x y z E E Ex y z, , , ,        , div E, is the scalar function defined by (Kreyszig, 1999, 
p. 453)

	
div E

x
E
y

E
z

x y zE 	 (3.52)

Another common notation for divergence is E

	

div
x y z

E E E

E
x

E

x y z x x y y z z

x

E E a a a a a a

yy z

y
E
z

	 (3.53)

Note that the divergence operation on a vector produces a scalar, while the gradient 
operation on a scalar produces a vector.

Divergence in  Cylindrical Coordinates  The divergence of given vector function 
E , , , ,       z E E Ez  is the scalar function defined by (Sadiku, 2010, p. 75)

	
E 1 1E

E E
z
z 	 (3.54)
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Divergence in  Spherical Coordinates  The divergence of a given vector function 
E r E E Er, , , ,         is the scalar function defined by

	
E 1 1 1

2
2

r r
r E

r
E

r
E

r sin
sin

sin
	 (3.55)

Example 3.7  Divergence of a vector function
Determine the divergence of the following vector fields:

a)	 	E a a ae z xy xzxy
x y z

2 2sin cos 	

b)	 	E a a2 2 2z z zcos sin 	

c)	 	E a a a2 3 2 2r
r

rrcos sin sin 	

Solution:

a)	 	 E E
x

E
y

E
z

ye zx xy x xz xzx y z xy2 22 cos cos sin 	

b)	 	 E 1 1 1 3 1 0

1

2 2E
E E

z
zz cos sin

3 1 6 62 2 2 2 2 2 2z z zcos sin cos sin cos sin

	

c)	 	 E 1 1 1

1 2

2
2

2
3

r r
r E

r
E

r
E

r r
r

r sin
sin

sin

coss
sin

sin sin
sin

sin

c

1 3 1 2

1 6

2

2
2

r r r

r

r
r oos

sin
sin cos cos cos1 3 2 0 6 6

2r r r

�

▪

3.4.3  Curl

Given a vector function H(x, y, z) we can create another vector function. The operation 
involved is that of taking the “curl”. We will next define the curl operation in Cartesian 
system, and subsequently in the cylindrical and spherical systems.

Curl in Cartesian Coordinates  The curl of given vector function H x y z H H Hx y z, , , ,        , 
curl H, is the vector function defined by (Kreyszig, 1999, p. 457)

	

H

a a a

a

x y z

x y z

z y
x

x z

x y z
H H H

H
y

H
z

H
z

H
x

a ay
y x

z
H
x

H
y

	 (3.56)
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Curl in Cylindrical Coordinates  The curl of given vector function H , , , ,        z H H Hz  
is the vector function defined by (Sadiku, 2010, p. 80)

	

H

a a a

a

z

z

z

z
H H H

H H
z

H
z

H1 zz
zH

H
a a1

	 (3.57)

Curl in Spherical Coordinates  The curl of given vector function H r H H Hr, , , ,         
is the vector function defined by

	

H

a a a
1

1

2r

r r

r
H r H r H

r
H

r

r

sin

sin

sin

sin
sinn

sin
H

r
H

r
rH

r r
rH

r
ra a1 1

1 Hr a

	 (3.58)

There are two important properties of the gradient, divergence, and curl operations 
that we will use later in this text:

	 f 0	 (3.59)

	 H 0	 (3.60)

Example 3.8  Curl of a vector function
Determine the curl of the following vector fields:

a)	 	H a a ae xy xzxy
x y zsin cos2 	

b)	 	H a az z z
2 2cos sin 	

c)	 	H a a ar
r

rrcos sin sin1 2 2 	

Solution:

a)	 	 H

a a a a a ax y z

x y z

x y z

xy
x y z

H H H
x y z

e xy xzsin cos2

yy
xz

x
xy

z
e

x
xz

z
x

x z
xy

y

y

cos sin

cos sin

2

2

a a a

a yy
y

e

y xy z xz xz xe z xz

x
xy

z

z y
xy

z

a a

a a acos cos sin cos si2 2 nn cosxz y xy xey
xy

za a
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b)	 	 H

a a a

a a

1

1 1 1

z

z

z
z

z
H H H

H H H
z

H H

z
H

z z

z
z

a

a a a

a

1 1 1

2 2sin cos aa az z
2 sin

	

c)	 	 H

a a a

a a

1

1

2

2

r

r r

r
H r H r H

r

r r

r

r

r

sin

sin

sin

sin

ssin

cos sin sin

sin
sin

a

a

r

r r

r
r

r

2

1 2

3 2

2

3 2 sin sin cos

sin
sin

r
r r r

r
r

a a

1 2
2

3 2

r
r r r

r
r

ra a asin cos sin

sin
sin1 42

3 ccos sin sin

cos sin sin

a a a

a a a

r

r

r r

r r

6

4 6

3 2 2 2

�

3.4.4  Laplacian

The remaining differential operator is the Laplacian. When the Laplacian operation is 
performed on a scalar function, the result is another scalar function; when it is per-
formed on a vector function, the result is another vector function. We will next define 
the Laplacian of a scalar function in Cartesian system, and subsequently in the cylindri-
cal and spherical systems.

Laplacian in Cartesian Coordinates  Recall: The gradient of given scalar function f(x, y, z), 
is the vector function defined by (Sadiku, 2010, p. 88)

	
f f

x
f
y

f
zx y za a a 	 (3.61)
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If we take the divergence of the resulting vector, we obtain a scalar function

	
f f

x
f

y
f

z

2

2

2

2

2

2
	 (3.62)

The resulting expression is called the Laplacian of f and is denoted by 2 f . Thus,

	
2

2

2

2

2

2

2f f
x

f
y

f
z

	 (3.63)

Laplacian in cylindrical coordinates  The Laplacian of given scalar function f(ρ, φ, z), is 
the scalar function defined by

	
2

2

2

2

2

2
1 1f f f f

z
	 (3.64)

Laplacian in spherical coordinates  The Laplacian of given scalar function f(r, θ, φ), is the 
scalar function defined by

	
2

2
2

2 2 2

21 1 1f
r r

r f
r r

f
rsin

sin
sin

ff
2

	 (3.65)

When computing the electric and magnetic radiation fields of antennas, we will 
encounter the Laplacian of a vector function 2V . Instead of computing this Laplacian 
from the definition (which is quite involved), we will make use of the following identity:

	
2V VV 	 (3.66)

3.5  EMC Applications

3.5.1  Transmission‐Line Equations

We will show the application of the concept of a derivative through the derivation of 
transmission line equations. (Transmission lines will be discussed in detail in Part III of 
this book.)

Figure 3.10 shows the per‐unit‐length equivalent circuit model of a transmission line; 
l and c represent the per‐unit‐length inductance and capacitance associated with the 
length Δz of the line (Paul, 2006, p. 182).

Writing Kirchhoff ’s voltage law around the outside loop (we will review the basic 
circuit laws in Part II of this book) gives

	
V z z t V z t l z

I z t
t

,  
 

,
, 	 (3.67)

Dividing both sides by Δz and taking the limit as z 0 gives

	
lim

,
z

V z z t V z t
z

l
I z t

t0

, ,  	 (3.68)



Foundations of Electromagnetic Compatibility56

We recognize that the expression on the left‐hand side of Eq. (3.68) is the partial 
derivative of the line voltage with respect to the variable z. Thus,

	
V z t

z
l

I z t
t

, ,  	 (3.69)

This is the first transmission line equation. Similarly, writing Kirchhoff ’s current law 
at the upper node of the capacitor gives

	
I z z t I z t c z

V z z t
t

,
,

  
 

, 	 (3.70)

Dividing both sides by Δz and taking the limit as z 0 gives

	
lim

, ,
z

I z z t I z t
z

c
V z z t

t0

   , 	 (3.71)

Again, we recognize that the expression on the left‐hand side of Eq. (3.71) is the par-
tial derivative of the line current with respect to the variable z. Thus,

	
I z t

z
c

V z t
t

, ,  	 (3.72)

This is the second transmission line equation. Equations (3.68) and (3.71) are called 
the transmission‐line equations.

3.5.2  Maxwell’s Equations in a Differential Form

The differential operators presented in this chapter appear throughout the study of 
electromagnetics and EMC. Perhaps the most important application of these operators 
is in Maxwell’s equations.

Maxwell’s equations can be expressed in several forms. Here, we present the differential 
time‐domain version of these equations in a simple medium (Paul, 2006, pp. 899, 901).

	
E H

t
	 (3.73a)

I(z, t)
I(z+∆z, t)

z+∆z

V(z+∆z, t)

+

–

+

–

V(z, t)

I∆z

c∆z

z

Figure 3.10  Equivalent circuit model 
of a transmission line.
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H E E J

t S	 (3.73b)

	
  E V 	 (3.73c)

	   H 0
	 (3.73d)

In Eqs (3.73) E denotes electric field intensity, while H denotes magnetic field inten-
sity. J stands for volume current density, while ρv denotes volume charge density. We 
will derive and discuss these equations in Part III of this text.

3.5.3  Electromagnetic Wave Equation

The concept of a vector magnetic potential is useful in the derivation of the electric and 
magnetic fields radiated by an antenna. In such derivations (to be presented in 
Section 6.7.4), the following wave equation needs to be solved (Balanis, 2005, p. 139).

	 2 2 0A k Az z 	 (3.74)

where Az is the z component of a vector magnetic potential and k is a constant.
A A rz z  in spherical coordinate system (Az is not a function of θ or φ). Thus, the 

Laplacian in spherical coordinate system:

	
2

2
2

2 2 2

21 1 1f
r r

r f
r r

f
rsin

sin
sin

ff
2

	 (3.75)

Applied to Eq. (3.74) this reduces to

	
2 2

2
2 21 0A k A

r r
r A r

r
k A rz z

z
z

	 (3.76)

which, when expanded, gives

	

1
2 02

2
2

2
2

r
r

A r
r

r
A r
r

k A rz z
z

	 (3.77)

which reduces to

	
d A r

dr r
dA r

dr
k A rz z

z

2

2
22 0	 (3.78)

In Chapter 6 we will discuss the solution of this differential equation.
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4

4.1  Line Integrals

In this section we will define and learn how to evaluate the line integrals of the form

c

dF l	 (4.1)

Before discussing the line integrals, however, let’s review the concept of indefinite and 
definite integrals.

4.1.1  Indefinite and Definite Integrals

We will first introduce the indefinite integral and then use it to present the definite 
integral.

Indefinite integral  The indefinite integral can be easily defined using the concept of a 
derivative as follows.

Consider a function f(x). If its integral exists, denoted,

g x f x dx	 (4.2)

then

g x f x 	 (4.3)

Several useful integral formulas are presented next:

f x f x dx dx x

x

1

1
	

(4.4a)

f x x f x dx x dx
a

x

a
x a

a
x

a a a

a a

1
1

1
1

1
1

1

1 1 1 xxa

	
(4.4b)

Vector Integral Calculus
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f x e f x dx e dx e

e e

x x x

x x
	

(4.4c)

f x e f x dx e dx
a

e

a
e

a
a e e

ax ax ex

ex ax ax

1

1 1
	

(4.4d)

f x
x

f x dx
x

dx x x

x
x

1 1 0

1

ln ,

ln
	

(4.4e)

f x x f x dx x dx x

x x x

sin sin cos

cos sin sin
	

(4.4f )

f x ax f x dx ax dx
a

ax

a
ax

a

sin sin cos

cos

1

1 1 sin sinax a ax
	

(4.4g)

f x x f x dx x dx x

x x

cos cos sin

sin cos
	

(4.4i)

f x ax f x dx ax dx
a

ax

a
ax

a

cos cos sin

sin c

1

1 1 oos cosax a ax
	

(4.4j)

Definite Integral  If the indefinite integral is given by

f x dx g x 	 (4.5)

then the definite integral is defined by

a

b

x a

x bf x dx g x g b g a 	 (4.6)

Integral Properties

a

b

a

b

cf x dx c f x dx	 (4.7a)

a

b

a

b

a

b

f g x dx f x dx g x dx	 (4.7b)
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a

b

a

c

c

b

f x dx f x dx f x dx a c b, 	 (4.7c)

b

a

a

b

f x dx f x dx	 (4.7d)

4.1.2  Line Integral

The concept of a line integral is a simple generalization of the concept of a definite 
integral

a

b

f x dx	 (4.8)

In Eq. (4.8) we integrate f(x) from x = a along the x axis to x = b. In a line integral we 
integrate a given function, called the integrand, along a curve C in space, or in the plane 
(Kreyszig, 1999, p. 464).

Consider a curve C in space extending from point a to point b, as shown in Figure 4.1.
The line integral of a vector F over the curve C is defined as

C

dF l	 (4.9)

When the curve is a closed curve (points a and b coincide) then the line integral over 
the curve C is defined as (Sadiku, 2010, p. 64)

F ld
C


	 (4.10)

The evaluation of the line integral in Eqs (4.9) or (4.10) is, in general, quite difficult. 
However, as we will show next, if the curve is a constant‐coordinate curve, this line 
integral reduces to the definite integral discussed earlier.

Cartesian Coordinate System  In the Cartesian coordinate system, if the vector F and the 
differential displacement dl have the components

F lF F F d dx dy dzx y z, , , ,, 	 (4.11)

then the line integral in Eq. (4.9) becomes

C C
x y zd F dx F dy F dzF l 	 (4.12)

a

b

C dl

F

Figure 4.1  Illustration of the line integral.
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And if the line is a constant coordinate line, then this integral reduces to one of the 
three definite integrals:

C x

x

xd F dxF l
1

2

	 (4.13a)

C y

y

yd F dyF l
1

2

	 (4.13b)

C z

z

zd F dzF l
1

2

	 (4.13c)

Cylindrical Coordinate System  In the cylindrical coordinate system, if the vector F and 
the differential displacement dl have the components

F lF F F d d d dzz, , , ,, 	 (4.14)

then the line integral in Eq. (4.9) becomes

C C
zd F d F d F dzF l 	 (4.15)

And if the curve is a constant coordinate curve, then this integral reduces to one of 
the three definite integrals:

C

d F dF l
1

2

	 (4.16a)

C

d F dF l
1

2

	 (4.16b)

C z

z

zd F dzF l
1

2

	 (4.16c)

Spherical Coordinate System  In the spherical coordinate system, if the vector F and the 
differential displacement dl have the components

F lF F F d dr rd r dr , , , , , sin 	 (4.17)

then the line integral in Eq. (4.9) becomes

C C
rd F dr F rd F r dF l sin 	 (4.18)
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And if the curve is a constant coordinate curve, then this integral reduces to one of 
the three definite integrals:

C r

r

rd F drF l
1

2

	 (4.19a)

C

d F rdF l
1

2

	 (4.19b)

C

d F r dF l
1

2

sin 	 (4.19c)

4.1.3  Properties of Line Integrals

From familiar properties of integrals in calculus we obtain formulas for line integrals

C C

k d k d k constF l F l 	 (4.20)

C C C

d d dF G l F l G l	 (4.21)

C C C

d d dF l F l F l
1 2

	 (4.22)

where in Eq. (4.22) the path C is subdivided into two curves C1 and C2 that have the 
same orientation as C, as shown in Figure 4.2.

Line Integral Independence of Path  Consider the line integral given by

C C
x y zd F dx F dy F dzF l 	 (4.23)

In Eq. (4.23) we integrate from a point a to a point b over a path C.
The value of this integral generally depends not only on a and b, but also on the path 

along which we integrate. This raises the question of conditions for independence of the 
path, so that we get the same value in integrating from a to b along any path C.

A very practical criterion for path independence is the following:
A line integral in Eq. (4.23) is independent of path if the vector F is a gradient of some 

scalar function f.

a

b

C1

C2

Figure 4.2  Illustration of Eq. (4.22).
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Note that we don’t need to know what that scalar function f is; we just need to know 
that F is the gradient of it. So, how is this useful in electromagnetics?

It is very useful, because in Part II of this book we will be evaluating the following 
integral

C

dE l	 (4.24)

where E is the electric field intensity. Since

E V 	 (4.25)

we will be free to choose any path of integration in Eq. (4.24).

Integration along Closed Curves  When discussing electrostatic fields we will make use of 
the following property of line integrals:

The line integral

C C
x y zd E dx E dy E dzE l 	 (4.26)

is independent of path if its value around every closed path is zero.
On the other hand, if we know that the line integral is independent of path, then

E 0 	 (4.27)

Example 4.1  Evaluation of a line integral
Let F be given by

A a a4 3sin cos 	

and the curve C, in the xy plane, be defined and oriented as shown in Figure 4.3. Evaluate 
the line integral F ld

C

y

x

6

3

π π

3

3 6

6

C1

C2C3

C4

Figure 4.3  Line integral example.
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Solution:  To evaluate this integral we make use of Eq. (4.22)

A l A l A l A l A ld d d d d
C C C C C


1 2 2 2 	

Along C1 have

C const z const
d d d dz d

C

1 3 6 6 0
0 0

1

: , ,
l , , , , 

A ld d d
C1

4 3 0 0 0 4
3

6

6

sin , cos , sin, , 

44
6

4 1
2 2

2 36
2

9
2

2
3

6 2

3

6

sin d 55
	

Along C2:

C z const
d d d dz d

2 6 6 3
0 0

: , ,
l , , , , 	

Along C3:

C const z const
d d d dz d

C

3 6 3 3 0
0 0

3

: , ,
l , , , , 

A ld d d
C3

4 3 0 0 0 4
6

3

3

sin , cos , sin, , 

44
3

4 3
2 2

2 3 9
2

36
26

3 2

6

3

sin d 25 3
	

Along C4:

C z const
d d d dz d

d
C

4 3 3 6
0 0

4

: , ,
l

A l

, , , , 

CC

d d
4

4 3 0 0 0 3

3 3

3
3

6

sin , cos , cos, , 

3

6

3
69 9 1

2
3

2
4 5 1 3cos sin ./
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Therefore

A l A l A l A l A ld d d d d
C C C C C


1 2 2 2

25 9 3 1 25 3 4 5 1. 3 20 5 1 3.
	 ▪

4.2  Surface Integrals

The concept of a surface integral is a simple generalization of the concept of a double 
integral, which we will define next.

4.2.1  Double Integrals

In a definite integral f x dx
a

b
, we integrate a function f (x) over an interval of the x axis. In 

a double integral, we integrate a function f(x, y) over a region R in the xy plane (Kreyszig, 
1999, p. 480).

f x y dxdy
R

, 	 (4.27)

Double integrals have properties similar to those of definite integrals.

kf x y dxdy k f x y dxdy
R R

, , 	 (4.28a)

f g dxdy fdxdy gdxdy
R R R

	 (4.28b)

f x y dxdy f x y dxdy f x y dxdy
R R R

, , , 
1 2

	 (4.28c)

where the region R in Eq. (2.28c) is subdivided into two regions R1 and R2, as shown in 
Figure 4.4.

In many electromagnetics problems the region R is a rectangular region described by 
a ≤ x ≤ b and c ≤ y ≤ d, and the double integral over a region R in Eq. (4.27) may be evalu-
ated by two successive integrations:

f x y dxdy f x y dy dx
R a

b

c

d

, , 	 (4.29)

f x y dxdy f x y dx dy
R c

d

a

b

, , 	 (4.30)

R1

R2

Figure 4.4  Subdivision of the region R in Eq. (4.28c).
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In Eq. (4.29) we first integrate the inner integral with respect to y, treating x as a 
constant. Then, we integrate this result with respect to x.

In Eq. (4.30) we first integrate the inner integral with respect to x, treating y as a 
constant. Then, we integrate this result with respect to y.

Both (4.29) and (4.30) produce the same result, as illustrated by the following example.

Example 4.2  Evaluation of a double integral
Evaluate

x y

xy y dydx
0

2

1

3
22 3

	
and then reverse the order of integration and reevaluate.

Solution:

x y x y x

xy y dydx xy y dy dx
0

2

1

3
2

0

2

1

3
22 3 2 3

00

2 2 3

1

3

0

2
2 3

1

3

2
2

3
3

x y y dx

xy y

y

y

x
y

y
dx x x dx x dx

x x

x x0

2

0

2

2

9 27 1 8 26

8
2

26
xx

x

0

2

16 52 68

Now, let’s reverse the limits of integration.

y x y x y

xy y dxdy xy y dx dy
1

3

0

2
2

1

3

0

2
22 3 2 3

11

3 2
2

0

2

1

3
2 2

0

2

2
2

3

3

x y y x dy

x y y x

x

x

y
x

x
dy y y dy y y

y y

y y

y

y

1

3
2

2 3

1

3

2 3

4 6 4
2

6
3

2 2
1

3
18 54 2 2 68

y

	 ▪

Useful Application of Double Integrals  The area A of a region R in the xy plane is given by 
a double integral

A dxdy
R

	 (4.31)

4.2.2  Surface Integrals

For a given vector function F, the surface integral is defined by

F Sd
S

	 (4.32)

This integral, in many applications, is called the flux of F through S. When the surface 
is a closed surface, we denote the integral in (4.32) by

F Sd
S


	 (4.33)
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The evaluation of the surface integral in Eqs (4.33) or (4.34) is, in general, quite 
difficult. However, as we will show next, if the surface is a constant‐coordinate sur-
face, this surface integral reduces to the double integral discussed in the previous 
section.

Cartesian Coordinate System  In Cartesian coordinate system, if the vector F and the 
differential surface vector dS have the components

F SF F F d dydz dxdz dxdyx y z, , , ,, 	 (4.34)

then the surface integral in Eq. (4.33) becomes

F Sd F dydz F dxdz F dxdy
S

x y z
S

	 (4.35)

And if the surface is a constant coordinate surface, then this integral reduces to one of 
the three double integrals:

F Sd F dydz
S z

z

y

y

x

1

2

1

2

	 (4.36a)

F Sd F dxdz
S z

z

x

x

x

1

2

1

2

	 (4.36b)

F Sd F dxdy
S y

y

x

x

z

1

2

1

2

	 (4.36c)

Cylindrical Coordinate System  In cylindrical coordinate system, if the vector F and the 
differential surface vector dS have the components

F SF F F d d dz d dz d dz, , , , , 	 (4.37)

then the surface integral in Eq. (4.33) becomes

F Sd F d dz F d dz F d d
S

z
S

	 (4.38)

And if the surface is a constant coordinate surface, then this integral reduces to one of 
the three double integrals:

F Sd F d dz
S z

z

1

2

1

2

	 (4.39a)

F Sd F d dz
S z

z

1

2

1

2

	 (4.39b)

F Sd F d d
S

z

1

2

1

2

	 (4.39c)
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Spherical Coordinate System  In spherical coordinate system, if the vector F and the 
differential surface vector dS have the components

F

S

F F F

d r d d r dr d r dr d

r , ,
2 sin , sin ,

	
(4.40)

then the surface integral in Eq. (4.33) becomes

F Sd F r d d F r dr d F rdr d
S

r
S

2 sin sin 	 (4.41)

And if the surface is a constant coordinate surface, then this integral reduces to one of 
the three double integrals:

F Sd F r d d
S

r

1

2

1

2
2 sin 	 (4.42a)

F Sd F r dr d
S r

r

1

2

1

2

sin 	 (4.42b)

F Sd F rdr d
S r

r

1

2

1

2

	 (4.42c)

Example 4.3  Evaluation of a Surface Integral
Evaluate the surface integral when the function A is given by

F a a a3 42z z z zsin 	

and the closed surface shown in Figure 4.5 is given by
S z: , ,2 0 2 1 4	

x

y

z
S1 (top)

dS1

dS3dS3

dS2
S2 (bottom)

S3 (side)

Figure 4.5  Closed surface in Example 4.3.
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Solution:

F S F S F S F Sd d d d
S S S



1 2 3

1 2 3 	
On S1 we have,

S z

z z z
d dS

1

2

1 1

0 2 0 2 4

3 4
0 0 0 0

: , ,

, sin ,
( , , ) (

F
S , , dd d

d z z z d d
S

z

)

, sin , ( )F S1
2

0 2
0 2

1

3 4 0 0, ,

44

2

0

2

0

2
2

3

0

2

4 4 2
3

6z d d d d 44
30 2

0 2
4z 	

On S2:
S z

z z z
d dS

2

2

2 1

0 2 0 2 1

3 4
0 0 0 0

: , ,

, sin ,
, , , ,

F
S d d

d z z z d d
S

F S2
2

0 2
0 2

2

3 4 0 0, sin , ( , , )

z

z d d d d

1

2

0

2

0

2
2

3

0

1 2
3

22

0 2
0 2

1

16
3

z 	
On S3:

S z

z z z
d dS d d

3

2

3

2 0 2 1 4

3 4
0 0

: , ,

, sin ,
, ,

F F
S zz

d z z z d dz
S

, , 

, , 

0 0

3 4 0 03
2

0 2
3

F S , sin ,

1 4

2

0

2

1

4
2

2
0 2
1 4

3 3 2

6

z

z

z d dz d z dz

22
3

12
3

64 1 756
3

3

1

4
z
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Therefore,

F S F S F S F Sd d d d
S S SS

1 2 3

1 2 3

64
3

16
3

756
3

268


	 ▪

4.3  Volume Integrals

The volume integral is a generalization of the triple integral and is denoted by

f x y z dxdydz
V

, , 	 (4.43)

Triple integrals can be evaluated by three successive integrations.

Example 4.4  Evaluation of a Triple Integral
Let f z z( ), , 2 . Then

z z

z d d dz d z d d
0

2

0

2

0

2

0

2

0

2

0

2

2 2 zz d zdz

zdz

z

z

4

4 4
2

8 4
2

0

2

0

2

0

2

16
	 ▪

4.4  Divergence Theorem of Gauss

The divergence theorem of Gauss states that the total outward flux of a vector field F 
through the closed surface S equals the volume integral of the divergence of F (Sadiku, 
2010, p. 76).

F S Fd dv
S


	 (4.44)

where the closed surface S defines the volume captured inside it.

4.5  Stokes’s Theorem

Stokes’s theorem states that the line integral of vector F along closed surface curve C 
equals the surface integral of the curl of F.

F r F Sd d
C S


	 (4.45)

where the closed curve C defines the surface S as shown in Figure 4.6
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4.6  EMC Applications

4.6.1  Maxwell’s Equations in an Integral Form

In Section 3.5.1 we presented Maxwell’s equations in a differential form. The equiva-
lent, integral for of these equations in simple medium is (Paul, 2006, Pgs. 899 and 901).

E l H Sd
t

d
C S


	 (4.46a)

H l E E S Sd
t

d d
C S S

S


J 	 (4.46b)

E Sd dv
S v

v


1 	 (4.46c)

H Sd
S

0


	 (4.46d)

In (4.46) E denotes electric field intensity, while H denotes magnetic field intensity. 
J stands for volume current density, while ρv denotes volume charge density. We will 
derive and discuss these equations in Part III of this book.

4.6.2  Loop and Partial Inductance

The concept of partial inductance is very powerful in EMC, for among other phenom-
ena, allows one to explain the ground bounce and power rail collapse (Paul, 2006, p.779; 
Ott, 2009, p. 770).

Consider a current flowing out of the source, through a forward path arriving at the 
load, and then going back to the source through a return path, as shown in Figure 4.7.

According to the Biot‐Savart’s law, current I flowing in the loop produces a magnetic 
flux density B.

The surface integral of the magnetic flux density over the surface of the loop gives the 
magnetic flux crossing the surface S

S

dB S	 (4.47)

The loop self inductance is defined as the ratio of the magnetic flux (due to the current I) 
crossing the surface S of this loop to the current I flowing in the same loop:

L
I

	 (4.48)

C

S

dS
C

S
dS

Figure 4.6  Illustration of Stokes’s Theorem.
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or

L
d

I
S

B S
	 (4.49)

In Part II, we will show that the magnetic flux density, B, is related to the magnetic 
vector potential, A, by

B A	 (4.50)

By using Stokes’s theorem, the surface integral in (4.47) over the surface area S can be 
transformed into a line integral of the vector magnetic potential A over the circumfer-
ence C of the surface area

S C

d dB S A l


	 (4.51)

and therefore the magnetic flux crossing the loop can be obtained from

A ld
C


	 (4.52)

Thus, the loop self inductance can alternatively be obtained from

L
d

I
C

A l


	 (4.53)

The closed curve C can be broken into four line segments C1, C2, C3, and C4, as shown 
in Figure 4.8.

Thus the line integral in Eq. (4.52) can be evaluated as the sum of the line integrals 
along each segment of the loop:

A l A l A l A l A ld d d d d
C C C CC 1 2 3 4



	 (4.54)

I

I

B

S

RL

RS

VS
+
–

Figure 4.7  Magnetic flux as a surface integral.
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Using (4.54) in (4.53) we obtain

L

d

I

d

I

d

I

d

I
L L L L

C C C C1 2 3 4

1 2 3 4

A l A l A l A l
	 (4.55)

Thus, the loop self inductance equals the sum of inductances attributed to each seg-
ment of the loop. The inductances L1, L2, L3, and L4 are called the partial self induct-
ances (Paul, p. 780).

4.6.3  Ground Bounce and Power Rail Collapse

Let’s start our discussion with a CMOS inverter logic gate in a totem‐pole configura-
tion, shown in Figure 4.9.

In a high‐speed digital circuits we often encounter the cascaded CMOS configuration 
shown in Figure 4.10.

A simplified model of this configuration is shown in Figure 4.11.
Let’s investigate the operation of this configuration on the low‐to‐high and high‐to‐

low transition of the input to the first inverter.
First, assume that the load capacitors CGP and CGN are initially uncharged. When the 

input signal IN = Low, the upper transistor is ON and the lower is OFF. The current 
flows though the upper transistor, signal trace, and the capacitor CGN to ground. This is 
shown in Figure 4.12.

Eventually the capacitor CGN is charged to (approximately) VCC and the current flow 
stops, as shown in Figure 4.13.

Now, the driver inverter transitions from low‐to‐high. Subsequently, the upper tran-
sistor turns OFF and the lower transistor turns ON, as shown in Figure 4.14.

At this point we have two sources of current:

1)	 current supplied by CGN as it discharges (dashed arrow)
2)	 current supplied by VCC as it charges the upper load capacitor

C2

C4

C1 C3

I

I

A

S

RL

RS

VS
+
–

Figure 4.8  Magnetic flux as a line 
integral.
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IN OUT

N-channel

P-channel

VCC

Figure 4.9  CMOS inverter logic gate.

VCC

CGP

CGN

CGP & CGN - Gate capacitances

VCC

IN OUT

Figure 4.10  Cascaded CMOS configuration.

VCC

CGP

CGN

VCC

IN OUT

Figure 4.11  Cascaded CMOS inverters.
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VCC

CGP
ON

OFF

CGN

VCC

INLow HighOUT

Figure 4.12  Input signal is Low.

VCC

CGP

CGN

VCC

VCC

+

–

INLow HighOUT

Figure 4.13  Current flow stops when CGN is charged to VCC.

VCC

CGP

ON

OFF

CGN

VCC

IN

Low-to-High

High-to-LowOUT

Figure 4.14  Transition from low‐to‐high.
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The current then flows along the trace towards the driver and through the lower 
transistor to ground. Eventually the current flow stops, and the voltage across capacitor 
CGP is VCC. This is shown in Figure 4.15.

Now, the driver inverter transitions from high to low. Subsequently, the upper transis-
tor turns ON and the lower transistor turns OFF, as shown in Figure 4.16.

At this point we have two sources of current:

1)	 current supplied by CGP as it discharges (dashed arrow)
2)	 current supplied by VCC flowing through the upper transistor, along the trace, and 

through the lower load capacitor, eventually charging it to VCC

Let’s focus on the currents supplied by VCC on both transitions. These are the cur-
rents that affect the ground bounce and power rail collapse.

Now let’s turn our attention to a more complete circuitry that shows the power distri-
bution system that includes the source, VS, and power and ground traces. This is shown 
in Figure 4.17.

VCC

CGP

ON

OFF

CGN

VCC

VCC

IN LowOUTHigh

+

–

Figure 4.15  Current flow stops when CGP is charged to VCC.

VCC

CGP
ON

OFF CGN

VCC

IN

High-to-Low

Low-to-HighOUT

Figure 4.16  Transition from high to low.
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In addition to the currents previously discussed, Figure 4.17 also shows the crossover 
currents which flow when both transistor are briefly ON at the same time.

When a CMOS gate switches, a current transient is drawn from the power distribu-
tion system. This current transient flows through both the power and ground traces. 
Both of these traces possess (partial) inductance, as shown in Figure 4.18, for a low‐to‐
high transition, and in Figure 4.19 for a high‐to‐low transition.

Note: The models shown in Figures 4.17 and 4.18 can be applied at frequencies where 
the impedance of the short PCB traces connecting the ICs is low enough compared to 
the impedance of the long supply traces and thus can be neglected (Hubing et al., 1995).

The impedance of the long supply traces cannot be neglected and is modeled as the 
power trace inductance LP and the ground trace inductance LG.

When IC1 switches (and also during the crossover event) the current is drawn from 
the source, resulting in the voltages VP and VG across the power and ground trace 
inductances. These voltages are often referred to as power rail collapse, and ground 
bounce, respectively.

The important consequence of these voltages is the fact that the voltage VIC at the IC1 
power and ground pins is no longer equal to VS, potentially causing signal integrity 
issues.

V V L L
di t

dtIC S p G 	 (4.56)

VCC

Driver IC (IC1)

GND GND

VS
+
–

VCC

High-to-Low

VCC

Driver IC (IC1)

GND GND

VS
+
–

VCC

Crossover (shoot through) current

Low-to-High

Load IC (IC2)

Load IC (IC2)

Figure 4.17  Power distribution system and the current flow.
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5

Differential equations are of fundamental importance in electromagnetics because 
many electromagnetic laws and EMC concepts are mathematically described in the 
form of differential equations.

We will focus on a selected sample of the differential equations relevant to the subject 
of EMC. We begin by discussing the first‐order RC and RL circuits and their solutions, 
and then focus on the second‐order RLC circuits.

We conclude this chapter by presenting several EMC applications described by the 
differential equations.

5.1  First Order Differential Equations – RC and RL Circuits

5.1.1  RC Circuit

A typical time‐domain RC circuit configuration is shown in Figure 5.1. (In Section 9.3 
we will learn how to transform any linear circuit into such a configuration using the 
Thévenin theorem approach).

At t 0 , the switch closes and a dc voltage source, VT, is connected to a capacitor with 
an initial voltage of V0. RT represents the Thévenin resistance of the circuitry connected 
to the capacitor.

The differential equation governing the capacitor voltage in this circuit is (Alexander & 
Sadiku, 2009, p. 274).

	
R C

dv t
dt

v t V v V tT
C

C T C, 0 00 	 (5.1)

Mathematics provides a number of approaches to solving this equation. We will solve 
it using the separation of variables. Rearranging terms gives

	

dv
dt

V v
R C

v V
R C

C T C

T

C T

T
	 (5.2)

or

	

dv
v V

dt
R C

C

C T T
	 (5.3)

Differential Equations



Foundations of Electromagnetic Compatibility82

Integrating both sides and using the definite integral approach we get

	

dv
v V

dt
R C

C

C TV

v t

T

tC

0 0

	 (5.4)

Thus

	
ln v V t

R CC T V

v t

T

t
C

0
0

	 (5.5)

and subsequently

	
ln lnv t V V V t

R CC T T
T

0 	 (5.6)

or

	
ln v V

V V
t

R C
C T

T T0
	 (5.7)

Therefore

	 e e
ln v V

V V
t

R C
C T

T T0 	
(5.8)

or

	

v V
V V

C T

T

t
R CT

0
e 	 (5.9)

leading to

	 v V V VC T T
t

R CT
0 e 	 (5.10)

RT

VT

t = 0

C+

–

+

–

vc, V0

Figure 5.1  RC circuit.
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And finally the step response of the capacitor voltage is given by

	 v t V V V R C tC T T
t

T0 0e , , 	 (5.11)

This response is shown in Figure  5.2, where R CT  is the time constant of the 
circuit.

5.1.2  RL Circuit

A typical time‐domain RL circuit configuration is shown in Figure 5.3.
At t 0, the switch closes and a dc current source, IN, is connected to an inductor with 

an initial current of I0. RN represents the Norton resistance of the circuitry connected to 
the inductor (discussed in Section 9.4).

The differential equation governing the inductor in this circuit is (Nilsson & Riedel, 
2015, p. 225).

	
L

R
di
dt

i I i I t
N

L
L N L, ,0 00 	 (5.12)

vc

99.3%

t

VT

V1

V0
τ

τ
2τ 3τ 4τ 5τ

V1
e

Figure 5.2  RC circuit step response.

t = 0

L iL, I0
RNIN

Figure 5.3  RL circuit.
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We will solve it using the separation of variables, but this time we will use the indefinite 
integral approach. Rearranging terms gives

	

di
dt

I i
L

R

i I
L

R

L N L

N

L N

N

	 (5.13)

or

	

di
i I

dt
L

R

L

L N
N

	 (5.14)

Integrating both sides and using the indefinite integral approach we get

	

di
i I

dt
L

R

L

L N
N

	 (5.15)

Thus

	

ln i t I t
L

R
AL N

N

	 (5.16)

Therefore

	 i t I BL N

t
L

R
A

A

t
L

RN Ne e e 	 (5.17)

or

	 i t I BL N

t
L

RNe 	 (5.18)

Evaluating Eq. (5.18) at t 0  gives

	 B I IN0 	 (5.19)

Substituting Eq. (5.19) in Eq. (5.18) and rearranging produces the final result, i.e. the 
step response of the inductor current

	
i t I I I L

R
tL N N

t

N
0 0e , , 	 (5.20)

This response is shown in Figure  5.4, where L RN/  is the time constant of the 
circuit.

Compare Eq. (5.20) with Eq. (5.11). They have the same mathematical form! This is 
not a coincidence. Look at Eq. (5.12) and Eq. (5.1). They also have the same mathemati-
cal form!

This leads to a very important observation that we will use on several occasions. 
Mathematical equations of the same form have the solutions of the same form.
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5.2  Second‐Order Differential Equations – Series 
and Parallel RLC Circuits

5.2.1  Series RLC Circuit

A typical series RLC circuit configuration is shown in Figure 5.5.
At t 0, the switch closes and a dc voltage source, VT, is connected to a series LC 

configuration. The capacitor has an initial voltage of V0 and the inductor has an initial 
current of I0.

The differential equation governing the capacitor voltage in this circuit is (Nilsson & 
Riedel, 2015, p. 287)

	

d v
dt

R
L

dv
dt LC

v V
LC

t

v V
dv

dt
I
C

C T C
C

T

C

C

2

2

0

0

1 0

0
0

,

, 	 (5.21)
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τ
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Figure 5.4  RL circuit step response.
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Figure 5.5  Series RLC circuit.
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Note that this equation could be written as

	

d v
dt

a dv
dt

bv V
LC

t

v V
dv

dt
I
C

C C
C

T

C

C

2

2

0

0

0

0
0

,

, 	 (5.22)

Instead of solving Eq. (5.22) directly, we will modify it by introducing two new param-
eters ζ and ω0, instead of a and b. Why? Because these two new constants have a physical 
meaning (unlike a and b), are very descriptive (we will see that, when looking at the 
solution of Eq. (5.21)) and they are indispensable when analyzing and designing second‐
order systems.

The new parameters are indirectly defined by:

	 2 0 a	 (5.23a)

	 0
2 b	 (5.23b)

Using these two parameters, Eq. (5.22) can be written as

	

d v
dt

dv
dt

v V
LC

t

v V
dv

dt
I
C

C C
C

T

C

C

2

2 0 0
2

0

0

2 0

0
0

,

, 	 (5.24)

There are many ways of solving Eq. (5.24). The choice of approach strongly depends 
of the functional form of the forcing function VT.

When the forcing function is identically equal to zero, VT 0 , the circuit is driven by 
the initial conditions only: the initial capacitor voltage and the initial inductor current 
(at least one of these two values must be non‐zero for the circuit response to be 
non‐zero).

In this case, the Eq. (5.24) describing the series RLC circuit becomes

	

d v
dt

dv
dt

v t

v V
dv

dt
I
C

C C
C

C

C

2

2 0 0
2

0

0

2 0 0

0
0

,

, 	 (5.25)

The response of the circuit is termed the natural response.
We will subsequently obtain the solution of Eq. (5.24) in the time domain for the case 

when the forcing function is a dc (step) voltage. Also, we will set the initial conditions 
to zero.
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d v
dt

dv
dt

v V
LC

t

v
i

C C
C

T

C

L

2

2 0 0
22 0

0 0
0 0

,

, 	 (5.26)

Such a response is termed the forced response.
Because the circuit is linear, we can solve for these responses separately and superim-

pose them to get the total response. (This important property is called superposition 
and will be explained in Part II.)

Natural Response of the Series RLC Circuit  The natural response is governed by Eq. (5.26), 
which requires the capacitor voltage plus a constant times its first derivative, plus another 
constant times its second derivative to add to zero for all 0. The only way this can 
happen is for vC(t), its first derivative, and its second derivative to have the same 
functional form.

There is only one such mathematical function: an exponential function. No matter 
how many times we differentiate an exponential function, the result is another exponen-
tial function.

This observation plus experience with first‐order circuits, suggests that we try a 
solution of the form

	 v t AC
ste 	 (5.27)

where A and s are constants yet to be determined.
If vC(t), as defined by Eq. (5.27), is to be the solution of Eq. (5.26) then it must satisfy 

Eq. (5.26). Let’s see where this reasoning leads us. First, let’s obtain the first and second 
derivative of vC(t), so that we can substitute them in Eq. (5.26).

	

dv t
dt

sAC ste 	 (5.28a)

	

d v t
dt

s AC st
2

2
2 e 	 (5.28b)

Substituting Eq. (5.27) and Eq. (5.28) into Eq. (5.26) leads to

	 s A sA Ast st st2
0 0

22 0e e e 	 (5.29)

Or

	
A s sste 2

0 0
22 0 	 (5.30)

The function est cannot be zero for all t 0. The condition A 0  is not considered 
because it is a trivial solution of no interest to us. That leaves us with the requirement that

	 s s2
0 0

22 0 	 (5.31)
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This quadratic equation is known as the characteristic equation of Eq. (5.24), since 
the roots of the equation dictate the character of the solution.

The two roots are

	 s1 0 0
2 1 	 (5.32a)

	 s2 0 0
2 1 	 (5.32b)

The two values of s in Eq. (5.32) indicate that there are two possible solutions for vC(t), 
each of which is in the form of the assumed solution in Eq. (5.27):

	 v AC
s t

1 1
1e 	 (5.33a)

	 v AC
s t

2 2
2e 	 (5.33b)

Since Eq. (5.25) is a linear equation, any linear combination of the two distinct 
solutions vC1(t) and vC2(t) is also a solution of Eq. (5.25). The general solution of 
Eq. (5.25), therefore, is

	 v t A AC
s t s t

1 2
1 2e e 	 (5.34)

where the constants s1 and s2 are given by Eq. (5.31) and the constants A1 and A2 are 
determined from the initial capacitor voltage and inductor current, as follows.

At t 0 , Eq. (5.34) becomes

	 v V A AC 0 0 1 2 	 (5.35)

To use the initial condition on the inductor current, we differentiate Eq. (5.34) 
to obtain

	

dv t
dt

A s A sC s t s t
1 1 2 2

1 2e e 	 (5.36)

At t 0 , Eq. (5.36) becomes

	

dv
dt

A s A sC 0
1 1 2 2 	 (5.37)

Since

	

dv
dt

I
C

C 0 0 	 (5.38)

we have

	

I
C

A s A s0
1 1 2 2 	 (5.39)

The solution of Eq. (5.35) and Eq. (5.39) yields the constants A1 and A2.
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Examining the roots of the characteristic equation (5.31) we notice that the roots can 
be of three different types:

1)	 If 1  we have two distinct real roots (the voltage response is said to be 
overdamped).

2)	 If 1, we have two equal real roots (the voltage response is said to be critically 
damped).

3)	 If 1, we have two complex conjugate roots (the voltage response is said to be 
underdamped).

Each type of the roots leads to a different mathematical form of the solution and 
hence to a different circuit behavior identified as overdamped, critically damped, or 
underdamped.

These three cases will be addressed next. (It is the underdamped case that is of most 
concern to an EMC engineer, as we shall see.)

Case 1  –  Overdamped Response  When 1, we have two distinct real roots, both of 
which are negative and real

	 s1 0 0
2 1 	 (5.40a)

	 s2 0 0
2 1 	 (5.40b)

The overdamped response is given by

	 v t A AC
s t s t

1 2
1 2e e 	 (5.41)

Case 2 – Critically Damped Response  When 1 , we have two equal real negative roots.

	 s s1 2 0 	 (5.42)

The critically damped response is given by

	 v t B B tC
st st

1 2e e 	 (5.43)

Constants B1 and B2 are evaluated using the initial conditions, as follows.
At t 0, Eq. (5.43) becomes

	 v BC 0 1 	 (5.44)

Upon differentiation Eq. (5.43) produces

	

dv t
dt

B se B e B tseC st st st
1 2 2 	 (5.45)

Evaluating Eq. (5.45) at t 0  results in

	

dv
dt

B s BC 0
1 2 	 (5.46)
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Now using Eq. (5.22) in Eq. (5.46) we arrive at

	
I
C

B s B0
1 2	 (5.47)

Solving Eq. (5.44) and Eq. (5.47) simultaneously produces the unknown constants B1 
and B2.

Case 3 – Underdamped Response  When 1, we have two complex conjugate roots.

	

s

j

1 0 0
2

0 0
2

0 0
2

0 0

1 1 1

1 1 1 22
	 (5.48a)

	 s j2 0 0
21 	 (5.48b)

It is convenient (and practical from the design standpoint) to define a new frequency 
ωd, called the damped natural frequency

	 d 0
21 	 (5.49)

Then the complex roots in Eq. (5.48) can be written as

	 s1 0 0
2 1 	 (5.50a)

	 s2 0 0
2 1 	 (5.50b)

The underdamped circuit response is given by

	 v t D t D t tC
t

d
t

d1 2
0 0 0e ecos sin , 	 (5.51)

The constants D1 and D2 are evaluated from the initial conditions as follows. Evaluating 
Eq. (5.50) at t 0  results in

	 v DC 0 1 	 (5.52)

That was easy. Obtaining D2 will take some work. Differentiate Eq. (5.51) to obtain

	

dv t
dt

D d
dt

t D d
dt

t

D

C t
d

t
d1 2

1 0

0 0e e

e

cos sin

0 0

0
2 0

t
d

t
d d

t
d

t t

D t

cos sin

sin

e

e e 0t
d dtcos

	 (5.53)

Now, evaluate Eq. (5.53) at t 0  to get

	

dv
dt

D DC
d

0
1 0 2 	 (5.54)
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Finally, make use of Eq. (5.22) in Eq. (5.54) to arrive at

	
D D I

Cd1 0 2
0 	 (5.55)

Use Eq. (5.52) in Eq. (5.55) to solve for D2.
Note: Using the trigonometric identities (or phasors), the underdamped response, as 

given by Eq. (5.51), can be expressed in a much more useful from:

	
v t D t tC

t
de 0 0sin , 	 (5.56)

The new constants D and θ are determined from the knowledge of the constants D1 
and D2.

Forced Response of  the  Series RLC Circuit  Consider the series RLC Circuit, shown in 
Figure 5.6 with zero initial conditions and driven by a step input.

This circuit is governed by the differential equation

	

d v
dt

R
L

dv
dt LC

v V
LC

tC T C
C

T
2

2
1 0, 	 (5.57)

Or using the damping ratio and undamped natural frequency

	

d v
dt

dv
dt

v V tC C
C T

2

2 0 0
2

0
22 0 	 (5.58)

where

	
2 0

R
L

	 (5.59a)

	
0
2 1

LC
	 (5.59b)

RT
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t = 0

L

C

+

–
vc,V0 = 0

iL, I0 = 0

Figure 5.6  Series RLC circuit with zero initial conditions.
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and the initial capacitor voltage and the initial inductor current are zero.

	 v VC 0 00 	 (5.60a)

	 i IL 0 00 	 (5.60b)

Under these assumptions the solution of Eq. (5.58) is called the forced response.
In order to obtain the solution of Eq. (5.58) we need the value of the initial capacitor 

voltage (which is zero in this case) as well as the value of the derivative of the capacitor 
voltage at t 0 .

The current through the capacitor is related to the voltage across the capacitor by:

	
i t C

dv t
dtC
C 	 (5.61)

Since the current through the inductor is the same as the capacitor current (they are 
in series), we have

	
i t C

dv t
dtL
C 	 (5.62)

Evaluating Eq. (5.62) at t 0  results in

	
i C

dv
dtL
C0

0
	 (5.63)

Since the initial inductor current is zero, it follows that

	

dv
dt
C 0

0 	 (5.64)

This the differential equation we need to solve; subject to its initial condition, it can 
be alternatively stated as

	

d v
dt

dv
dt

v V t

v
dv

dt

C C
C T

C

C

2

2 0 0
2

0
22 0

0 0
0

0

	 (5.65)

It can be shown (recall the discussion regarding the natural response) that the forced 
solution of Eq. (5.65) assumes one of the following forms.

Overdamped response 1

	 v t V E EC T
s t s t

1 2
1 2e e 	 (5.66a)

Critically damped response 1

	 v t V E E tC T
st

1 2 e 	 (5.66b)
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Underdamped response 1

	 v t V E t E tC T
t

d
t

d1 2
0 0e ecos sin 	 (5.66c)

The constants E1 and E2 are evaluated using the initial conditions following the pro-
cedure discussed for the natural response.

Just as for the natural response, it is more desirable from the engineering standpoint 
to express the underdamped case in the form

	 v t V E tC T
t

de 0 sin 	 (5.67)

instead of the form in Eq. (5.66c). The new constants E and θ are determined from the 
knowledge of the constants E1 and E2.

The forced responses are shown in Figure 5.7.
Figure  5.8 shows the underdamped responses for different value of the damping 

ratio ζ. It is important to note that for small values of ζ the response is highly oscillatory. 
This fact manifests itself in the EMC phenomenon known as ringing, which will be 
described at the end of this chapter.

vc(t)

t

Underdamped
Critically damped

Overdamped

Figure 5.7  Forced responses 
of a series RLC circuit.

0 < ζ1 < ζ2 < 1

t

vc(t)

ζ1

ζ2

Figure 5.8  Underdamped responses 
for different values of ζ.
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Total Response of the Series RLC Circuit  Total response of the series RLC circuit is due to 
both the forcing function and the non‐zero initial conditions. Based on the property of 
superposition (which will be discussed in Part II) the total response is the sum of the 
natural and forced responses.

The total response assumes one of the following forms.
Overdamped response 1

	 v t V F FC T
s t s t

1 2
1 2e e 	 (5.68a)

Critically damped response 1

	 v t V F F tC T
st

1 2 e 	 (5.68b)

Underdamped response 1

	 v t V F t F tC T
t

d
t

d1 2
0 0e ecos sin 	 (5.68c)

	 v t V Fe tC T
t

d
0 sin 	 (5.68d)

All the constants in Eq. (5.68) are evaluated in a similar manner to that discussed for 
the natural response.

5.2.2  Parallel RLC Circuit

A typical parallel RLC circuit configuration is shown in Figure 5.9.
At t 0 , the switch closes and a dc current source, IN, is connected to a parallel LC 

configuration. The capacitor has an initial voltage of V0 and the inductor has an initial 
current of I0.

The differential equation governing the inductor current in this circuit is (Nilsson & 
Riedel, 2015, p. 280)

	

d i
dt R C

di
dt LC

i I
LC

t

i I
di

dt
V
L

L

N

L
L

N

L

L

2

2

0

0

1 1 0

0
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,

, 	 (5.69)
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Figure 5.9  Parallel RLC circuit.
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or

	

d i
dt

di
dt

i I t

i I
di

dt
V
L

L L
L N

L

L

2

2 0 0
2

0
2

0

0

2 0

0
0

,

, 	 (5.70)

where

	
0
2 1

LC
	 (5.71a)

	
2 1

0 RC
	 (5.71b)

Comparing Eqs (5.70) and (5.24) we note that they have the same mathematical form. 
It follows that the solutions of these equations will have the same mathematical form.

Therefore the natural, forced, and the total responses will have the following forms.
Overdamped response 1

	 i t I F FL N
s t s t

1 2
1 2e e 	 (5.72a)

Critically damped response 1

	 i t I F F tL N
st

1 2 e 	 (5.72b)

Underdamped response 1

	 i t I F t F tL N
t

d
t

d1 2
0 0e ecos sin 	 (5.72c)

	 i t I F tL N
t

de 0 cos 	 (5.72d)

All the constants in Eq. (5.72) are evaluated in a similar manner to the one discussed 
for the series RLC circuit.

5.3  Helmholtz Wave Equations

In Section  6.7.4 we will derive the formulas for the radiated fields of the electric 
dipole of the antenna. In our derivations we will utilize the results derived in this 
section.

In this section we will present the solution of the inhomogeneous Helmholtz equation 
(Balanis, 2005, p. 139)

	
2 2ˆ ˆ ˆkA A J	 (5.73)

In order to solve this equation for the vector magnetic potential A, we will proceed as 
follows.
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Let’s assume that an infinitesimal source with current density J 0 0, , Jz  is placed at 
the origin of the coordinate system as shown in Figure 5.10.

To distinguish between the location where the source exists and the location of the 
observation point, we will use the prime coordinates for the source and the unprimed 
coordinates for the observation point, as shown in Figure 5.10.

Since the current density vector J has only a z component, then the vector A will only 
have a z component, and the Eq. (5.73) can be rewritten as

	
2 2A k A Jz z z 	 (5.74)

At the observation point, the current density Jz = 0, and Eq. (5.74) becomes

	
2 2 0A k Az z 	 (5.75)

In the limit, the source is a point, and therefore Az is not a function of θ or φ; it will 
only be a function of the distance from the origin, A A rz z ( ). Due to the apparent 
symmetry, we will choose spherical coordinate system for evaluation of the Laplacian in 
Eq. (5.75).

The Laplacian in spherical coordinate system is given by

	
2

2
2

2 2 2
1 1 1A
r r

r A
r r

A
rz

z z

sin
sin

sin

2

2
Az 	 (5.76)

Thus, Eq. (5.75) can be written as

	

2 2
2

2 21 0A k A
r r

r
A r

r
k A rz z

z
z 	 (5.77)

Taking the derivative of the term in brackets leads to

	

2 2
2

2 21 0A k A
r r

r
A r

r
k A rz z

z
z 	 (5.78)
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φ y
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Figure 5.10  Current density source located at the origin 
of the coordinate system.
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or

	

1 2 02
2

2

2
2

r
r

A r
r

r
A r
r

k A rz z
z 	 (5.79)

Equation (5.79) has two independent solutions (Balanis, 1989, p. 277)

	
A C

rz

jkr

1 1
e 	 (5.80a)

and

	
A C

rz

jkr

2 2
e 	 (5.80b)

Equation (5.80a) represents an outwardly (in the radial direction) traveling wave and 
Eq. (5.80b) describes an inwardly traveling wave. Since the source is placed at the origin, 
giving rise to an outwardly traveling wave, we chose the solution (5.80a) and discard the 
solution (5.80b). Thus,

	
A A C

rz z

jkr

1 1
e 	 (5.81)

In the static case ω = 0, and thus

	 k2 2 0 	 (5.82)

and Eq. (5.81) simplifies to

	
A C

rz
1 	 (5.83)

which is the solution to Eq. (5.73) or Eq. (5.75) when k = 0.
Thus, at the locations away from the source the time‐varying solution (5.81) and the 

static solution (5.83) differ only by the e−jkr factor.
Thus, the time‐varying solution can be obtained by multiplying the static solution 

by e−jkr.
Now, at the locations when the source is present, the Helmholtz equation is that of 

Eq. (5.74), repeated here

	
2 2A k A Jz z z 	 (5.84)

which in the static case becomes

	
2 A Jz z 	 (5.85)

This is a well‐known Poisson’s equation. The most familiar version of Poisson’s equations 
is that from electrostatics

	
2V 	 (5.86)
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where V is the scalar electric potential and ρ is the electric charge density. The solution 
of Eq. (5.86) is known to be

	
V

r
dv

v

1
4

	 (5.87)

The single prime for the variable of integration indicates that we integrate over the 
volume where the source is present.

Since Eqs (5.85) and (5.86) have the same mathematical forms, their solutions have 
the same mathematical forms. Thus the solution of Eq. (5.84) for the static case is

	
A J

r
dvz

v

z

4
	 (5.88)

By analogy to Eqs (5.81) and (5.83), the time‐varying solution of Eq. (5.84) can be 
obtained by multiplying the static solution (5.88) by e−jkr.

Thus,

	
A J

r
dvz

v
z

jkr

4
e 	 (5.89)

is the solution of Eq. (5.84).
If the current densities were in the x and y directions ( Jx and Jy respectively), the wave 

equation

	
2 2ˆ ˆ ˆkA A J	 (5.90)

for each direction would reduce to

	
2 2A k A Jx x x 	 (5.91a)

	
2 2A k A Jy y y 	 (5.91b)

with corresponding solutions of the form as in Eq. (5.89) given by

	
A J

r
dvx

v
x

jkr

4
e 	 (5.92a)

	
A J

r
dvy

v
y

jkr

4
e 	 (5.92b)

Thus, the solution to Eq. (5.90) is

	
A J

4 v

jkr

r
dve 	 (5.93)

where the solution vector A has the components Ax, Ay, Az, given by Eqs (5.92a), (5.92b), 
and (5.89), respectively.

In the discussion so far, we have assumed that an infinitesimal source with current 
density J 0 0, , Jz  was placed at the origin of the coordinate system.
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Let’s now place the source away from the origin, as shown in Figure 5.11.
Note that the source is represented by the primed coordinates, while the observation 

point by the unprimed coordinates.
Now, the solution (5.90) can be written as

	
A Jx y z x y z

R
dv

jkR

v

, , , ,
4

e 	 (5.94)

where R is the distance from any point on the source to the observation point.
The solution (5.94) was derived for the volume current density (in A/m2). If J repre-

sents surface current density (in A/m), then the solution for A is given in terms of the 
surface integral

	
A Jx y z x y z

R
dSS

jkR

S

, , , ,
4

e 	 (5.95)

and if J represents electric current (in A), then the solution for A is given in terms of the 
line integral

	
A Ix y z x y z

R
dle

jkR

c

, , , ,
4

e 	 (5.96)

5.4  EMC Applications

5.4.1  Inductive Termination of a Transmission Line

In this section we will show the application of the RL circuit differential equation 
discussed in Section 5.1.2 to the transmission line terminated by an inductive load. We 
will discuss transmission lines in detail in Part III.

Consider the circuit shown in Figure 5.12.
A line of length d is terminated by an inductor L with zero initial current. A constant 

voltage source with internal resistance equal to the characteristic impedance ZC of the 
line is connected to the line at t 0.

(x, y, z)

(x′, y′, z′)
Jz

r′
θ′

φ

φ′

R

r

x

z

y

Figure 5.11  Current density source located away from 
the origin.
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As we will learn in Chapter 17, the moment the switch closes at t 0, the voltage and 
current waves (vi and ii) originate at z 0 and travel down the line to reach the load end 
at time T.

Upon arriving at the load the reflected voltage and current waves (vr and ir) are 
created. The differential equation (we will derive it in Section  17.1.3) governing the 
reflected voltage wave is

	
L

Z
dv
dt

v V v V t T
C

r
r

S
r

S

2
0

2
, , 	 (5.97)

Rearranging Eq. (5.97) results in

	

dv
dt

v
L

Z

V Z
L

r r

C

S C

2
	 (5.98)

or

	
dv
dt

v Kr r 	 (5.99)

where

	
L

ZC

	 (5.100a)

	
K V Z

L
S C

2
	 (5.100b)

Rearranging Eq. (5.99) we get

	
dv
dt

v Kr r 	 (5.101)

or

	
dv
dt

v Kr r 	 (5.102)

ZC

VS
VL

+

–

ZC, V vi, ii

vr, ir

L

iL

z = 0

t = 0

z = d

Figure 5.12  Transmission line terminated by an inductive load.
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Separating the variables we get

	
dv

v K
dtr

r

1 	 (5.103)

Now, integrating Eq. (5.103) we obtain

	

dv
v K

dtr

rv t T

v t

t T

t

r

r

0 0

1 	 (5.104)

resulting in

	
ln v Kr v T

v t

T

t

r

r 1 	 (5.105)

or

	
ln

v t K
v T K

t Tr

r

1 	 (5.106)

and thus

	

v t K
v T K

r

r

t T
e

1

	 (5.107)

leading to

	
v t K v T Kr r

t T
e

1

	 (5.108)

Utilizing (5.100) in (5.108) we obtain

	
v t V Z

L
L

Z
V V Z

L
L

Zr
S C

C

S S C

C2 2 2
e

Z
L

t TC

	 (5.109)

and finally

	
v t V Vr

S
S

Z
L

t TC

2
e 	 (5.110)

More specifically, the general solution for the differential equation (5.97) is

	
v d t V V for t Tr

S
S

Z L t T, e
2

0 / , 	 (5.111)

The total voltage across the inductor, and the total current through the inductor are 
obtained by adding the incident and reflected waves.
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v l t v v V v d t

for t T

V for t T

i r
S

r

S
Z L t TC

, , 

e

2
0,

,/

	 (5.112)

Figure 5.13 shows a circuit schematic of a transmission line driven by a 5 V CMOS, 
and terminated in an inductive load.

The driver voltage and the voltage across the inductor are displayed in Figure 5.14.

U1.21
R1 TL1

L1

100.0 nH

50.0 ohms
500.000 ps
Simple
Net001

50.0 ohms

MODvsEZIBIS
CMOS, 5 V, ULTRA, IO
Net003

Figure 5.13  HyperLynx circuit model of a transmission line terminated by an inductive load.
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Figure 5.14  Driver voltage and the voltage across the inductor.
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5.4.2  Ringing on a Transmission Line

In this section we will the application of the series RLC circuit model to the phenomenon 
of ringing on the PCB traces.

Many pulse circuits can be represented by the lumped equivalent circuit shown in 
Figure 5.15.

This is our familiar series RLC circuit that we discussed in Section  5.2.1. When 
ringing occurs, the voltage across the capacitors exhibits sinusoidal oscillations, i.e. the 
circuit is underdamped.

The underdamped response was obtained as

	 v t V E tC T
t

de 0 sin 	 (5.113)

This response occurs when the roots s1 and s2 of the characteristic equation (5.31) are 
complex.

	 s1 0 0
2 1 	 (5.114a)

	 s1 0 0
2 1 	 (5.114b)

This occurs when 1.
Recall: In series RLC circuit we have

	
2 0

R
L

	 (5.115a)

	
0
2 1

LC
	 (5.115b)

Source
resistance

Ltrace

Ctrace Cload

LoadPCB traceDriver

R

Pulse
input

+

–

Figure 5.15  Lumped parameter model of a pulse circuit.
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Solving (5.115a) for ζ we obtain

	

R
L2 0

	 (5.116)

Substituting for ω0 from Eq. (5.115b) into Eq. (5.116), results in

	

R
L

R

L
LC

R LC
L

R LC
L2 2 1 2 40

2

2 	 (5.117)

or

	

R C
L

2

4
	 (5.118)

To avoid ringing we need 1, or equivalently

	
R C

L

2

4
1 	 (5.119)

Thus the loop inductance would have to satisfy the inequality,

	

2

4
R CL 	 (5.120)

Let’s use some typical values for R and C and let R C20 10, pF. Then the loop 
inductance would have to satisfy

	
L

20 10 10
4

2 12

lnH	 (5.121)

It is easy to see that it is very easy to create a condition of ringing in an electronic 
circuit.

Ringing Measurements  The laboratory test setup to measure ringing is shown in 
Figure 5.16.

The circuit diagram showing all intentional circuit components is shown in 
Figure 5.17.

The function generator produces a 1 MHz trapezoidal 1 Vpp pulse train with adjusta-
ble rise and fall time.

With the rise and fall times set to 10 ns, the voltage measured at the input to the PCB 
trace is shown in Figure 5.18.

There is no noticeable ringing present at the input to the trace.
Figure 5.19(a) shows the waveform when the rise time has been changed to 2.5 ns, 

while the fall time stayed at 10 ns. In Figure 5.19(b), both the rise and fall time are at 
2.5 ns.

With the rise and/or fall time changed to 2.5 ns we observe a significant ringing pre-
sent in the system.



Differential Equations 105

Figure 5.16  Experimental setup for ringing measurements.

50 Ω

ZC = 50 Ω

50 Ω

Load

z = dz = 0
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Pulse
input

+
–

PCB trace

d = 21 cm

Figure 5.17  Circuit model of the experimental setup.

tr = 10ns

1

tf  = 10ns

f0 = 1MHz, Vpp = 1V

Figure 5.18  Trapezoidal pulse train produced by a function generator.
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Figure 5.20 shows the expanded view of the ringing waveform on the rising edge.
It is evident from Figure 5.20 that the ringing waveform resembles an underdamped 

sinusoid described by Eq. (5.113), repeated here.

	 v t V E tC T
t

de 0 sin 	 (5.122)

At this point we may pose a question: why was the ringing not present (negligible) 
with the 10 ns rise/fall time but very pronounced with the 2.5 ns rise/fall time? This 
question can be answered when we compare the physical size of the PCB trace with the 
electromagnetic wave wavelength at the highest frequency present in the signal. We will 
discuss this topic in Chapter 15.

1

1

(a)

(b)

tr  = 2.5ns

Ringing

Ringing

Ringing

tr = 2.5ns tf = 2.5ns

tf = 10ns

Figure 5.19  Ringing (a): with the rise time at 2.5 ns and fall time at 10 ns, (b) with both the rise and fall 
time at 2.5 ns.

Ringing waveform

Figure 5.20  Ringing waveform on the rising edge.
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It is very instructive and revealing to look at the current waveforms that can be 
captured using an H‐field probe, as shown in Figure 5.21.

These waveforms are shown in Figure  5.22 for the 10 ns rise time case, and in 
Figure 5.23 for the 2.5 ns rise time case.

Figure 5.21  H‐field probe current measurements.

Voltage waveform

Current waveform

tr = tf = 10 ns

Figure 5.22  Voltage and current waveforms for the 10 ns rise time case.
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Note that the current waveform exhibits ringing in both cases, while the voltage 
waveform in the 10 ns case exhibits minimal or no noticeable ringing.
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6

6.1  Definitions and Forms

A complex number z is a number that can be expressed as

	 z x jy	 (6.1)

where x and y are real numbers and

	 j2 1	 (6.2)

x is called a real part of z, and we write x = Re(z).
y is called an imaginary part of z, and we write y = Im(z).
j is called an imaginary unit, sometimes expressed as j 1.

As we will soon see, there are several equivalent representations of complex numbers. 
The representation in Eq. (6.1) is called the rectangular form.

Example 6.1  Rectangular form of a complex number

	

z j z z
z j z z
z j

1 1 1

2 2 2

3

3 8 3 8
2 5 2 5

4

, ,
, ,

Re Im
Re Im

00 4 4 0
0 7 7 0 7

3 3

4 4 4

, ,
, ,

Re Im
Re Im

z z
z j j z z 	

▪

When dealing with complex numbers, it is often expedient to represent them graphi-
cally. We can easily do that in a complex plane using a Cartesian coordinate system, 
where the x axis is the real axis and the y axis is the imaginary axis, as shown in Figure 6.1.

Example 6.2  Complex plane
Let z j4 3 . Determine the location of this number in the complex plane.

Solution:  The location is shown in Figure 6.2.� ▪

Complex Numbers and Phasors
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In electromagnetics problems, it is often practical to represent a complex number z as 
a directed line segment from the origin to the point P in the complex plane, as shown in 
Figure 6.3.

Note that r and θ are the familiar polar coordinates of P defined by

	

x r z
y r z

cos cos
sin sin

	 (6.3)

Im z

Re z

P(x, y)y

x

1

0 1

Figure 6.1  Complex plane.

Im z

Re z

P(4, –3)

1

0

–3

1 4

Figure 6.2  Solution of Example 6.2.

Im z

Re z

P(x, y)y

x

1

0 1

∣z∣ = r

θ

Figure 6.3  Complex number representation as a 
directed line segment.
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r is called the magnitude of z, denoted |z| and

	 z r x y2 2 	 (6.4)

Geometrically, |z| is the distance of the point P from the origin, θ is called the angle 
of z, and

	
tan 1 y

x
	 (6.5)

Geometrically, θ is the directed angle from the positive x axis and is positive in the 
counterclockwise sense.

By substituting Eq. (6.3) into the rectangular form of z expressed by Eq. (6.1) we 
obtain another form of a complex number z

	

z x jy r jr
r j z j

cos sin
cos sin cos sin

	 (6.6)

or

	 z z jcos sin 	 (6.7)

The form in Eq. (6.7) is often denoted as

	 z z 	 (6.8)

The representations in Eqs (6.7) and (6.8) are called the polar form of a complex 
number z.

All three forms are equivalent.

	 z x jy z j z z j zcos sin cos sin 	 (6.9)

Example 6.3  Polar form of z
Let z j1 . Obtain the polar form of z.

Solution:  The magnitude of z is

	 z x y2 2 1 1 2 	

while the angle of z is

	
tan 1 1

1 4
45

	
The polar form of complex number z is, therefore:

	
z 2

4 	

6.2  Complex Conjugate

Given a complex number

	 z x jy	 (6.10)
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we can create another related (and very useful) complex number

	 z x jy* 	 (6.11)

This new complex number is called the complex conjugate of z.

Example 6.4  Complex conjugate

	

z j z j

z j z j

z j z j

z

1 1

2 2

3 3

4

3 8 3 8

2 5 2 5

4 0 4 4 0 4

,

,

,

*

*

*

0 7 7 0 7 74j j z j j, *
	

▪

If z is expressed as:

	 z z j z zcos sin 	 (6.12)

then

	

z z j z z j z
z j z z

* cos sin cos sin
cos sin

	 (6.13)

or

	 If thenz z z z* 	 (6.14)

The graphical representation of the above two complex numbers is shown in 
Figure 6.4.

Im z

Re z

P(x, y)

P*(x, –y)

y

–y

x

1

0

∣z∣ = r

∣z*∣ = r

θ

–θ

Figure 6.4  Complex number and its complex 
conjugate.
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6.3  Operations on Complex Numbers

Equality of Complex Numbers in Rectangular Form  Two complex numbers

	 z x jy z x jy1 1 1 2 2 2	 (6.15)

are equal if their real parts are equal and their imaginary parts are equal. Thus,

	 z z x x y y1 2 1 2 1 2and 	 (6.16)

Equality of Complex Numbers in Polar Form  Two complex numbers

	 z z z z1 1 1 2 2 2, 	 (6.17)

are equal if their magnitudes are equal and their angles are equal. Thus,

	 z z z z1 2 1 2 1 2and 	 (6.18)

Addition of Complex Numbers  Let

	 z x jy z x jy1 1 1 2 2 2	 (6.19)

Then their sum is defined as,

	 z z x jy x jy x x j y y1 2 1 1 2 2 1 2 1 2 	 (6.20)

Therefore, two complex numbers in rectangular form are added by adding the real 
parts and the imaginary parts separately.

Addition in polar form cannot be performed (except for the trivial cases) and therefore 
is not defined.

Example 6.5  Addition of complex numbers

	

z j z j
z z j j j j

1 2

1 2

5 2 4 3
5 2 4 3 5 4 2 3 9 5

,

	
▪

Multiplication by a Real Number in Rectangular Form  Let z x jy and a be a real number. 
Then the product of a and z is a complex number defined as

	 az a x jy ax jay	 (6.21)

Multiplication of Complex Numbers in Rectangular Form  Let

	 z x jy z x jy1 1 1 2 2 2	 (6.22)

Then the product of z1 and z2 is a complex number obtained as follows

	 z z x jy x jy x x jx y jy x j y y1 2 1 1 2 2 1 2 1 2 1 2
2

1 2	 (6.23)
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Since j2 1, we have

	 z z x x y y j x y y x1 2 1 2 1 2 1 2 1 2 	 (6.24)

Example 6.6  Multiplication of Complex Numbers in Rectangular Form

	

z j z j

z z j j j j j j
1 2

1 2
2

3 8 4 5

3 8 4 5 12 15 32 40 52 17

, ,

	

▪

Multiplication of Complex Numbers in Polar Form  Let

	 z r j r jr1 1 1 1 1 1 1 1cos sin cos sin 	 (6.25a)

	 z r j r jr2 2 2 2 2 2 2 2cos sin cos sin 	 (6.25b)

Then the product of z1 and z2 is a complex number that can be obtained as follows

	

z z r t jr r jr
r r

1 2 1 1 1 1 2 2 2 2

1 1 2

cos sin cos sin
cos cos 22 1 1 2 2

1 1 2 2
2

1 2 1

j r r

j r r j r r

cos sin

sin cos sin ssin
cos cos sin sin sin cos cos

2

1 2 1 2 1 2 1 2 1 2 1r r jr r ssin

cos sin
2

1 2 1 2 1 2 1 2 1 2r r j r r 	

or

	 z z z z z z z z1 2 1 2 1 2 1 2, 	 (6.26)

Product of a Complex Number and Its Complex Conjugate  This is one of the most important 
properties, which we will utilize often.

Let

	 z x jy z x jy, * 	 (6.27)

then

	 zz x jy x jy x jxy jyx j y x y* 2 2 2 2 2	 (6.28)

or

	 zz x y* 2 2	 (6.29)

Alternatively, if the complex number and its conjugate are in polar form

	 z z z z, * 	 (6.30)
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then

	 zz z z z z z* 2 2 20 	 (6.31)

or

	 zz z* 2	 (6.32)

Note that the product of a complex number and its complex conjugate is a real 
number.

Example 6.7  Multiplication by j in rectangular form
Let z x jy. Then

	 jz j x jy jx j y y jx2 	 (6.33)

▪

Example 6.8  Multiplication by j in polar form
Let z z . Then since j j0 1 1 90 , we get

	 jz z z1 90 90 	 (6.34)

▪

Therefore, multiplication by j is equivalent to counterclockwise rotation 90°, as shown 
in Figure 6.5.

Example 6.9  Negative number in polar form
Let z 5. Then

	 5 1 5 1 180 5 0 5 180 	

▪

Im z

Re z

(–y, x)

(x, y)

θ + 90°

90°

x

x

y

θ
–y 0

Figure 6.5  Multiplication by j.
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Division of Complex Numbers in Rectangular Form  Let

	 z x jy z x jy1 1 1 2 2 2	 (6.35)

Then the division of z1 and z2 results in a complex number z that can be obtained as 
follows

	

z z
z

x jy
x jy

x jy x jy
x jy x jy

x x

1

2

1 1

2 2

1 1 2 2

2 2 2 2

1 2 jjx y jy x j y y
x y

x x y y
x y

j x y x y
x

1 2 1 2
2

1 2

2
2

2
2

1 2 1 2

2
2

2
2

2 1 1 2

2
2 yy2

2

	 (6.36)

or

	

x jy
x jy

x x y y
x y

j x y x y
x y

1 1

2 2

1 2 1 2

2
2

2
2

2 1 1 2

2
2

2
2

	 (6.37)

Example 6.10  Division of complex numbers in rectangular form

	

z j z j

z
z

j
j

j
j

j
j

1 2

1

2

3 8 4 5

3 8
4 5

3 8
4 5

4 5
4 5

12

, ,

jj j j j j15 32 40
4 5

28 37
41

28
41

37
41

2

2 2
	

▪

Division of Complex Numbers in Polar Form  Let

	 z z z z1 1 1 2 2 2, 	 (6.38)

The quotient z z
z

1

2
 is the complex number satisfying zz z2 1. Therefore, we have

	
zz z z z z

z
z2 2 1

1

2

	 (6.39)

and

	

zz z z z
z z z

2 2 1

1 2
	 (6.40)

Thus

	

z
z

z
z

z
z

1

2

1 1

2 2

1

2
1 2 	 (6.41)
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Example 6.11  Division of complex numbers in polar form

	

z z
z
z

1 2

1

2

6 30 2 45
6 30
2 45

3 15

,

	

▪

Example 6.12  Division by j in rectangular form
Let z x jy. Then

	

z
j

x jy
j

x jy j
j j

y jx y jx
1

	 (6.42)

▪

Example 6.13  Division by j in polar form
Let z z . Then

	

z
j

z
z

1 90
90 	 (6.43)

▪

Therefore, division by j is equivalent to clockwise rotation by 90°, as shown in 
Figure 6.6.

Powers of Complex Numbers  Let z z . Then

	 z zz z z z z z2 2 2 	 (6.44)

More generally,

	 z z z nn n n 	 (6.45)

Im z

Re z

(–y, x)

(x, y)

θ – 90°

90° x

y

y
θ

–x

0

Figure 6.6  Division by j.
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6.4  Properties of Complex Numbers

In this section we list some of the basic properties of complex numbers.

	 z z z z1 2 2 1	 (6.46a)

	 z z z z1 2 2 1	 (6.46b)

	 z z z z z z1 2 3 1 2 3 	 (6.46c)

	 z z z z z z1 2 3 1 2 3 	 (6.46d)

	 z z z z z z z1 2 3 1 2 1 3	 (6.46e)

	 0 0z z z	 (6.46f )

	 z z z z 0	 (6.46g)

	 z z1 	 (6.46h)

Complex Conjugate Properties

	 z z z z1 2 1 2
* * *	 (6.47a)

	 z z z z1 2 1 2
* * * 	 (6.47b)

	 z z z z1 2 1 2
* * *	 (6.47c)

	

z
z

z
z

1

2

1

2

* *

*
	 (6.47d)

	 z z* * 	 (6.47e)

Useful Identity

	

1
j

j 	 (6.48)

Let’s prove it.

	

1 1
12j j

j
j

j
j

j j 	 (6.49)

6.5  Complex Exponential Function

Let z x jy be a complex number. The complex exponential function, ez, is defined as 
(Kreyszig, 1999, p. 679)

	 e ez x y j ycos sin 	 (6.50)

where ex, cos y, and sin y are real functions.
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Since x and y can be any real numbers, let us set x = 0. Then,

	 e e e e ez jy jy jy0 0 	 (6.51)

On the other hand, using Eq. (6.50)

	 e e ez x y j y y j y y j ycos sin cos sin cos sin0 	 (6.52)

Comparing Eqs (6.50) and (6.52) we obtain the Euler formula

	 e jy y j ycos sin 	 (6.53)

or in terms of θ

	 e j jcos sin 	 (6.54)

Now, since a complex number z can be expressed as

	 z z jcos sin 	 (6.55)

using Eq. (6.54), it can also be expresses as

	 z z je 	 (6.56)

This form of a complex number is called an exponential form. This form, perhaps, is 
the most useful form of a complex number in electromagnetic compatibility literature.

Euler formula expressed by Eq. (6.54) leads to two very useful results, as shown next.

	 e ej j j jcos sin cos sin 	 (6.57)

Thus, we have,

	 e j jcos sin 	 (6.58a)

	 e j jcos sin 	 (6.58b)

Adding both sides we get

	
cos e ej j

2
	 (6.59)

Subtracting both sides we get

	
sin e ej j

j2
	 (6.60)

6.6  Sinusoids and Phasors

6.6.1  Sinusoids

Consider a single frequency sinusoidal signal

	 v t V tcos 	 (6.61)
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where V is the amplitude of the sinusoid and ω is the angular frequency in radians per 
second, rad/s.

The period T and the angular frequency ω are related by

	
T

2
	 (6.62)

The reciprocal of the period is the (cyclic) frequency (in Hz)

	
f

T
1 	 (6.63)

The angular frequency ω and the cyclic frequency f are obviously related by

	 2 f 	 (6.64)

Let us now consider a more general expression for a sinusoid,

	
v t V tcos 	 (6.65)

where (ωt + φ) is called the argument of the cosine function, and φ is its phase.
The sinusoidal functions may, in general, be expressed in any of the four different 

forms: either as a sine or a cosine function, with either positive or negative 
amplitude.

For example,

	
v t t1 2 30cos 	 (6.66a)

	
v t t2 3 60cos 	 (6.66b)

	
v t t3 4 45sin 	 (6.66c)

	
v t t4 5 15sin 	 (6.66d)

As we will see in the next section, we often need the sinusoid to be expressed as a 
cosine function with positive amplitude, as shown in Eq. (6.66a).

Therefore, we need to be able to transform the other three forms into the positive 
cosine form. To accomplish that, we could use the following trigonometric identities:

	
cos cost t 180 	 (6.67a)

	
sin cost t 90 	 (6.67b)

	
sin cost t 90 	 (6.67c)

Therefore, Eqns. (5.64b–d) can be expressed as

	
v t t t2 3 60 3 120cos cos 	 (6.68a)
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v t t t3 4 45 4 45sin cos 	 (6.68b)

	
v t t t4 5 15 5 75sin cos 	 (6.68c)

Alternatively, we may use the graphical approach (Alexander and Sadiku, 2009, p. 374) 
as follows.

Consider the set of axis shown in Figure 6.7. The horizontal axis represents the cosine, 
while the vertical axis (pointing down) denotes the sine. Angles are measured positively 
counterclockwise from the horizontal, as usual in polar coordinates.

This figure can be used to obtain positive cosine out of the other three forms, as 
follows.

Negative cosine is equivalent to positive cosine plus or minus 180°. Positive sine is 
equivalent to positive cosine minus 90°. Negative sine is equivalent to positive cosine 
plus 90°.

6.6.2  Phasors

Consider a positive cosine function of the form

	
v t V tcos 	 (6.69)

We could use its amplitude and phase to create a related complex number

	 V V je 	 (6.70)

Obviously, the complex number in expression (6.70) is related to the sinusoid in 
expression (6.69). We often say that this complex number represents the respective 
sinusoid.

Is this representation useful? Extremely! Instead of performing mathematical opera-
tions on sinusoids in the time domain (which is often difficult to do), we can perform 
the operations on complex numbers related to these sinusoids, in the complex domain 
(which is relatively easy to do).

+ 90°+ 180°

– 180° –90°

–sin ωt

+sin ωt

+cos ωt–cos ωt

Figure 6.7  Trigonometric relations.
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Note that the sinusoid exists in the time domain, while the complex number repre-
senting it exists in the complex domain. Therefore, they are not equal; they correspond 
to each other.

	
V t V jcos e 	 (6.71)

When a complex number represents a sinusoid, we call it a phasor. By representing 
the sinusoid as a phasor we transform the sinusoid from the time domain to the phasor 
or frequency domain.

So what is the difference between a phasor and a complex number? Every phasor is a 
complex number, but not every complex number is a phasor. Only when the complex 
number represents a sinusoid is it referred to as a phasor.

In electromagnetic compatibility we often deal with complex voltages and currents. 
These complex expressions represent sinusoids in the time domain, and therefore 
they are phasors. We also encounter complex impedance, but the impedance does 
not represent a time‐domain sinusoid, so it is not a phasor, but just a complex 
expression.

To distinguish between the time domain variables and the complex variables, we will 
adopt the notation from Paul (2006, p. 261). A complex variable will always have a “hat” 
above it.

	 ˆ e jV V V 	 (6.72)

In the above expression, the magnitude V and the angle θ are real, thus they do not 
have “hats”, but the phasor is complex.

Given a phasor, in polar or exponential form, we can easily determine the time‐
domain sinusoid corresponding to it. For instance, if the phasor is given by

	 ˆ e jI I 	 (6.73)

then the sinusoid corresponding to it is simply

	
ˆ e cosjI I i t I t 	 (6.74)

Alternatively, the time‐domain form of phasor quantities may be obtained by multi-
plying the phasor form by ejωt and taking the real part of the result.

	 ˆRe e cosj tI I t i t
	

(6.75)

We will show this operation in the next section, when presenting the phasor form of 
Maxwell’s equations.

Derivative in the Phasor Domain  Let the time‐domain sinusoid be expressed as

	
v t V tcos 	 (6.76)

Its corresponding phasor is

	 ˆ e jV V 	 (6.77)
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If we take the derivative of v(t) in expression (6.76), we will obtain another sinusoid; a 
negative sine function, to be exact. That negative sine function can be expressed as a 
positive cosine using the transformations discussed earlier.

Therefore, we could create a phasor representing it. The question we pose is as fol-
lows: what is the relationship between the original phasor representing v(t) and the 
phasor representing its derivative?

To answer this questions let’s take the derivative of v(t):

	
dv t

dt
V t V tsin cos 90 	 (6.78)

Thus the phasor representing the derivative of v(t) is

	
V t V jcos 90 90e 	 (6.79)

Let’s have a closer look at this phasor.

	 V Vj j je e e90 90 	 (6.80)

However,

	 e j jj90 90 90cos sin 	 (6.81)

and therefore

	
90 ˆe e ej j jV j V j V 	 (6.82)

We have arrived at a very important observation.

	

ˆ

ˆ

v t V
dv t

j V
dt

	 (6.83)

That is, to obtain the phasor representing the derivative of a (sinusoidal) function, we 
simply take the phasor representing that function and multiply it by jω.

6.7  EMC Applications

6.7.1  Maxwell’s Equations in a Phasor Form

Of major interest in EMC are the sinusoidal electromagnetic fields and current and 
charge densities. That is, the time‐domain vectors and scalar expressions are sinusoidal 
functions of time and space.

For instance, the electric field intensity vector E in the time domain is given by

	 E x y z t E x y z t E x y z t E x y z tx y z, , , , , , , , , , , , , , 	 (6.84)

where each of its components is a sinusoidal function

	 E x y z t E tx xm x, , , cos 	 (6.85a)
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	 E x y z t E ty ym y, , , cos 	 (6.85b)

	 E x y z t E tz zm z, , , cos 	 (6.85c)

The corresponding phasors are

	 , , eˆ xj
x xm x xmE x y z E E 	 (6.86a)

	 , , eˆ yj
y ym y ymE x y z E E 	 (6.86b)

	 , , eˆ zj
z zm z zmE x y z E E 	 (6.86c)

Thus, the phasor form of the E vector in Eq. (6.84) is

	
ˆ ˆ ˆ ˆ, , , , , , , , , , y zxx y z E x y z E x y z E x y zE

	
(6.87)

The time‐domain form of phasor quantities may be obtained by multiplying the pha-
sor form by e jω and taking the real part of the result. For example

	

, , , Re , , e Re e e

Re e Re cos sin
c

ˆ

os

x

x

j t j tj
x x xm

j t
xm xm x xm x

xm x

E x y z t E x y z E

E E t jE t
E t

	 (6.88)

The phasor form of the derivative of the E field in (5.84) is

	
ˆj

t
E E	 (6.89)

Thus, in order to obtain Maxwell’s equations for sinusoidal excitation, we replace the 
field vectors and functions with their phasor forms, and their time derivatives with the 
phasor forms multiplied by jω. In a simple medium these equations in a phasor form 
become (Paul, 2006, p. 908) the following

Differential form of Maxwell’s equations

	 ˆ ˆjE H	 (6.90a)

	
ˆˆ ˆ

SjH E J 	 (6.90b)

	
ˆˆ VE 	 (6.90c)

	
ˆ 0H 	 (6.90d)

Integral form of Maxwell’s equations

	


ˆ ˆ
C S

d j dE l H S	 (6.91a)

	


ˆˆ ˆ
S

C S S

d j d dH l E S J S	 (6.91b)
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1ˆ ˆv
S v

d dvE S


	 (6.91c)

	
ˆ 0

s

dH S


	 (6.91d)

6.7.2  Transmission Line Equations in a Phasor Form

In Section 3.5.1 we obtained the transmission line equations (for a lossless line) as

	
V z t

z
l

I z t
t

, , 	 (6.92a)

	
I z t

z
c

V z t
t

, , 	 (6.92b)

The phasor transmission line equations are obtained by replacing the circuit variables 
with the corresponding phasors, and replacing the time derivatives with jω.

	

ˆ
ˆdV z

j lI z
dz

	 (6.93a)

	

ˆ
ˆdI z

j lV z
dz

	 (6.93b)

6.7.3  Magnetic Vector Potential

We are now ready to utilize the knowledge gained in these first six chapters to study the 
vector magnetic potential vector. This is one of the most useful concepts in the study of 
radiation from antennas and the concept of the partial inductance.

We will begin with Maxwell’s divergence equation for magnetic fields:

	 ˆ 0B
	

(6.94)

Now, let’s recall the following vector identity (true for any vector):

	
ˆ 0A 	 (6.95)

Thus, we could define the new vector A, called the magnetic vector potential, as a 
vector related to the magnetic flux density vector B by

	 ˆ ˆB A	 (6.96)

Even though the concept of a magnetic vector potential is a purely mathematical 
invention, it proves to be very useful, as we shall see.

Since

	 ˆ ˆB H	 (6.97)

then, in terms of the magnetic field intensity H, the vector magnetic potential A is 
defined as

	 ˆĤ A	 (6.98)
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or, alternatively

	
ˆ1Ĥ A	 (6.99)

Now, recall Maxwell’s curl equation

	 ˆ ˆjE H	 (6.100)

Substituting Eq. (6.98) into Eq. (6.100) we obtain

	 ˆ ˆjE A	 (6.101)

which can be written as

	
ˆ 0ˆjE A 	 (6.102)

Now, we will use another vector identity

	 V 0	 (6.103)

This identity holds for any arbitrary scalar function V. Comparing Eqs (6.102) and 
(6.103) we get

	 ˆ ˆj VE A 	 (6.104)

or

	 ˆ ˆV jE A	 (6.105)

The scalar function V in Eq. (6.102) represents electric scalar potential.
Now, let’s take the curl of both sides of Eq. (6.99) to get

	

1 ˆĤ A 	 (6.106)

The right‐hand side of (6.106) can be written as

	

1 1ˆ ˆA A 	 (6.107)

Comparing (6.106) and (6.107) we can write

	 ˆĤ A	 (6.108)

Next, we will use another vector identity

	 A A A2 	 (6.109)

Combining Eq. (6.108) and Eq. (6.109) we arrive at

	
2ˆ ˆĤ A A	 (6.110)

Using Maxwell’s curl equation for magnetic field in the region away from a conduc-
tion current (σ = 0)
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	 ˆˆ ˆ
SjH E J 	 (6.111)

We rewrite Eq. (6.111) as

	
2ˆ ˆˆj E J A A 	 (6.112)

Now, we will make use of Eq. (6.105) to obtain

	
2ˆ ˆ ˆj V j A J A A 	 (6.113a)

Thus

	
2 2ˆ ˆ ˆˆ j VJ A A A	 (6.113b)

or

	
2 2ˆ ˆ ˆˆ j VA A J A 	 (6.113c)

or

	
2 2ˆ ˆ ˆˆ j VA A J A 	 (6.113d)

Introducing a new constant,

	 k2 2 	 (6.114)

Eq. (6.113d) can be rewritten as

	
2 2ˆ ˆ ˆˆk j VA A J A 	 (5.115)

In Eq. (6.98), repeated here, we implicitly defined the vector magnetic potential A by 
its curl:

	
ˆĤ A 	 (6.116)

In order to uniquely define a vector, we need to define it by both the curl and the 
divergence. The definition of the divergence of A is independent of its curl. Thus, we are 
free to choose a convenient definition.

In order to simplify Eq. (6.115) we choose

	
ˆ1ˆ j V V

j
A A	 (6.117)

which is known as the Lorentz condition (Balanis, 2005, p. 136)
Substituting Eq. (6.117) into Eq. (6.115) leads to

	
2 2ˆ ˆ ˆkA A J	 (6.118)

Additionally, Eq. (6.105), repeated here,

	 ˆ ˆV jE A	 (6.119)
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reduces to

	

ˆ ˆ ˆ ˆ

ˆ

1

1 ˆ

e j j
j

j
j

E A A A

A A
	 (6.120)

or

	
1ˆ ˆ ˆj jE A A 	 (6.121)

Thus, once A is known, E can be obtained from Eq. (6.121) and H from

	
ˆ1Ĥ A	 (6.122)

Alternatively, E can be found form Maxwell’s equation

	 ˆˆ ˆ
SjH E J 	 (6.123)

with J = 0:

	 ˆˆ jH E	 (6.124)

That is, E can be obtained from

	
ˆ1ˆ

j
E H	 (6.125)

6.7.4  Radiated Fields of an Electric Dipole

Electric dipole, often referred to as Hertzian dipole, shown in Figure 6.8, consists of a 
short thin wire of length l, carrying a phasor current Î, positioned symmetrically at the 
origin of the coordinate system and oriented along the z axis.

Ideally the wire is infinitely short, and practically a wire of the length l ≪ λ/50 
(λ = wavelength) can be considered a Hertzian dipole. Although Hertzian dipoles are 
not very practical, they are utilized as building blocks of more complex geometries.

Since the current element is very short, we may assume the current to be constant

	 0 0,ˆ
zz I I constI a 	 (6.126)

To find the fields radiated by the current element, we will use the two‐step procedure.
First, we will determine A from the solution of the Helmholtz equation (see Eq. (5.96))

	
A Ix y z x y z

R
dl

c
e

jkR
, , e

4
, , 	 (6.127)

Note that R is the distance from the source location to the observation point, and 
r is  the distance from the origin to the observation point. Since the source is at the 
origin, r = R.
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The next step is to determine H and E from

	
ˆ1Ĥ A	 (6.128)

	
1ˆ ˆ ˆj jE A A 	 (6.129)

or alternatively, once H is computed from A by Eq. (6.128), E can be obtained from H as

	
ˆ1ˆ

j
E H	 (6.130)

For the Hertzian dipole shown, we have

	 I ae zx y z I, , 0 	 (6.131)

Since

	 R r x y z2 2 2 	 (6.132)

	 dl dz 	 (6.133)

we rewrite Eq. (6.127) as

	

A I ax y z x y z
R

dl I
r

dz
c

e

jkR

l

l

z

jkr
, , e e

4 4
2

2

0, ,

I
r

dz I l
r

jkr

l

l

z
jkr

z
0

2

2
0

4 4
e ea a

	 (6.134)
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Figure 6.8  Hertzian dipole.
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or

	
A ax y z I l

r
jkr

z, , e0

4
	 (6.135)

The next step is to determine H, using Eq. (6.128). We will perform this operation in 
spherical coordinates.

The transformation between rectangular and spherical components is given by:

	

A
A
A

r sin cos sin sin cos
cos cos cos sin sin

sin cos 0

A
A
A

x

y

z

	 (6.136)

For this problem Ax = Ay = 0, thus,

	

A
A
A

r sin cos sin sin cos
cos cos cos sin sin

sin cos 0

0
0

4
0I l
r

jkre

	 (6.137)

or

	

A
A
A

I l
r

I l
r

r

jkr

jkr

0

0

4

4
0

e

e

cos

sin
	 (6.138)

The curl of A in spherical coordinates is

	

A a1

1 1
r

A A

r
A

r
rA

r

r

sin
sin

sin
a a1

r r
rA Ar

	 (6.139)

Since Aφ = 0 and there are no φ variations in A, we have

	
A a1

r r
rA Ar 	 (6.140)

and thus

	

ˆˆ 1 1 rArA
r r

H A a 	 (6.141)
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Now, we use Eq. (6.138) in Eq. (6.141) to produce

	

0 0

0 0

0 0

0

1ˆ

1 e esin cos
4 4

1 sin ee cos
4 4

1 sin ee sin
4 4

sin
4

r

jkr jkr

jkr
jkr

jkr
jkr

ArA
r r

I l I lr
r r r r

I l I l
r r r

I l I ljk
r r

I l
r

H a

a

a

a

0
2

0

ee sin
4

sin 11 e
4

jkr
jkr

jkr

I ljk
r

kI lj
r jkr

a

a

	 (6.142)

Thus, the components of the magnetic field intensity H at a distance r from a Hertzian 
dipole are

	 Hr 0	 (6.143a)

	 H 0	 (6.143b)

	
H j kI l

r jkr
jkr0

4
1 1sin e 	 (6.143c)

The electric field E can now be found using Eq. (6.129) or Eq. (6.130). Let’s use the 
latter approach first. That is, let’s calculate E from

	
ˆ1ˆ

j
E H	 (6.144)

The curl of H in spherical coordinates is

	

H a1 1 1
r

H H
r

H
r

rHr
r

sin
sin

sin
a

a1
r r

rH Hr

	 (6.145)
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Since H Hr 0 and there are no φ variations in H, we have

	

E H a a1 1 1 1
j j r

H
r r

rHrsin
sin

1 1
4

1 10

j r
j kI l

r jkr
jkr

sin
sin sine ar

jkr

j r r
rj kI l

r jkr
1 1

4
1 10 sin e a

	 (6.146)

Let’s evaluate the r component first:

	

E
j r

j kI l
r jkrr

jkr1 1
4

1 10

sin
sin sine

1 1 1 1
4

0
2

2

sin
sin

jkr
kI l

r
jkre

1 1 1 1
4

2

1
2

0
2

0

sin
sin cos

cos
jkr

kI l
r

kI l

jkre

rr jkr
jkr

2 1 1 e

	 (6.147)

and now the θ‐component:

	

E
j r r

rj kI l
r jkr

jkr1 1
4

1 10 sin e

1 1
4

1 1

1

0

r r
kI l

jkr
jkrsin e

kI l
r r jkr

jkr0

4
1 1sin e

	 (6.148)

Let’s evaluate the derivative term:

	

r jkr r jkr

jk

jkr jkr
jkr

1 1 e e e

e jjkr
jkr jkr

jkr
jkr

jk jkr jk

jkr

jk
k kr j

e e

e
e

2

kk

kr

j
kr j

kr
k j

kr
j

kr

jkr

jkr

e

e

2

2 2
1 k

jkr kr
jk

jkr

jkr

e

e1 1 1
2

	 (6.149)
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Substitute Eq. (6.149) into Eq. (6.148):

	

E kI l
r r jkr

jkr1
4

1 1

1

0 sin e

kI l
r r jkr

kI l

jkr0

0

4
1 1

1

sin e

ssin

sin

4
1 1 1

1
4

1 1

2

0

r jkr kr
jk

kI l
r j

jkre

kkr kr
jk jkr1

2 e

	 (6.150)

Thus, the electric field intensity at a distance r from a Hertzian dipole is given by

	
E kI l

r jkrr
jkr1

2
1 10

2
cos e 	 (6.151a)

	
E kI l

r jkr kr
jk jkr1

4
1 1 10

2
sin e 	 (6.151b)

	 E 0	 (6.151c)

Whereas the magnetic field intensity at a distance r form a Hertzian dipole was 
derived earlier, and is repeated here:

	 Hr 0	 (6.152a)

	 H 0	 (6.152b)

	
H j kI l

r jkr
jkr0

4
1 1sin e 	 (6.152c)

Note that these two sets of equations (6.151) and (6.152) are equivalent to the set of 
equations (7.1) on page 423 of Paul 2006.

We will show this equivalence using the alternative approach to computing the 
electric field intensity from Eq. (6.129), repeated here:

	
1ˆ ˆ ˆj jE A A 	 (6.153)

Recall that the vector magnetic potential in spherical coordinates was given by 
Eq. (6.138), repeated here:

	

A
A
A

I l
r

I l
r

r

jkr

jkr

0

0

4

4
0

e

e

cos

sin
	 (6.154)
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First, we need to compute the divergence of A. In spherical coordinates we have

	
A 1 1 1

2
2

r r
r A

r
A

r
A

r sin
sin

sin
	 (6.155)

Since Aφ = 0 and there are no φ variations in A, we have

	

A 1 1

1
4

2
2

2
2 0

r r
r A

r
A

r r
r I l

r

r

jkr
sin

sin

cose 1
4

1

0

2
0

r
I l

r

r r
r I l

jkr

sin
sin sine

e jkr jkr

r
I l

r

r
I

4
1

4
1

0 2

2
0

cos
sin

sine
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r

r
r

I l
r

r
I l

jkr
jkrcos

sin
sin

co
4

1
4

1

0 2

2
0

e e

ss
sin

sin cos

co
4

1
4

20

0

e e ejkr jkr
jkr

rjk
r

I l
r

I l ss cos

cos
4 4

2

4

2
0

2

0
2

r
rjk I l

r
I l

r

jkr jkr
jkr

e e e

e jkr jkr jkrj k I l
r

I l
r

I l
r

jk
r

0 0
2

0
2

4
2

4

4
1

cos cose e

e jkr cos

	 (6.156)

Now, the gradient of the scalar function f in spherical coordinates is

	
f f

r r
f

r
f

ra a a1 1
sin

	 (6.157)

Thus,

	

A a af
r r

f

r
I l

r
jk
r

r

jkr

1

4
10
2 e cos a

a

r

jkr

r
I l

r
jk
r

1
4

10
2 e cos

	 (6.158)

Let’s start with the r component.

	

r
I l

r
jk
r

I l
r r

jjkr0
2

0
24

1
4

1e cos cos kk
r

I l
r r

jk
r r

jkr

jkr

e

e0
2 24

1 1cos jjk
r r

I l
r

jk
r

jkr

jkr

e

e0
3 24

2cos 1
2r
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r

jk jkre

	

(6.157)
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I l
r

jk
r r

jk
r

jkjkr jkr0
3 2 24

2 1cos e e

I l
r

jk
r

jk
r

k
r

I l
r

jkr0
3 2 2

2
0

34
2

4
2cos cose 22

2

2jk
r

k
r

jkre

Next, the θ‐component

	

1
4

1

1
4

1

0
2

0
2

r
I l

r
jk
r

r
I l

r
jk
r

jkre cos

e

e

jkr

jkrI l
r

jk
r

cos

sin0
3 24

1

	 (6.158)

Next, substitute Eqs (6.154), (6.157), and (6.158) in (6.153), repeated here:

	
1ˆ ˆ ˆj jE A A 	 (6.159)

Again, let’s start with the r component.

	

E j I l
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j I l
r

j I l
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jkr jkr
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	 (6.160)

Let’s look at the sum of the first and the last term:

	

j I l
r

j I l k
r

j j k
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e ecos cos
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	 (6.161)

thus,

	

E j I l
r
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j I l jk
r

r
jkr1

4
2 2
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	 (6.162)
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Let’s introduce a different notation (to conform to the formulas in Paul, pp. 422–423):

	 k 0	 (6.163a)

	 l dl 	 (6.163b)

	
1 	 (6.163c)

Then Eq. (6.162) can be written as

	

E I dl
r j r

I dl
r

r
j r2

4
1 1

2
4

1

0
2 3

0 2
2 2

cos
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11
3 3j r

j re

	 (6.164)

Or

	
E I dl

r
j

r
er

j r2
4

1 10 2
2 2 3 3cos 	 (6.165)

Now, the θ‐component

	

E j I l
r

j I l
r

jk
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jkr
j0 0

3 24
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4
1e esin kkr

jkr
jkrj I l

r
j I l

r
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r
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sin sin0 0
3 24

1
4

1e e
	 (6.166)

In Part III of this book, we will define the intrinsic impedance of a medium as

	
	 (6.167a)

and express the angular frequency as

	
	 (6.167b)

then, the following holds

	
	 (6.167c)

	

1 	 (6.167d)
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thus,

	

E j I l
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	 (6.168)

or

	
E I dl j

r r
j

r
j r0 2

2 2 3 34
1 1sin e 	 (6.169)

Equations (6.165) and (6.169) correspond to Equations (7.1d) and (7.1e) in Paul (2006, 
p. 422–423).

6.7.5  Electric Dipole Antenna Radiated Power

Electric dipole radiated power can be computed from (Paul, 2006, p. 425)

	
*1

2
ˆ ˆ ˆS r E r H r 	 (6.170)

where the electric and magnetic fields were derived earlier as

	
ˆ ˆ, , 0ˆ

rE EE 	 (6.171a)

	
ˆ0, 0  ˆ , HH 	 (6.171b)

where
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0 sin 11ˆ e
4

jkrkI lj
r

H
jkr

	 (6.172c)

Substitution of Eq. (6.172) into Eq. (6.170) produces

	
* *1 ˆˆ , ,ˆ ˆˆ

2
ˆ  0ˆ

r r rE H H SE SS r a a 	 (6.173)

Let’s calculate the r component of the radiated power.
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or
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leading to
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or
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Equation (6.174d) describes the r component of the complex power density vector. 
To calculate the total average power radiated by the electric dipole antenna we evaluate 
the following surface integral
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or
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and thus

	

2
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3
ˆ 120 1
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	 (6.175c)

The real radiated power is just the real part of the complex power in Eq. (6.175c).
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7

7.1  Fundamental Concepts

7.1.1  Current

The motion of electric charges constitutes an electric current, denoted by the letters i 
or I. As a matter of vocabulary, we say that a current flows along a path, from A to B, or 
through an element, as shown in Figure 7.1.

Note that a complete description of current requires both a value and a reference 
direction, as shown in Figure 7.1.

By definition, current is the time rate of change of charge, or

	
i

d q

dt
A C

s
	 (7.1)

We consider the network elements to be electrically neutral. That is, no net charge 
can accumulate in the element. Charges may not accumulate or be depleted at any 
point. Any charge entering the element must be accompanied by an equal charge 
leaving the element.

7.1.2  Voltage

Charges in a conductor may move in a random manner. To move the charges in a con-
ductor in a particular direction requires some work or energy transfer.

We define the voltage vAB between two points A and B in an electric circuit as the 
energy (work) needed to move a unit of charge from A to B.

Mathematically,

	
v dw

dqAB V J
C

	 (7.2)

As a matter of vocabulary, we say that a voltage exists across an element, or between 
two points or nodes, as shown in Figure 7.2.

Note that a complete description of voltage requires both a value and a reference 
direction, as shown in Figure 7.2.

Basic Laws and Methods of Circuit Analysis
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Passive Sign Convention  For any electrical element, if the current reference direction, 
upon entering the element, points into the positive voltage reference direction, the 
current and voltage so defined are said to satisfy the passive sign convention (Alexander 
and Sadiku, 2009, p.11).

In Figure 7.3(a) the passive sign convention is satisfied, while in Figure 7.3(b) it is not.

7.1.3  Power

Voltage and current are useful variables in the analysis and design of electrical circuits. 
The circuit specifications, in addition to voltage and current, often include the require-
ment on power that the circuit needs to deliver to a load.

In transferring charge through an element, work is being done, or energy is being 
transferred. We define power p, as the rate at which energy w is being transferred.

Mathematically,

	
p dw

dt
W J

s
	 (7.3)

In the circuit analysis, it is more convenient to work with the circuit variables (voltage 
and current) than the field variables (energy or vector quantities). It is, therefore, pre-
ferred to express power in term of voltage and current.

Note that (7.3) can be written as

	
p dw

dt
dw
dq

dq
dt

	 (7.4)

i 2 mA

A B A B

Figure 7.1  Current designation.

A
A

B

B
v+

+

3.6 mV

–

– Figure 7.2  Voltage designation.

A

(a) (b)
A

B

B
v

v+

+

–

–i

i

Figure 7.3  Passive sign 
convention: (a) satisfied, (b) not 
satisfied.
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and thus

	 p vi W VA 	 (7.5)

When the passive sign convention is satisfied, the power calculated according to (7.5) 
is called the power absorbed or dissipated by the element.

If the current and voltage direction do not satisfy the passive sign convention, 
the power calculated using (7.5) is called the power delivered by the element.

7.1.4  Average Power in Sinusoidal Steady State

Average Power in  the  Time Domain  When voltage and current in Eq. (7.5) are time 
varying, then the power that is obtained from

	 p t v t i t 	 (7.6)

is often referred to as the instantaneous power.
Of special interest to us is the case when both voltage and current are sinusoidal 

function of time. Sinusoidal steady state analysis is of paramount importance in EMC 
engineering.

Let the voltage and current at the terminals of the circuit be

	 v t V tm vcos 	 (7.7)

	 i t I tm icos 	 (7.8)

where Vm, Im are the amplitudes, and θv and θi are the phase angles of the voltage and 
current, respectively.

Since we are operating in the sinusoidal steady state, we may choose any convenient 
reference for zero time. It is convenient to use a zero reference time corresponding to 
the instant the current is passing through a positive maximum.

This reference system requires a shift of both the voltage and current by θi. Thus, 
Eqs (7.7) and (7.8) become

	 v t V tm v icos 	 (7.9)

	 i t I tm cos 	 (7.10)

When we substitute Eqs (7.9) and (7.10) into Eq. (7.6), the instantaneous power 
absorbed by the element is

	 p t v t i t V I t tm m v icos cos 	 (7.11)

Let’s make use of the trigonometric identity

	
cos cos cos cos1

2
	 (7.12)
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Then Eq. (7.11) can be expressed as

	
p t V I V I tm m

v i
m m

v i2 2
2cos cos 	 (7.13)

Note that p(t) is periodic with a period T T0 2/  since its frequency is twice that of 
voltage or current.

The instantaneous power may be positive, negative, or zero, depending on the time t 
at which it is evaluated, and thus does not convey much information about the element 
or system. Of much more use is the average power which, as we shall see, is not a 
function of time.

The average power is the average of the instantaneous power over one period. Thus, 
the average power is given by

	
P

T
p t dtave

T1
0 0

0

	 (7.14)

where T0 is the period of p(t), and the instantaneous power is expressed by (7.13).
We would get the same result is we performed the integration in (7.14) over the time 

interval of two periods, T T2 0; that is, the average power can also be computed from

	
P

T
p t dtave

T1

0

	 (7.15)

Substituting (7.13) into (7.15) results in

	

P
T

V I dt
T

V I t dtave

T

m m v i

T

m m v i
1 1

2
1 1

2
2

1
0 0

cos cos

22
1
2

1 2
0

V I V I
T

t dtm m v i m m

T

v icos cos

	 (7.16)

Note that the second term contains the integral of the sinusoid over its period. 
This integral is zero because the area under the sinusoid during a positive half‐cycle is 
cancelled by the area under it during the following negative half‐cycle.

Thus, the second term in (7.16) vanishes and the average power becomes

	
P V Iave m m v i

1
2

cos 	 (7.17)

Average Power in the Phasor Form  The phasor forms of v(t) and i(t) are

	 ˆ
m vV V 	 (7.18a)

	 ˆ
m iI I 	 (7.18b)
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Let’s evaluate the following expression

	

*1 1
2 2

1 cos s
2

ˆ

i

ˆ

n

m m v i

m m v i v i

VI V I

V I j
	 (7.19)

Comparing (7.19) with (7.17) reveals that the average power can be computed from 
the phasor forms as

	
*ˆ1Re ˆ

2aveP V I 	 (7.20)

Average Power Delivered to  a  Resistive Load  In the next section we will show that the 
voltage current relationship for a resistor in phasor domain is

	 ˆ ˆV RI 	 (7.21)

Since

	 ˆ
m iI I 	 (7.22)

it follows that

	 ˆ
m iV RI 	 (7.23)

Now, utilizing Eq. (7.20), we obtain the average power delivered to a resistive load as

	

*1Re
2
1Re

ˆ ˆ

2
1Re
2

ave

m i m i

mi m

P V I

RI I

RI I

	 (7.24)

or

	
21 ˆ

2aveP R I 	 (7.25)

7.2  Laplace Transform Basics

7.2.1  Definition of Laplace Transform

Consider a time function f(t) defined for t > 0. The Laplace transform operates on a 
time function and creates a new function that exists in a new domain, called the Laplace 
or s domain.

	 F s f tL 	 (7.26)
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The formal definition of the Laplace transform is (Nilsson and Riedel, 2015, p. 428)

	
L ef t f t dtst

0

	 (7.27)

Is this useful in EMC? Extremely! As we shall see, the Laplace transform will lead to 
the concept of impedance, transfer function, and frequency transfer function, which 
will allow us to carry the sinusoidal steady state frequency domain analysis. It is the 
frequency domain analysis that is of utmost importance to an EMC engineer.

To get the feel for this definition let’s calculate the Laplace transform of a constant 
and an exponential functions.

	
L e e eA A dt A dt A

s
A
s

st st
st

t

t

0 0 0

	 (7.28)

	
L e e e ee dt dt

s a s
at at st s a t

s a t

t

t

0 0 0

1
aa

	 (7.29)

Obtaining the Laplace transform of a time function using the definition is often time‐
consuming and cumbersome. In practice, we often use the tables of Laplace transform 
pairs, together with the properties of Laplace transforms to obtain the transform of a 
given function which might not be tabulated.

The most common transform pairs that we might encounter in EMC problems are

	
f t F s

s
1 1	 (7.30a)

	
f t t F s

s
1
2

	 (7.30b)

	
f t F s

s a
ate 1 	 (7.30c)

	
f t t F s

s a
ate 1

2
	 (7.30d)

	
f t t F s

s
sin 2 2

	 (7.30e)

	
f t t F s s

s
cos 2 2

	 (7.30f )

	
f t t F s

s a
ate sin 2 2

	 (7.30g)

	
f t t F s s

s a
ate cos 2 2

	 (7.30h)
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7.2.2  Properties of Laplace Transform

Next, we will present a few selected properties of Laplace transform that we will subse-
quently use in this book when discussing EMC applications.

Let

	 F s f tL 	 (7.31a)

	 G s g tL 	 (7.31b)

Then (linearity property)

	 L af t bg t aF s bG s 	 (7.32)

Before we present the next property, let’s define the unit step and time‐shifted unit 
step functions.

The unit step function is defined as

	
u t

t
t

1 0
0 0
,
,

	 (7.33a)

Similarly, the time‐shifted unit step function is defined as

	
u t a

t a
t a

1
0
,
,

	 (7.33b)

Both functions are shown in Figure 7.4.
The time shift property of the Laplace transform can be stated as

	 L f t a u t a e F sas 	 (7.34)

We will use this property when discussing the capacitive termination of a transmis-
sion line in the EMC application section of this chapter.

t

ta0

1

0

1

Unit step

Shifted unit step

u(t)

u(t – a)

Figure 7.4  Unit step function.
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The final very important property is the time differentiation:

	
L

df t
dt

sF s f 0 	 (7.35)

	
L

d f t
dt

s F s sf
df

dt

2

2
2 0

0 	 (7.36)

When the initial value of the time function is zero, Eq. (7.33) becomes

	
L

df t
dt

sF s 	 (7.37)

We will utilize this property later in this chapter when introducing deriving the 
voltage–current relationships of inductors and capacitors in the s domain.

7.2.3  Inverse Laplace Transform

Often, we are given an expression for a function in the s domain, and we need to 
determine the corresponding time‐domain function. This is accomplished by perform-
ing the inverse Laplace transform operation.

In order to obtain f(t) in the time domain from F(s) in the Laplace domain we may try 
to use the Laplace transform tables. The tables, however, have a limited number of 
transform pairs and many functions are not in them.

In many instances we can use an abbreviated version of Laplace transform pairs, 
together with the properties of Laplace transforms, and apply partial fraction expansion.

For linear, lumped‐parameter circuits, the s domain expressions (functions) for 
the unknown voltages or currents are always rational functions of s. That is, F(s) can be 
expressed as a ratio of two polynomials in s, such that the powers of s are non‐negative 
integers.

Thus, in general, F(s) has the form

	
F s

N s
D s

a s a s a s a
s b s b s b

m
m

m
m

n
n

n
1

1
1 0

1
1

1 0





	 (7.38)

where a and b are real constants, and m and n are positive integers. We will consider 
proper rational functions, where m < n.

A proper rational function can be expressed as the sum of partial fractions with 
constant coefficients. In order to apply partial fraction expansion, we express the 
denominator of F(s) in the factor form:

	
F s

N s
D s

N s

s p s p s pk
r

1 2

	 (7.39)

Since the order of the denominator is n, it follows that the polynomial D(s) will have n 
roots, or poles, which may be real or complex, and distinct or repeated. In the following, 
we will discuss distinct real roots.
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When the denominator D(s) has only distinct real roots then Eq. (7.39) can be 
written as

	
F s

N s
D s

N s
s p s p s pn1 2

	 (7.40)

and s p p pn1 2, , ,  are real distinct roots. Then, F(s) can be expressed as

	
F s

N s
D s

A
s p

A
s p

A
s p

n

n

1

1

2

2


	 (7.41)

The coefficients Ak are known as the residues of F(s). One way to obtain these residues 
is to apply Heaviside’s theorem as follows.

To evaluate a typical coefficient Ak, multiply both sides of Eq. (7.41) by s pk . The 
result is

	

F s s p
N s
D s

s p
N s s p

s p s p s p sk k
k

k1 2 pp

A
s p
s p

A
s p
s p

A A
s p
s p
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k n

k

n
1

1
2

2
 

	 (7.42)

Equation (7.42) is valid for all values of s. We choose the values of s that lead to useful 
results. Thus, we let pk. Then each term on the right‐hand side of Eq. (7.42) vanishes, 
except Ak.

Thus,

	
A s p

N s
D sk k

s pk

	 (7.43)

Example 7.1  Inverse Laplace transform – distinct real roots
Determine the inverse Laplace transform of

	 F s s
s s s

4
4 33 2 	

Solution:
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Therefore, using the table of transforms and the linearity property, the inverse Laplace 
transform is

	 f t F s L
s s s

t tL e e1 1 34
3

1 3
2

1
1

1
6

1
3

4
3

3
2

1
6

, t 0	

7.3  Fundamental Laws

We have, thus far, introduced the fundamental concepts such as current, voltage, and 
power in an electric circuit. To determine the values of these variables in a given circuit 
requires an understanding of some fundamental laws that govern electric circuits.

These laws, known as Ohm’s law and Kirchhoff ’s laws, form the foundation upon 
which electric circuit analysis is built. We will present these laws in the time domain, as 
well as in the phasor and s domains.

7.3.1  Resistors and Ohm’s Law

The physical property of material, the ability to resist the flow of current, is known as 
resistance. The circuit element used to model this behavior is the resistor.

The circuit symbol of a resistor and the voltage and current designations in the time 
domain are shown in Figure 7.5.

The resistor R, is a two‐terminal device, connected between two nodes A and B, has a 
current i flowing through it, and a voltage v across it.

The relationship between current and voltage for a resistor is known as Ohm’s law.
Ohm’s law states that the voltage across a resistor is directly proportional to the 

current flowing through it. The constant of proportionality is the resistance value of 
the resistor.

When the passive sign convention is satisfied, the Ohm’s law is expressed as

	 v Ri 	 (7.44a)

or alternatively,

	
i v

R
	 (7.44b)

Equations (7.44) constitute the voltage–current relationship for 
a  resistor. We often refer to such a relationship as an element 
constraint.

R is measured in units called ohms that can be obtained from 
Eq. (7.44):

	
R v

i
V
A

� (7.45)

When the passive sign convention is not satisfied, Ohm’s law is 
expressed as

	 v Ri� (7.46a)

R

i (t)

v (t)

+

–

Figure 7.5  Resistor 
symbol and circuit 
variables.
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or alternatively,

	
i v

R
	 (7.46b)

Conductance  Ohm’s law can also be written as

	
i

R
v Gv1 	 (7.47)

where G denotes the conductance in siemens (S) and is the reciprocal of R.

	
G

R
1 1S A

V
	 (7.48)

The concept of conductance not only simplifies circuit analysis (by avoiding the 
division by R) but also has a physical meaning.

Conductance is a measure of how well an element would conduct electric current.

Power Dissipated by a Resistor  Using Ohm’s law, the power dissipated by the resistor can 
be expressed as

	
p vi Ri v

R
2

2
2

2W VA A V 	 (7.49)

where v and i have been assumed to satisfy the passive sign convention.
Let’s calculate the power dissipated by the resistor, when the passive sign convention 

is not satisfied. In this case, the power dissipated by the resistor is

	 p vi	 (7.50)

Now according to the Ohm’s law

	 v Ri	 (7.51)

Substituting Eq. (7.51) into Eq. (7.50) produces

	 p vi Ri i Ri2	 (7.52)

Alternatively, substituting

	
i v

R
	 (7.53)

into Eq. (7.50) results in

	
p vi v v

R
v
R

2
	 (7.54)

Results (7.52) and (7.54) agree with the result (7.49), and confirm the fact that the 
resistors always dissipate power.
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Using the definition of conductance, the 
power dissipated by the resistor can 
alternatively be expressed as

	
p vi i

G
Gv

2
2� (7.55)

Open and  Short Circuit  The value of a 
resistance R can range from zero to infinity. 
Two important extreme cases arise when 
the resistance is zero or infinite.

When the resistance is zero, the resulting 
circuit, shown in Figure  7.6, is called a 
short circuit.

According to Ohm’s law

	 v Ri i0 0� (7.56)

showing that the voltage across a short 
circuit is zero.

When the resistance of a resistor is 
infinite, the resulting circuit, shown in 
Figure 7.7, is called an open circuit.

According to Ohm’s law

	
i v

R
v 0� (7.57)

showing that a current through an open 
circuit is zero.

Ideal Switch  The ideal switch can be 
modeled as a combination of an open‐ and 
short‐circuit elements. Figure 7.8 shows the 
circuit symbol of an ideal switch.

7.3.2  Inductors and Capacitors

Inductor  The circuit symbol of an inductor and voltage–current designations in the 
time domain are shown in Figure 7.9.

When the passive sign convention is satisfied, the voltage–current relationships are

	
v t L

di t
dt

� (7.58a)

A

R = 0 R = 0

A

B B

v

+

–

v = 0
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–

i i

Figure 7.6  Short circuit.
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R = ∞

A

B B

v

+

–

v

+

–

i i = 0

R = ∞

Figure 7.7  Open circuit.

A A

B B

v

+

–

v = 0

+

–

i = 0 i

(a) (b)

Figure 7.8  Ideal switch: (a) open (b) closed.
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	 i t
L

v t dt i
L

v t dt
t t1 0 1

0

� (7.58b)

The unit of inductance is henry (H). Eq. (7.58a) can be used to 
determine its equivalence.

	
V H A

s
H Vs

A
� (7.59)

In many EMC problems, we are concerned about the parasitic 
inductances present in the circuit. These inductances are usually 
in the range of a few to a few tens of nH.

Energy stored in the magnetic field of an inductor can be 
calculated from

	

W p t dt v t i t dt

L
di t

dt
i t dt L

m

t t

t

i t

t t tt

i

i t

i t di

L
i t

L i t
2

2

2
1
2

0

� (7.60)

or

	
W Li tm

1
2

2 � (7.61)

Capacitors  The circuit symbol of a capacitor and the voltage current designations in 
the time domain are shown in Figure 7.10.

When the passive sign convention is satisfied the voltage–current relationships are

	
i t C

dv t
dt

	 (7.62a)

	
v t

C
i t dt v

C
i t dt

t t1 0 1

0

	 (7.62b)

The unit of capacitance is farad (F). Equation (7.62a) can be used to determine its 
equivalence.

	
A F V

s
F As

V
	 (7.63)

In many EMC problems we are concerned about the parasitic capacitance present in 
the circuit. These capacitances are usually in the range of a few to a few tens of pF.

L

i (t)

v (t)

+

–

Figure 7.9  Inductor 
symbol and circuit 
variables.

C

i (t)

v (t)

+

–

Figure 7.10  Capacitor 
symbol and circuit 
variables.
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Energy stored in the electric field of a capacitor can be calculated from

	

W p t dt v t i t dt

v t C
dv t

dt
dt C

e

t t

t

v t

v t tt

v

v t

v t dv

C
v t

C v t
2

2

2
1
2

0

	 (7.64)

or

	
W Cv te

1
2

2 	 (7.65)

7.3.3  Phasor Relationships for Circuit Elements

Recall the time domain voltage–current relationships for resistors, inductors, and 
capacitors (when passive sign convention is satisfied):

	 v t Ri tR R 	 (7.66a)

	
v t L

di t
dtL
L 	 (7.66b)

	
i t C

dv t
dtC
C 	 (7.66c)

We will transform the voltage–current relationship from the time domain to the 
phasor domain for each element. Since we are concerned with the sinusoidal steady 
state, all voltages and currents in the time domain are expressed as sinusoids.

Resistor  In the time domain, if the current through a resistor R is

	 i I tm cos 	 (7.67)

then, according to the Ohm’s law, the voltage across it is

	 v Ri RI tm cos 	 (7.68)

The phasor form of the current is

	 eˆ j
m mI I I 	 (7.69)

while the phasor form of the voltage is

	 ˆ e j
m mV RI RI 	 (7.70)

Therefore,

	 ˆ ˆV RI 	 (7.71)
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Thus, the voltage–current relationship for the resistor in the phasor domain 
continues to be Ohm’s law, as in the time domain.

Figure 7.11 shows the resistor symbol and the circuit variables in both the time and 
phasor domains.

Inductor  In the time domain, let the current through an inductor L be

	 i I tm cos 	 (7.72)

The phasor form of this current is

	 eˆ j
m mI I I 	 (7.73)

The voltage across the inductor, in the time domain, is

	

v t L
di t

dt
L d

dt
I t

LI t LI t

m

m m

cos

sin cos 90
	 (7.74)

and the phasor form of this voltage is

	
90 90e e eˆ ej j j j

m m m mV LI LI j LI j LI 	 (7.75)

Since

	 e j j j j90 90 90 0 1cos sin 	 (7.76)

we have

	
ˆ e j

m mV j LI j LI 	 (7.77)

Therefore, utilizing Eq. (7.73), we arrive at the voltage–current relationship for an 
inductor in the phasor domain as

	 ˆ ˆV j LI 	 (7.78)

Figure 7.12 shows the inductor symbol and the circuit variables in both the time and 
phasor domains.

R

(a) (b)

i (t)

v (t)

+

–

R

  Î ( jω)
+

–

 V̂( jω)

Figure 7.11  Resistor symbol and circuit variables 
in the (a) time domain, (b) phasor domain.
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Capacitor  In the time domain, let the voltage across a capacitor C be

	 v V tm cos 	 (7.79)

The phasor form of this voltage is

	 eˆ j
m mV V V 	 (7.80)

The current through the capacitor, in the time domain, is

	

i t C
dv t

dt
C d

dt
V t

CV t CV t

m

m m

cos

sin cos 90
	 (7.81)

and the phasor form of this current is

	

90 90e eˆ

e

j j j
m m

j
m m

I CV CV e

j CV j CV
	 (7.82)

Therefore, utilizing Eq. (7.72), we arrive at the voltage–current relationship for a 
capacitor in the phasor domain as

	 ˆ ˆI j CV 	 (7.83)

Figure 7.13 shows the capacitor symbol and circuit variables in both the time and 
phasor domains.

7.3.4  s Domain Relationships for Circuit Elements

Resistor  In the time domain, voltage and current are related by Ohm’s law:

	 v t Ri t 	 (7.84)

Taking the Laplace transform of both side of Eq. (7.84) we get

	 L Lv t Ri t 	 (7.85)

L

(a) (b)

i (t) +

–

+

–

L

  Î ( jω)

 V̂( jω)v (t)

Figure 7.12  Inductor symbol and circuit variables 
in the (a) time domain, (b) phasor domain.
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or

	
ˆ ˆV s RI s 	 (7.86)

Thus, the voltage–current relationship for the resistor in the s domain continues to 
be Ohm’s law, as in the time domain.

Figure 7.14 shows the resistor symbol and the circuit variables in the time domain, 
phasor domain, and s domain.

Inductor  In the time domain, the current–voltage relationship is

	
v t L

di t
dt

	 (7.87)

Taking the Laplace transform of both side of Eq. (7.87) we get

	
L Lv t L

di t
dt

	 (7.88)

(a) (b)

i (t)

v (t)

+

–

+

–

CC

  Î ( jω)

 V̂( jω)

Figure 7.13  Capacitor symbol and circuit 
variables in the (a) time domain, (b) phasor 
domain.

(a) (b) (c)

i (t)

v (t)

+

–

+

–

+

–

R RR

  Î ( jω)

 V̂( jω)  V̂(s)

  Î (s)

Figure 7.14  Resistor symbol and circuit variables in the (a) time domain, (b) phasor domain, 
(c) s domain.
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When the initial inductor current is zero, we obtain

	
ˆ ˆV s sLI s 	 (7.89)

Figure 7.15 shows the inductor symbol and the circuit variables in the time domain, 
phasor domain, and s domain.

Capacitor  In the time domain, the current–voltage relationship is

	
i t C

dv t
dt

	 (7.90)

Taking the Laplace transform of both side of Eq. (7.90) we get

	
L Li t C

dv t
dt

	 (7.91)

When the initial inductor current is zero, we obtain

	
ˆ ˆI s sCV s 	 (7.92)

Figure 7.16 shows the inductor symbol and the circuit variables in the time domain, 
phasor domain and s domain.

7.3.5  Impedance in Phasor Domain

In the previous section, we obtained the voltage–current relations for the three passive 
elements as

	 ˆ ˆV RI 	 (7.93a)

	 ˆ ˆV j LI 	 (7.93b)

	 ˆ ˆI j CV 	 (7.93c)

(a) (b) (c)

i (t)

v (t)

+

–

+

–

+

–

L LL

  Î ( jω)

 V̂( jω)  V̂( s)

  Î (s)

Figure 7.15  Inductor symbol and circuit variables in the (a) time domain, (b) phasor domain,  
(c) s domain.
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These equations may be written in terms of the ratio of the phasor voltage to the 
phasor current as

	

ˆ
ˆ

V R
I

	 (7.94a)

	

ˆ
ˆ

V j L
I

	 (7.94b)

	 ˆ
1V̂

j CI
	 (7.94c)

From these three expressions, we obtain Ohm’s law in phasor form for any type of 
element as

	

ˆ ˆ
ˆ

V Z
I

	 (7.95a)

or
	 ˆˆ ˆV ZI 	 (7.95b)
Ẑ is a frequency‐dependent quantity known as impedance, measured in ohms.

The impedance Ẑ of a circuit element is the ratio of the phasor voltage V̂ , across it, to 
the phasor current Î , through it.

The impedance represents the frequency‐dependent opposition to the sinusoidal 
current flow.

Although the impedance is the ratio of two phasors, it is not a phasor, because it does 
not have a corresponding sinusoid in the time domain.

The impedances of a resistor, inductor, and capacitor are, respectively,

	 ˆ
RZ R	 (7.96a)

	 ˆ
LZ j L	 (7.96b)

	

ˆ 1
C

jZ
j C C

	 (7.96c)

(a) (b) (c)

i (t)

v (t)

+

–

+

–

+

–

C CC

  Î ( jω)   Î (s)

 V̂( jω)  V̂( s)

Figure 7.16  Capacitor symbol and circuit variables in the (a) time domain, (b) phasor domain,  
(c) s domain.
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Let’s consider two extreme cases of frequency: dc circuits ( 0) and high frequency 
circuits ( ).

Under dc conditions

	 ˆ 0LZ 	 (7.97a)

	 ˆ
CZ 	 (7.97b)

confirming that, at dc, the inductor acts like a short circuit, while the capacitor acts like 
an open circuit.

At very high frequencies

	 ˆ
LZ 	 (7.98a)

	 ˆ 0CZ 	 (7.98b)

verifying that, at very high frequencies, the inductor acts like an open circuit, while the 
capacitor acts like a short circuit.

Since the impedance is a complex quantity, it can be expressed as

	 Ẑ R jX 	 (7.99)

where ˆReR Z  is the resistance, and ˆImX Z  is the reactance. The impedance, 
resistance, and reactance are all measured in ohms.

For passive circuits, resistance R is always positive. The reactance X may be positive 
or negative. When the reactance X is positive, we say that the reactance is inductive. 
When the reactance X is negative, we say that the reactance is capacitive.

In some applications, it is convenient to work with the reciprocal of impedance, 
known as admittance.

	
ˆ

ˆ
1Y
Z

	 (7.100)

The admittances of a resistor, inductor, and capacitor are, respectively,

	
ˆ 1
RY G

R
	 (7.101a)

	
ˆ 1
LY

j L
	 (7.101b)

	 ĈY j C 	 (7.101c)

Since the admittance Ŷ is a complex quantity, it can be expressed as

	 Ŷ G jB	 (7.102)

where ˆReG Y  is the conductance, and m ˆIB Y  is the susceptance. The admittance, 
conductance, and susceptance are all measured in siemens.

Often, when drawing circuit elements in phasor domain, we replace the component 
values with the corresponding impedance, as shown in Figure 7.17.
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7.3.6  Impedance in the s Domain

Recall the voltage–current relationships for the circuit elements under the zero initial 
conditions assumption:

	
ˆ ˆV s R I s 	 (7.103a)

	
ˆ ˆV s sL I s 	 (7.103b)

	
ˆ ˆI s sCV s 	 (7.103c)

These relationships may be written in terms of the ratio of the Laplace transform of 
the voltage across the element to the Laplace transform of the current through the 
element, as

	

ˆ
ˆ

V s
R

I s
	 (7.104a)

	

ˆ
ˆ

V s
sL

I s
	 (7.104b)

	

1ˆ
ˆ

V s
sCI s

	 (7.104c)

From these three expressions, we obtain Ohm’s law in the s domain for any type of 
element as

	

ˆ
ˆ

ˆ
V s

Z
I s

	 (7.105a)

or

	
ˆˆ ˆV s ZI s 	 (7.105b)

Where Ẑ is a complex quantity known as impedance, measured in ohms.

+

–

+

–

+

1

–

–
R jωL jωC

  Î ( jω)   Î ( jω)   Î ( jω)

 V̂( jω)  V̂( jω)  V̂( jω)

Figure 7.17  Circuit elements and their impedances.
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The impedance Ẑ(s) of a circuit element in the s domain, is the ratio of the Laplace 
transform of the voltage V̂ s , across it, to the Laplace transform of the current Î(s), 
through it.

The impedances of a resistor, inductor, and capacitor are, respectively,

	 ˆ
RZ R	 (7.106a)

	 ˆ
LZ sL	 (7.106b)

	
ˆ 1

CZ
sC

	 (7.106c)

Often, when drawing circuit elements in the s domain, we replace the component 
values with the corresponding impedance, as shown in Figure 7.18.

7.3.7  Kirchhoff’s Laws in the Time Domain

There are two fundamental laws governing electric circuit behavior: Kirchhoff ’s current 
law (KCL) and Kirchhoff ’s voltage law (KVL).

Kirchhoff ’s laws can be regarded as the connection constraints, since they impose con-
straints the voltages and currents when different elements are connected to form an 
electric circuit.

Kirchhoff ’s laws, when coupled with Ohm’s law, provide us with a set of tools for 
systematic analysis of a large variety of electric circuits. Virtually, all circuit laws to be 
discussed in the following chapters are based or can be derived from Kirchhoff ’s laws 
and the element constraints.

Kirchhoff’s Current Law (KCL)  Kirchhoff ’s current law (KCL) is based on the law of 
conservation of charge and is a consequence of the fact that charge cannot accumulate 
or be depleted at a node.

KCL states that the sum of the currents entering a node must be equal to the sum of 
the currents leaving the node.

To illustrate KCL, let’s consider the node shown in Figure 7.19.
Currents i3 and i4 enter the node, while the currents i1, i2, and i5 leave the node. Thus

	 i i i i i3 4 1 2 5	 (7.107a)

+

–

R

+

–

+

–

sL
sC

1

  Î (s)   Î (s)   Î (s)

 V̂(s)  V̂(s)  V̂(s)

Figure 7.18  Circuit elements and their impedances.
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Note that KCL in Eq. (7.107) can also be written as

	 i i i i i1 2 5 3 4 0� (7.107b)

In general, KCL can stated as the algebraic sum

	 k

N

ki
1

0� (7.108)

Where N is the number of branches (wires) con-
nected to the node and ik is the kth current entering or 
leaving the node.

The term algebraic implies the dependency on 
the  current reference direction, that is, whether the 
current “enters” or “leaves” the node. We will adopt 
the following convention:

Current entering a node will have a “+1” multiplier preceding its value, whereas current 
leaving a node will have a “−1” multiplier preceding its value.

Note that Eq. (7.107b) conforms to this notation.

Example 7.2  KCL
Let the currents in Figure  7.19 have the values: i A i A i A i A1 2 3 58 3 2 4, , ,  
Determine i4.

Solution:  Applying KCL at the node results in

	 2 8 3 44i 	

Thus i4 3A.
� ▪

Example 7.3  Current sources in parallel
A simple application of KCL is combining current sources in parallel. For example, the 
current sources shown in Figure 7.20(a) can be combined as shown in Figure 7.20(b).

Applying KCL at node A:

	 I I I I I I I IT T1 3 2 1 2 3	 (7.109)

When the current sources are connected in parallel, the equivalent current is the alge-
braic sum of the currents supplied by the individual sources.

� ▪

Note that a circuit cannot have two different current sources in series, unless their 
currents are equal, otherwise the law of conservation of charge is violated.

Kirchhoff’s Voltage Law (KVL)  Kirchhoff ’s voltage law (KVL) states that the algebraic sum 
of all voltages around any loop in a circuit is identically zero at all times.

i3

i5

i4

i2

i1

Figure 7.19  Illustration of the 
Kirchhoff’s current law.
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The term algebraic implies the dependency on the voltage polarity encountered as the 
closed path is traversed. We will adopt the following convention:

In traversing the element, when going from (+) to (−), we assign a “−” sign to the voltage, 
whereas, when going from (−) to (+), we assign a “+” sign to the voltage.

When traversing the loop, we can start with any element and go around the loop 
either clockwise or counterclockwise. To illustrate KVL, let us consider a circuit shown 
in Figure 7.21.

Suppose, we start with the voltage source vs1 and traverse the loop in the clockwise 
direction. Applying KVL yields

	 v v v v vs s1 1 2 2 3 0	 (7.110)

In traversing the element, when going from + to –, we refer to the voltage as the 
voltage drop, whereas when going from – to +, we talk about a voltage rise.

In general, KVL can be expressed as the algebraic sum

	 k

N

kv
1

0	 (7.111)

where N is the number of voltages in the loop and vk is the kth voltage.

A

B

A

B

(a)

(b)

I1

IT

IT

IT =I1– I2+ I3

I2 I3

Figure 7.20  Combining current sources in 
parallel.
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V1
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+

+ ––

+–

–
+
–

V3

Vs1 Vs2

V2

R2 Figure 7.21  Illustration of the Kirchhoff’s 
voltage law.



Basic Laws and Methods of Circuit Analysis 167

Example 7.4  Voltage sources in series
A simple application of KVL is combining voltage sources in series. For example, the 
voltage sources shown in Figure 7.22(a) can be combined as shown in Figure 7.22(b).

The equivalent voltage source in Figure 7.22(b) is obtained by applying KVL:

	 V V V VAB 1 2 3 0	 (7.112a)

or equivalently

	 V V V VAB 1 2 3	 (7.112b)

When the voltage sources are in series, the equivalent voltage is the algebraic sum of 
the voltages of the individual sources.

� ▪

Note: A circuit cannot contain two different voltage sources in parallel, unless they are 
equal, otherwise the law of conservation of energy is violated.

7.3.8  Kirchhoff’s Laws in the Phasor Domain

Kirchhoff’s Current Law  Let the KCL in the time domain be stated as

	 k

N

ki
1

0	 (7.113)

or, equivalently

	 i t i t i tN1 2 0

	 (7.114)

KCL holds for any time function of currents. Let each current in Eq. (7.113) be sinu-
soidal of the form

	 i t I tk mk kcos 	 (7.115)
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B
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B

(a)

(b)

V1

VAB =V1 – V2 + V3VAB

VAB

+

–

+

+

–

–

+ +– + ––

V2 V3

Figure 7.22  Combining voltage sources in 
series.
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Then the corresponding phasor is

	 ˆ e kj
k mk k mkI I I 	 (7.116)

It follows that Eq. (7.114) can be written in the phasor form as

	 1 2
ˆ ˆ ˆ 0NI I I 	 (7.117)

Eq. (7.117) represents KCL in the phasor domain.

Kirchhoff’s Voltage Law  Let the KVL in the time domain be stated as

	 k

N

kv t
1

0	 (7.118)

or, equivalently

	 v t v t v tN1 2 0

	 (7.119)

Let each voltage in Eq. (7.119) be sinusoidal of the form

	 v t V tk mk kcos 	 (7.120)

and each corresponding phasor be

	 ˆ e kj
k mk k mkV V V 	 (7.121)

Then, the KVL in phasor domain holds, and has the form

	 1 2
ˆ ˆ ˆ 0NV V V 	 (7.122)

7.3.9  Kirchhoff’s Laws in the s Domain

Kirchhoff’s Current Law  Let the KCL in the time domain be stated as

	 i t i t i tN1 2 0

	 (7.123)

Taking Laplace transform of Eq. (7.123) gives

	 L Li t i t i tN1 2 0

	 (7.124)

By the linearity property, we have

	 L L Li t i t i tN1 2 0

	 (7.125)

or

	 1 2
ˆ 0ˆ ˆ

NI s I s I s 	 (7.126)

Equation (7.126) represents KCL in the s domain.
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Kirchhoff’s Voltage Law  Let the KVL in the time domain be stated as

	 v t v t v tN1 2 0

	 (7.127)

Taking Laplace transform of Eq. (7.127) gives

	 L v t v t v tN1 2 0

	 (7.128)

By the linearity property, we have

	 L L Lv t v t v tN1 2 0

	 (7.129)

or

	 1 2 0ˆ ˆ ˆ
NV s V s V s

	 (7.130)

Equation (7.130) represents the KVL in the s domain.

7.3.10  Resistors in Series and the Voltage Divider

The analysis of an electric circuit can often be made easier by replacing a part of the 
circuit with one that is equivalent but simpler. This leads us to the definition of the 
equivalence.

Equivalence of  Two Circuits  Two circuits are said to be equivalent, with respect to the 
same two nodes, if they have identical i–v characteristics at these nodes.

Consider the circuits shown in Figure 7.23(a) and 7.23(b).
In order for these two circuits to be equivalent with respect to nodes A and B, the i–v 

characteristics with respect to these two nodes must be the same. Thus VAB and I in 
circuit 7.23(a) must be equal to VAB and I in circuit 7.23(b).

Resistors in  Series  Resistors R1, R2, and R3 in Figure  7.23(a) are connected in series 
because each two resistors exclusively share a single node; resistors R1 and R2 share 
node C, whereas resistors R2 and R3 share node D.

This is the topological definition of a connection in series. Two or more elements are 
connected in series when each two exclusively share one common node.

A
I

B

(a) (b)

V1

R1 R2

REQ

R3

C

D VAB

+

–

A
I

B

VAB

+

–

+ +

– +

– –V2

V3

Figure 7.23  Illustration of the 
circuit equivalence.
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On the other hand, elements connected in series have the same current flowing 
through them. This is the circuit‐variable definition of the connection in series.

Series Equivalent Resistance  Looking at the two circuits in Figure 7.23 we may pose the 
following question:

Under what condition are the two circuits equivalent? That is, what is the relationship 
between R1, R2, R3, and REQ which results in the voltage VAB and the current I being the 
same in both circuits?

We will answer this question by applying basic circuit laws. Let’s use the KVL 
(connection constraint) around the loop in the circuit shown in Figure 7.23(a):

	 V V V VAB 1 2 3 0	 (7.131)

Using Ohm’s law for each resistor (element constraint) we get

	 V R I1 1 	 (7.132a)

	 V R I2 2 	 (7.132b)

	 V R I3 3 	 (7.132c)

Substituting Eq. (7.132) into Eq. (7.131) we get

	 V R I R I RAB 1 2 3 0	 (7.133)

or

	 R R R I VAB1 2 3 	 (7.134)

On the other hand, writing Ohm’s for the circuit shown in Figure 7.23(b) results in

	 R I VEQ AB	 (7.135)

For the two circuits shown in Figure 7.23 to be equivalent, the following condition 
must be met:

	 R R R REQ 1 2 3	 (7.136)

In general, the equivalent resistance REQ of a series of N resistors is

	
R R R R REQ N

k

N

k1 2
1



	 (7.137)

Voltage Divider  Let’s return to the circuit shown in Figure  7.23(a), redrawn as 
Figure 7.24.

From Eq. (7.126) we get

	
I V

R R R
AB

1 2 3

	 (7.138)

Substituting this result back into (7.132) produces

	
V R

R R R
VAB1

1

1 2 3

	 (7.139a)
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V R

R R R
VAB2

2

1 2 3

� (7.139b)

	
V R

R R R
VAB3

3

1 2 3

� (7.139c)

Thus the magnitude of the voltage appear-
ing across each resistor connected in series is 
equal to the ratio of its resistance to the total 
resistance in the path formed, from the begin-
ning of the string of the resistors (node A) to 
the end of the string of the resistors (node B) 
multiplied by the voltage between nodes 
A and B.

In general, if we had N resistors connected in series, the voltage across the nth resistor 
would be

	
V R

R R R
Vn

n

N
AB

1 2 

	 (7.140)

This circuit demonstrates the principle of voltage division, and this rule is called a 
voltage divider.

The natural question arises: when do we put a plus or a minus sign in this formula?
We put the plus sign in the voltage divider formula when the following takes place:
When we traverse the loop moving through VAB, we move through the minus to plus 

of its reference direction and when we move through a particular resistor, we encounter 
the plus of its reference direction first.

Any change to the reference directions results in a sign reversal. The following exam-
ples will test our understanding of the voltage divider.

Example 7.5  Voltage divider
Consider the circuit shown in Figure 7.25.
Use the voltage divider to express V1 in 
terms of V3.
Answer:

	
V R

R R
V1

1

1 5
3
�

� ▪

Example 7.6  Voltage divider
Consider the circuit shown in Figure 7.26.
Use the voltage divider to express V7 in 
terms of V3.
Answer:

	
V R

R R
V7

7

5 7
3
�

R1 R2

R3

A

I

B

VAB

+

–

+

– +

–V2
– +V1

V3

Figure 7.24  Illustration of the voltage 
divider.
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Figure 7.25  Circuit for Example 7.5.
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7.3.11  Resistors in Parallel and the Current Divider

Resistors in Parallel  Consider the circuit shown in Figure 7.27(a).
Resistors R1, R2, and R3 in Figure 7.27(a) are connected in parallel because they all are 

connected between the same two nodes, A and B (any parts of the circuit connected 
with a wire, or a short circuit, electrically constitute the same node).

This is the topological definition of the connection in parallel. Two or more elements 
are connected in parallel when they are connected between the same two nodes.

On the other hand, if the elements are connected in parallel, then they have the 
same voltage across them. This is the circuit‐variable definition of the connection in 
parallel.

Parallel Equivalent Resistance  Looking at the two circuits in Figure 7.27 we may pose the 
following question:

Under what condition are the two circuits equivalent? That is, what is the relationship 
between R1, R2, R3 and REQ which results in the voltage V and the current I being the 
same in both circuits?

Let’s use the KCL at node A in the circuit shown in Figure 7.27(a):

	 I I I I2 1 3	 (7.141)

Using Ohm’s law for each resistor we get

	
I V

R1
1

	 (7.142a)

V3 V7
R6

R1

R7R3

R4

R5

+

+ –

–

Figure 7.26  Circuit for Example 7.6.

V R1 R2 R3 REQ

I

I1 I2 I3

I

+

–

V

+

–

(a)

A
A

B
B

(b)

A

B

Figure 7.27  Resistors in parallel and circuit equivalence.
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I V

R2
2

	 (7.142b)

	
I V

R3
3

	 (7.142c)

Substituting Eq. (7.142) into (7.141) we get

	
I V

R
V
R

V
R1 2 3

	 (7.143)

or

	

1 1 1
1 2 3R R R

I V 	 (7.144)

On the other hand, writing Ohm’s for the circuit shown in Figure 7.27(b) results in

	

1
R

I V
EQ

	 (7.145)

For the two circuits shown in Figure 7.26 to be equivalent, the following condition 
must be met:

	

1 1 1 1
1 2 3R R R REQ

	 (7.146)

In general, the equivalent resistance REQ of N resistors connected in parallel is

	

1 1 1 1 1
1 2 1R R R R REQ N k

N

k


	 (7.147)

In terms of conductance, Eq. (7.147) becomes

	
G G G G GEQ N

k

N

k1 2
1



	 (7.148)

It is useful to derive the formula for two resistors connected in parallel, shown in 
Figure 7.28.

R2R1 REQ

(a)

A

B

(b)

A

B

Figure 7.28  Equivalent resistance 
of two resistors in parallel.
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According to Eq. (7.147) we have

	

1 1 1
1 2R R REQ

	 (7.149)

or

	

1 1 2

1 2R
R R
R REQ

	 (7.150)

thus

	
R R R

R REQ
1 2

1 2

	 (7.151)

We arrived at a very useful result: the equivalent resistance of two resistors in parallel 
is equal to their product divided by their sum.

Using this result we can easily determine the equivalent resistance of a resistor paral-
lel to a short circuit (R = 0), shown in Figure 7.29.

According to Eq. (7.151) we have

	
R R R

R R
R
REQ

1 2

1 2

1

1

0
0

0	 (7.152)

Thus, the equivalent resistance of a resistor parallel to a short circuit is zero, the same 
as a short circuit itself. Therefore, when a resistor is bypassed by short circuit we can 
replace it by a short, as shown in Figure 7.29(b).

Current Divider  Let’s return to the circuit shown in Figure 7.27(a), redrawn as Figure 7.30.
Equation (7.144) repeated here

	

1 1 1
1 2 3R R R

I V 	 (7.153)

leads to

	
V I

G G G1 2 3

	 (7.154)

R2 = 0R1 REQ = 0

(a)

A

B

(b)

A

B

Figure 7.29  Equivalent resistance 
of a resistor in parallel with a short.
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Substituting this result back into Eq. (7.142) 
produces

	
I V

R
G V G

G G G
I1

1
1

1

1 2 3

� (7.155a)

	
I V

R
G V G

G G G
I2

2
2

2

1 2 3

� (7.155b)

	
I V

R
G V G

G G G
I3

3
3

3

1 2 3

� (7.155c)

Thus, the magnitude of the current flowing out of the node through each resistor 
connected in parallel is equal to the ratio of its conductance to the total conductance of 
the resistors in parallel multiplied by the current flowing into the node.

In general, if we had N resistors connected in parallel, the current through the nth 
resistor would be

	
I G

G G G
Ik

k

N1 2 

	 (7.156)

This circuit demonstrates the principle of current division, and this rule is called a 
current divider.

The natural question arises: when do we put a plus or a minus sign in this formula?
We put the plus sign in the current divider formula when the following takes place:
The total current flows into the node and the individual current flows out of the node. 

Any change to the reference directions results in a sign reversal.
It is useful to derive the formula for the current divider when two resistors are con-

nected in parallel, shown in Figure 7.31.
According to formula (7.156) we have

	

I G
G G

I R

R R

I1
1

1 2

1

1 2

1

1 1
� (7.157)

or

	

I R
R R
R R

I1
1

1 2

1 2

1
� (7.158)

resulting in

	
I R

R R
I1

2

1 2

� (7.159)

V R1 R2 R3

I

I1 I2 I3+

–

A

B

Figure 7.30  Illustration of the current 
divider.

R1 R2

I

I1 I2

Figure 7.31  Current divider 
rule for two resistors in parallel.



Foundations of Electromagnetic Compatibility176

Similarly,

	

I G
G G

I R

R R

I2
2

1 2

2

1 2

1

1 1
� (7.160)

or

	

I R
R R
R R

I2
2

1 2

1 2

1
	 (7.161)

resulting in

	
I R

R R
I2

1

1 2

	 (7.162)

This is a very useful result: when we have two resistors in parallel, the current 
flowing in one path equals the resistance in the other path divided by the sum of both 
resistances in parallel, times the current flowing into the node.

The following examples will test our understanding of the current divider.

Example 7.7  Current divider
Consider the circuit shown in Figure 7.32.
Use the current divider to express I7 in terms of I2.

Solution:

	
I R

R R
I7

4

4 7
2
	

Example 7.8  Current divider
Consider the circuit shown in Figure 7.33.
Use the current divider to express I7 in terms of I2.

Solution:

	
I R R

R R R
I7

5 6

5 6 7
2
�

7.3.12  Impedance Combinations and Divider Rules 
in Phasor Domain

Impedances in  Series  Consider the N impedances 
connected in series as shown in Figure 7.34.

R1

R2

R3

R4

R5 R6

R7

I2

I7

Figure 7.32  Circuit for Example 7.7.
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Applying KVL around the loop gives

	 1 2
ˆ ˆ ˆ ˆ

NV V V V

	 (7.163)

Since the same current Î flows through all impedances, we have

	 1 2
ˆˆ ˆˆ ˆ

NV Z Z Z I 	 (7.164)

The equivalent impedance at the input terminals is

	
1 2

ˆ ˆˆˆ
ˆ

ˆ
EQ N

VZ Z Z Z
I

	 (7.165)

leading to

	 1 2
ˆ ˆˆ ˆ

EQ NZ Z Z Z 	 (7.166)

Showing that the equivalent impedance of series‐connected impedances is the sum of 
the individual impedances.

This relationship has the same mathematical form as that for the resistors in series.

Voltage Divider  Consider the circuit shown in Figure 7.35.
Combing the impedances in series and using Ohm’s law we can express the current as

	 1 2
ˆ ˆ

ˆˆ VI
Z Z

	 (7.167)

Now,

	 1 1
ˆˆ ˆZV I 	 (7.168a)

	 2 2
ˆˆ ˆV Z I 	 (7.168b)

R7

R2

R3

R4

R5

R6

I2

I7

Figure 7.33  Circuit for Example 7.8.

A

B

+
–

– ++ – + –

Ẑ1 Ẑ2  Î ẐN

ẐEQ

V̂1 V̂2 V̂N

V̂

Figure 7.34  Impedances in 
series.
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Using Eq. (7.167) in Eq. (7.168) produces the voltage divider relationships.

	
1

1
21

ˆˆ
ˆ ˆ

ˆZV
Z

V
Z

	 (7.169a)

	 1 2

2
2

ˆ
ˆ

ˆ ˆ
ˆ

ZV
Z

V
Z

	 (7.169b)

Impedances in Parallel  Consider the N impedances connected in parallel as shown in 
Figure 7.36.

Applying KCL at the upper node gives

	 1 2
ˆ ˆ ˆ ˆ

NI I I I 	 (7.170)

Since the voltage V̂  across each impedance is the same, we have

	


1 2

1 1 ˆ
ˆ ˆ

1ˆ
ˆ

NZ Z
I

Z
V 	 (7.171)

The equivalent impedance at the input terminals is

	
ˆ ˆ

ˆ
1

EQ
I V

Z
	 (7.172)

leading to

	


1 2

1 1 1 1
ˆ ˆ ˆ ˆ

NEQZ Z Z Z
	 (7.173)

–

–

+ +V̂1

+
–

  Î
Ẑ1

V̂2 Ẑ2V̂

Figure 7.35  Voltage divider circuit.

A

B

+
–

–

+

Ẑ1 Ẑ2

  Î

  Î 1   Î 2   Î N

ẐN

ẐEQ

V̂1V̂

Figure 7.36  Impedances in parallel.
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showing that the reciprocal of the equivalent impedance of parallel‐connected imped-
ances is the sum of the reciprocals of the individual impedances.

This relationship has the same mathematical form as that for the resistors in parallel.
In terms of admittances, Eq. (7.173) can be written as

	 1 2
ˆ ˆˆ ˆ

EQ NY Y Y Y 	 (7.174)

Current Divider  Consider the circuit shown in Figure 7.37.
The equivalent impedance of the two impedances in parallel is obtained as

	

1 2

1 2 1 2

ˆ ˆ1 1 1
ˆ ˆ ˆ ˆˆ

EQ

Z Z
Z Z Z Z Z

	 (7.175)

thus

	
1

21

2
ˆ ˆ

ˆ
ˆ

ˆEQ
Z Z

Z
Z

Z
	 (7.176)

The voltage across each impedance is

	 2

1 2

1

ˆˆ
ˆ ˆ

ˆˆ ˆ
EQ

Z Z
Z

V Z I
Z

	 (7.177)

Now,

	
1

1

ˆˆ
ˆ
VI
Z

	 (7.178a)

	
2

2

ˆˆ
ˆ
VI
Z

	 (7.178b)

Using Eq. (7.177) in Eq. (7.178) produces the current divider relationships.

	
2

1
21

ˆˆ
ˆ ˆ

ˆZI
Z

I
Z

	 (7.179a)

	
1

2
21

ˆˆ
ˆ ˆ

ˆZI
Z

I
Z

	 (7.179b)

+
–

  Î 1   Î 2

Ẑ1 Ẑ2

  Î

V̂

Figure 7.37  Current divider circuit.
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Example 7.9  Impedance combinations
Determine the input impedance of the circuit shown in Figure 7.38. Assume that the 
circuit operates at 1000 rad/s.

Solution:  Combine the components in series, and redraw the circuit as shown in 
Figure 7.39.

Where

	

2 2

1

1 6
1

2 2 6
2

3 1

1 1 250
1000 4 10

1 15 5 5
1000 200 10

1000

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ 0.1 4 4 100

R C

L R

Z j j
j C

Z Z Z R j j
j C

Z Z Z j L R j j 	

The input impedance is thus

	

2 3
1 2 3 1

2 3

5 5 4 100
250

5 5 4 100
20 500 20 500 520 480250 250

9 95 9 95
520 480250 5.5216 254.95

9 9

ˆ ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ

5

in
j jZ ZZ Z Z jZ Z j jZ Z

j j jj j
j j

jj j
j 	

C1 = 4 μF  

C2 = 200 μF  

R2 = 5 Ω R1 = 4 Ω
Ẑ IN

L
 
= 100 mH Figure 7.38  Circuit for Example 7.8.

Ẑ1

Ẑ2

Ẑ3

Ẑ IN

Figure 7.39  Circuit for Example 7.9.
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Example 7.10  Voltage divider
Consider the circuit shown in Figure 7.40. Let V 100V.
Use the voltage divider to determine the voltage across the resistor.

Solution:

	

3 3 43 3100 100 100
3 5 3 4 3 4 3 4
9 12 3 4 5 15100 100 20 60

9 16 25

ˆ
R

j jj j
j j j j j
j j j j

V

	

Example 7.11  Current divider
Consider the circuit shown in Figure 7.41. Let

	 0.12 1ˆ 0. 6j AI 	

Use current divider to determine the capacitor current

Solution:

	

3000 0.12 0.16 0.06 0.18 0.19 71.6 Aˆ 3000

ˆˆ ˆ
ˆ 1000C

R
C

R

ZI
Z

I j j
jZ 	

+

j5 Ω

3 – j Ω

–

+

V

–

V̂R

Figure 7.40  Circuit for Example 7.10.

–j1000 Ω

j500 Ω

3000 Ω

  Î

  Î R  Î C

Figure 7.41  Circuit for Example 7.10.
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Example 7.12  s domain analysis
The initial conditions are zero in the circuit shown in Figure 7.42. Determine the equiv-
alent impedance between nodes A and B. Use the voltage divider to determine VC(s). 
Use the current divider to determine IR(s).

Solution:  Transform the circuit to the s domain (Figure 7.43).
The impedance of the parallel configuration of R and C is

	

R C
R

sC

R
sC

R
sRC

1

1 1
	

Thus, the input impedance is

	
Z sL R

sRCin 1	
Using the voltage divider we get

	

V s

R
sRC

sL R
sRC

V sC
1

1 	
Using the current divider we get

	

I s sC
R

sC

I sR

1

1
	

A

+
–

B

R C

+

VC (t)

iR(t)

i(t)

V(t)

–

L Figure 7.42  Circuit for Example 7.12.

A

+
–

B

R 1/sC

+

VC (s)

IR(s)

I(s)

V(s)

–

sL Figure 7.43  s‐domain circuit for 
Example 7.12.
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7.4  EMC Applications

In this section we will present two EMC examples illustrating the applicability of the 
material covered in this chapter.

The first example will illustrate the use of a voltage and current divider as applied 
to a time‐domain circuit model of crosstalk between PCB traces. The second example 
will show the applicability of the s domain analysis to describing the reflections on a 
transmission line terminated by a capacitive load.

7.4.1  Crosstalk between PCB Traces

Recall the crosstalk circuit model described in Section 1.10.1, and shown in Figure 7.44 
(Adamczyk and Teune, 2009)

The current on the generator line, IG, creates a magnetic field that results in a magnetic 
flux ψG crossing the loop of the receptor circuit, as shown in Figure 7.45(a).

If this flux is time varying, then according to Faraday’s law, it induces a voltage VR in 
the receptor circuit. The circuit model of this field phenomenon is represented by a 
mutual inductance and is shown in Figure 7.45(b). (We will describe this model in detail 
in Chapter 17.)

Using the current divider, we obtain the induced near‐ and far‐end voltages as

	
V t R

R R
L dI

dtNE
NE

NE FE
m

G 	 (7.180a)

	
V t R

R R
L dI

dtFE
FE

NE FE
m

G 	 (7.180b)

Generator

Generator conductor

(a)

(b)

Ground plane

Receptor

Z = 0 Z = L

RNE

RS

RFE

RL
VNE VFE

+

–

+

–

+

–

+

–

VS(t) VG(z,t) IR(z,t)

Receptor conductor

VR(z,t)

IG(z,t)

IG(z,t) + IR(z,t) 

+
–

Reference conductor

Figure 7.44  Three‐conductor transmission line: (a) PCB arrangement; (b) circuit model.
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Similarly, the voltage between the two conductors of the generator circuit, VG, has 
associated with it a charge separation that creates the electric field lines, some of which 
terminate on the conductors of the receptor circuit as shown in Figure 7.46(a).

If this charge (voltage) varies with time, it induces a current in the receptor circuit. 
The circuit model of this field phenomenon is represented by a mutual capacitance and 
is shown in Figure 7.46(b).

Using the voltage divider, we obtain the induced near‐ and far‐end voltages as

	
V t R R

R R
C dV

dtNE
NE FE

NE FE
m

G 	 (7.181a)

	
V t R R

R R
C dV

dtFE
FE NE

NE FE
m

G 	 (7.181b)

7.4.2  Capacitive Termination of a Transmission Line

In this section we will show the application of the s domain analysis to the transmission 
line terminated by a capacitive load. (We will discuss transmission lines in detail in 
Chapter 17.)

Consider the circuit shown in Figure 7.47.
A line of length d is terminated by a capacitor C with zero initial voltage. A constant 

voltage source with internal resistance equal to the characteristic impedance ZC of the 
line is connected to the line at t 0.

ψG

IG

IG X

VNE

VR

+ –

dψG

dt
= = Lm

+

–

VFE

+

–

RFERNE

dIG

dt
(a) (b)

Figure 7.45  Inductive coupling between the circuits: (a) field model, (b) circuit model.

VG

+

–

qG

E

E

–qG

VNE

+

–

+

–

VFE RFE
RNE IR = Cm

dVG

dt

(a) (b)

Figure 7.46  Capacitive coupling between the circuits: (a) field model, (b) circuit model.
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As we will learn in Part III, the moment the switch closes at t 0, the voltage and 
current waves (vi and ii) originate at z 0 and travel down the line to reach the load end 
at time T.

Upon arriving at the load the reflected voltage and current waves (vr and ir) are 
created.

In order to determine the reflected waves, the circuit is transformed to the s domain, 
as shown in Figure 7.48.

The time‐domain voltage at the capacitive load is given by (Paul, 2006, p. 235)

	
v t V u t TC L D1 1

2 0 	 (7.182)

Taking Laplace transform of Eq. (7.182) we obtain

	
V s s V sC L S

sTD1 1
2

e 	 (7.183)

Where ΓL is the load reflection coefficient given by

	

L
L C

L C

C

C

C

C

C

C
L

Z Z
Z Z

sC
Z

sC
Z

sZ C
sZ C

sT
sT

s

1

1

1
1

1
1

	 (7.184)

z = 0

t = 0

z = d

ZC

ZC, V

VS
vC(t)

iC

vi , ii

vr , ir

C

+

–

Figure 7.47  Transmission line terminated by a capacitive load.

z = 0 z = d

ZC

ZC, TD

VS VC(s)
s

1

sC

+

–

Figure 7.48  s domain circuit model.
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Substituting Eq. (7.184) into Eq. (7.183) gives

	
V s s V s sT

sT
V
sC L S

sT C

C

sTD D1 1
2

1 1
1

1
2

0e e 	 (7.185)

0.00
–2.000

–1.000

0.00

1.000

2.000

3.000

4.000
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6.000

1.000 2.000 3.000 4.000
Time (ns)

V
ol

ta
ge

 (
V

)

5.000 6.000 7.000

Capacitor voltage

Driver voltage

Figure 7.50  Driver voltage and the voltage across the capacitor.

U1.20

50.0 ohms
MODvsEZBIS
CMOS,5V,ULTRA,...
Net003

50.0 ohms
200.000 ps
Simple
Net001

R1 TL 1

C1

5.0 pF

Figure 7.49  HyperLynx circuit model of a transmission line terminated by a capacitive load.
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Rearranging and using partial fraction expansion (see Section 7.2.3) we get

	

V s sT
sT

V
s

sT sT
sT

V
sC

C

C

sT C C

C

D1 1
1

1
2

1 1
1

1
2

0 0e e ssT

C

sT C

C

sT

C

D

D D

sT
V
s

T

s
T

V
s s s

T

1
1

1

1
1 1

1
0 0e e VV sTD

0e

	 (7.186)

Using inverse Laplace transform yields (Paul, 2006, p. 238)

	 v t V u t T V u t TC D

t T
T

D

D

C
0 0e 	 (7.187)

Figure 7.49 shows a circuit schematic of a transmission line driven by a 5 V CMOS 
and terminated in a capacitive load.

The driver voltage and the voltage across the capacitor are displayed in Figure 7.50.
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8

8.1  Node Voltage Analysis

8.1.1  Node Analysis for the Resistive Circuits

In Chapter 7 we discussed the basic circuit laws that impose constraints on voltages and 
currents in the circuit. To be more precise, the voltages and currents we referred to 
were the element voltages and element currents.

Using KCL, KVL, and Ohm’s law to solve for the element voltages and currents can be 
quite cumbersome, except for the very simple circuits.

In this section we present a systematic method of circuit analysis in which node 
voltages are the circuit variables to be found. As we shall see, choosing node voltages 
instead of the element voltages as circuit variables allows us to develop a systematic 
method of circuit analysis that is applicable to more complex circuits.

We will use the circuit shown in Figure 8.1 to define node voltages and explain the 
node voltage analysis method.

To define a set of node voltages we first select one node in the network to be a 
reference node  –  node D, shown in Figure  8.2. By definition, the node voltage at 
the reference node is equal to zero (Nilsson and Riedel, 2015, p. 93).

	 VD 0	 (8.1)

The node voltages are then defined as the voltages between the remaining nodes and 
the selected reference node; voltages VA, VB, and VC. By default, the node voltage polari-
ties are such that the (−) is always at the reference node.

Before proceeding with the node voltage analysis method, let’s establish the relation-
ship between the node voltages and the element voltage and element current.

Writing KVL for the loop containing resistors R1, R2, and R3, we get

	 V V VA B2 0	 (8.2a)

or

	 V V VA B2 	 (8.2b)

Systematic Methods of Circuit Analysis
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This example illustrates the following fundamental relationship between the node 
voltages and the element voltage:

If the two‐terminal element is connected between two non‐reference nodes, then the 
element voltage is equal to the difference of the two node voltages; we take the node 
voltage on the (+) side of the element voltage reference direction and subtract from it the 
node voltage on the (−) side.

If the two‐terminal element is connected to the reference node, then the element voltage 
is equal to the node voltage (provided that the reference directions are the same).

According to the Ohm’s law we have

	
I V

R2
2

2

	 (8.3)

Now, utilizing Eq. (8.2) in Eq. (8.1) we obtain the relationship between the node volt-
ages and the resistor current.

	
I V V

R
A B

2
2

	 (8.4)

R5

R2 R4

R3R1
lS VS

+
–

Figure 8.1  Node voltage analysis circuit.

R5
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C
VC=VS

R4

R3 VBVA
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+

+

–

+

+

–

–

–

lS

l2

R1 VS

Figure 8.2  Node voltage assignments.
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Thus, once the reference direction of the current is assigned, we take the node voltage 
at the node from which the current flows and subtract from it the node voltage at the 
node towards which the current flows; then we divide the result by the resistance value.

We are now ready to proceed with the node voltage analysis method.
After having chosen the reference, the next step is to write KCL at the nodes, where 

the node voltage is unknown. Since at node C we have VC = VS, there is no need to write 
KCL at that node.

To write KCL at nodes A and B, we assign currents and their reference directions; one 
such assignment is shown in Figure 8.3

KCL at node A produces

	 I I I IS 1 2 5	 (8.5)

In terms of node voltages, Eq. (8.5) can be written as

	
I V V

R
V V

R
V V

RS
A D A B A C

1 2 5

	 (8.6)

Now, VD = 0 and VC = VS and Eq. (8.6) becomes

	
I V

R
V V

R
V V

RS
A A B A S

1 2 5

	 (8.7)

or in terms of conductances

	 I G V G V V G V VS A A B A S1 2 5 	 (8.8)

Similarly, KCL at node B produces

	 I I I2 3 4	 (8.9)

In terms of node voltages, Eq. (8.8) can be written as

	
V V

R
V
R

V V
R

A B B B S

2 3 4

	 (8.10)

R5

R2 R4

R3R1

B

D

C
A

lS

l2 l4

l3l1

l5

VS+–

Figure 8.3  Current assignments.
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or in terms of conductances

	 G V V G V G V VA B B B S2 3 4 	 (8.11)

Rearranging Eqns. (8.7) and (8.10), we can rewrite them as

	 G G G V G V I G VA B S S1 2 5 2 5 	 (8.12a)

	 G V G G G V G VA B S2 2 3 4 4 	 (8.12b)

Which in a matrix form become

	

G G G G
G G G G

V
V

I G V
G V

A

B

S S

S

1 2 5 2

2 2 3 4

5

4
	 (8.13)

We will obtain the solution using the Cramer’s rule (see Section 1.8).
The determinant of the conductance matrix is:

	

G G G G
G G G G

G G G G G G G

1 2 5 2

2 2 3 4

1 2 5 2 3 4 2
2

	 (8.14)

and

	

1
5 2

4 2 3 4

5 2 3 4 2 4

I G V G
G V G G G

I G V G G G G G V

S S

S

S S S

	 (8.15)

	

2
1 2 5 5

2 4

1 2 5 4 2 5

G G G I G V
G G V

G G G G V G I G V

S S

in

S S S

	 (8.16)

Now, using Cramer’s rule, the node voltages are:

	
V

I G V G G G G G V
G G G G G G GA
S S S1 5 2 3 4 2 4

1 2 5 2 3 4 2
2

	 (8.17)

	
V

G G G G V G I G V
G G G G G G GB

S S S2 1 2 5 4 2 5

1 2 5 2 3 4 2
22

	 (8.18)

8.2  Mesh Current Analysis

8.2.1  Mesh Analysis for the Resistive Circuits

Mesh analysis provides another systematic procedure for analyzing circuits, using  
so‐called mesh currents as circuit variables (Alexander and Sadiku, 2009, p. 93).



Systematic Methods of Circuit Analysis 193

We will use the circuit shown in Figure 8.4 to define mesh currents and explain the 
method.

First let’s define a mesh: a mesh is a loop that does not contain any other loops within 
it. Thus, a loop containing R1, R2, and R3 is a mesh; so is the loop containing R3, R4, and 
VS. But the loop obtained by combining the two meshes is not.

We define a mesh current as the current that flows through the elements constituting 
the mesh.

Three mesh currents i1, i2, and i3 are shown in Figure 8.5.
Before proceeding with the mesh current analysis method, let’s establish the 

relationship between the mesh currents and the element voltage and the element 
current.

Writing KCL at node D we get

	 I i i3 2 1	 (8.19)

or

	 I i i3 1 2	 (8.20)

R2 R4

R3

+
–R1

lS

VS

Figure 8.4  Mesh current analysis circuit.

R2 R4

R3R1 V3

lS

l3

i3= lS

VS
i1 i2

+
–

+

–
D

Figure 8.5  Mesh current assignments.
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This example illustrates the following fundamental relation between the mesh 
currents and the element current:

If the two‐terminal element is connected between two meshes, then the element current 
is equal to the difference of the two mesh currents; we take the mesh current flowing in the 
same direction as the element current and subtract from it the mesh current flowing in 
the opposite direction.

If the two‐terminal element is not being shared by two meshes, then the element current 
is equal to the mesh current (provided the reference directions are the same).

According to the Ohm’s law we have

	 V R I3 3 3	 (8.21)

Now, utilizing Eq. (8.20) in Eq. (8.21) we obtain the relationship between the mesh 
currents and the resistor voltage.

	 V R i i3 3 1 2 	 (8.22)

Thus, once the reference direction of the voltage is assigned, we take the mesh current 
flowing from the (+) to the (−) and subtract from it the mesh current flowing in the 
opposite direction; then we multiply the result by the resistance value.

We are now ready to proceed with the mesh current analysis method.
After having assigned the mesh current, the next step is to write KVL around the 

meshes, where the mesh current is unknown. Since in mesh 3 we have i3 = IS, there is no 
need to write KVL around that mesh.

To write KVL around meshes 1 and 2 we assign voltages and their reference 
directions; one such assignment is shown in Figure 8.6.

KVL around mesh 1 produces

	 V V V1 2 3 0	 (8.23)

In terms of mesh currents, Eq. (8.24) can be written as

	 R i R i i R i i1 1 2 1 3 3 1 2 0	 (8.24)

V3
VS

+
–

+

–

V1

V2

+

+

–

– V4+ –

R2 R4

R3R1

lS

i3

l3

i1
i2

Figure 8.6  Current assignments.
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Now, i3 = IS and Eq. (8.24) becomes

	 R i R i I R i iS1 1 2 1 3 1 2 0	 (8.25)

Similarly, KVL around mesh 2 produces

	 V V VS3 4 0	 (8.26)

In terms of mesh currents, Eq. (8.26) can be written as

	 R i i R i I VS S3 1 2 4 2 0	 (8.27)

Rearranging Eqs (8.25) and (8.27), we can rewrite them as

	 R R R i R i R IS1 2 3 1 3 2 2 	 (8.28)

	 R i R R i R I VS S3 1 3 4 2 4 	 (8.29)

The above system of equations can be written in matrix form as

	

R R R R
R R R

i
i

R I
R I V

S

S S

1 2 3 3

3 3 4

1

2

2

4
	 (8.30)

and it can easily be solved for the mesh currents using matrix algebra.

8.3  EMC Applications

8.3.1  Power Supply Filters – Common‐ and Differential‐Mode Current 
Circuit Model

Virtually all electronic products need some form of internal power supply filter. A typi-
cal power supply filter topology is shown in Figure 8.7 (Paul, 2006, p. 389).

The common‐ and differential‐mode currents at the output of the product (at the 
input to the filter) are denoted as ÎC and ÎD, respectively. The common‐ and differential‐
mode currents at the input to the line impedance stabilization network (LISN), at the 
output of the filter, are denoted with primes as Î’C and Î’D, respectively.

The object of the filter is to reduce the unprimed current levels to the primed current 
levels, which result in the LISN‐measured voltages

	
ˆ ˆ ˆ50P C DI IV 	 (8.31a)

	
ˆ ˆ ˆ50N C DV I I 	 (8.31b)

that are below the allowable conducted emission limits over the required fre-
quency range.

To study the effect of the filter components on the common‐ and differential‐mode 
noise currents, we need to obtain a circuit model for the filter and LISN.
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Common‐Mode Currents Circuit Model  Let’s redraw the circuit shown in Figure  8.7, as 
shown in Figure  8.8. The common‐mode currents are simulated with the current 
sources.

With the nodes labeled, it is easy to verify that the circuit shown in Figure  8.7 is 
equivalent to the circuit shown in Figure 8.8.

Now, we will write mesh equations for this circuit.
For mesh D‐A‐C‐D (on the far left side) we have

	
2 2

ˆ ˆ ˆ1 50 5 ˆ0 ˆ 0DL DL DL
DL

I I I I I
j C

	 (8.32)

or

	

1 100ˆ ˆ 0DL DL
DL

I I
j C

	 (8.33)

LISN Filter

Product

Neutral

PhaseL

CDR

CCR

̂IC

̂ID̂

̂
̂

̂IC

I′C
I′C

I′D

CCRCCL

50 Ω

50 Ω
CCL

CDL
L

M

LGW

+

–
+

–

V̂P

V̂N

Figure 8.7  Generic power supply filter topology.

LISN Filter
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PhaseLC

D

BA B

E

F

CDR

CCR

̂IC

̂IC

̂IC

̂
̂

̂IC

I′C
I′C

CCRCCL

50 Ω

50 Ω
CCL

CDL
L

M

LGW

+

–
+

–

V̂P

V̂N

Figure 8.7  Generic power supply filter topology.
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or

	

1 10 ˆ0 0DL
DL

I
j C

	 (8.34)

showing that the differential‐mode current ÎDL is zero:

	 ĬDL 0	 (8.35)

Before writing the mesh equations for mesh E‐F‐B‐E (on the far right side) let’s apply 
source transformations to the current sources in parallel to CCR resulting in the circuit 
shown in Figure 8.9.

	

ˆ ˆˆ ˆ1 1 0ˆ1C C
DR DR DR

DR CR CR CR CR

I II I I
j C j C j C j C j C

	 (8.36)

or

	

1 1 0ˆ1
DR

DR CR CR
I

j C j C j C
	 (8.37)

CDL CDR

L

BLGW

+

–
B

CCR

CCR

̂IDL ̂IDR

̂IC

̂IĈI1

̂I1̂I2

̂I2

CCL

CCL50 Ω

50 Ω

L

M

DD

A

C C F

E

V̂C

Figure 8.8  Equivalent circuit to that shown in Figure 8.7.

CCR

E

B

+
–

+
–

jωCCR

F

CDR

CCR
̂IDR

̂IC

jωCCR

̂IC

Figure 8.9  Equivalent mesh E‐F‐B‐E.
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showing that the differential‐mode current ÎDR is zero:

	 ˆ 0DRI 	 (8.38)

Thus, the line capacitors CDL and CDR have no effect on common‐mode currents, 
since no current flows through them, and they are thus effectively acting as open 
circuits.

Let’s write the mesh equation for the remaining meshes and see what conclusions can 
be drawn.

Mesh A‐B‐C‐A or mesh A‐D‐B‐A:

	
2 2 2 2 1

150 ˆ ˆ ˆ ˆ 0ˆ
GW

CL
I j L I I I I

j C
	 (8.39)

or

	
2 2 2 1

1ˆ ˆ ˆ5 0ˆ0 2 GW
CL

I j L I I I
j C

	 (8.40)

Mesh B‐C‐F‐B or mesh B‐D‐E‐B:

	
1 1 1 1 2

ˆ ˆ ˆ ˆ ˆ1 1 0ˆ
C

CR CL
I I j LI j MI I I

j C j C
	 (8.41)

or

	
1 1 1 2

ˆ ˆ ˆ ˆ 0ˆ1 1
C

CR CL
I I j L M I I I

j C j C
	 (8.42)

Now, let’s write mesh equations for the circuit shown in Figure 8.10.
For the left‐most mesh we have:

	
2 2 2 1

1ˆ ˆ ˆ5 ˆ2 0 0GW
CL

j L I I I I
j C

	 (8.43)

For the center mesh we write

	
1 1 2 1

ˆ ˆ 1 ˆ ˆ1 0ˆ
C

CR CL
I I I I j L M I

j C j C
	 (8.44)

Compare Eq. (8.43) with Eq. (8.40), and Eq. (8.44) with Eq. (8.42). They are the same 
equations!

Thus, the circuit in Figure 8.10 is an equivalent circuit for common‐mode currents 
for the filter and LISN for the phase‐ground or neutral‐ground configurations.

Differential‐Mode Current Circuit Model  Let’s redraw the circuit shown in Figure 8.7, as 
shown in Figure  8.11. The differential‐mode currents are represented by a current 
source.

With the nodes labeled, it is easy to verify that the circuit shown in Figure 8.11 is 
equivalent to the circuit shown in Figure 8.12.
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Furthermore, the circuit shown in Figure  8.13 is equivalent to that shown in 
Figure 8.12.

Let’s write mesh equations for this circuit. For mesh D‐A‐C‐D (on the far left side) 
we have

	
3 3 2 3 2

ˆ1 50 50 0ˆ ˆ ˆ ˆ
DL

I I I I I
j C

	 (8.45)

ED L+MD

A BB

CCRCCL
50 Ω ̂I1

̂IĈI2

+

–

V̂C

2LGW

Figure 8.10  Equivalent circuit to that shown in Figure 8.8.
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F
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V̂D

Figure 8.11  Power supply filter with the differential mode current.
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Figure 8.12  Equivalent circuit to that shown in Figure 8.11.
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or

	
3 3 2

1 100 100ˆ ˆ ˆ 0
DL

I I I
j C

	 (8.46)

or

	
3 3 2

1 5ˆ ˆ0 0ˆ
2 DL

I I I
j C

	 (8.47)

Let’s apply source transformations to the current sources in parallel to CCR. 
The resulting circuit is shown in Figure 8.14.

For mesh E‐F‐B‐E we have

	
4 4 1 4 1

1 1 1ˆ ˆ 0ˆ ˆ ˆ
DR CR CR

I I I I I
j C j C j C

	 (8.48)

CCR

CCR

CCL

CCL

CDL CDR

50 Ω

50 Ω

LGW

L

L

M

̂ID̂I2

̂I3 ̂I4

̂I2

̂I1

̂I1
̂ID

+

–

CC

DD

BA B

E

F

V̂D

Figure 8.13  Equivalent circuit to that shown in Figure 8.12.
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̂ID
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Figure 8.14  Equivalent mesh E‐F‐B‐E.
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or

	
4 4 1

ˆ ˆ2 ˆ1 0
DR CR

I I I
j C j C

	 (8.49)

and thus

	
4 4 1

1 ˆ ˆ1 0
2

ˆ
DR CR

I I I
j C j C

	 (8.50)

Let’s write mesh equations for the remaining meshes and see what conclusions can 
be drawn.

Mesh A‐B‐C‐A or mesh A‐D‐B‐A:

	
2 3 2 1 2 2

150 0ˆ ˆ ˆ ˆ ˆ ˆ
GW

CL
I I I I j L I I

j C
	 (8.51)

or

	
2 3 2 1

15 ˆ ˆ ˆ0 ˆ 0
CL

I I I I
j C

	 (8.52)

Mesh B‐C‐F‐B or mesh B‐D‐E‐B:

	
1 4 1 1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ1 1 0
CR CL

I I j LI j MI I I
j C j C

	 (8.53)

or

	
1 4 1 1 2

ˆ ˆ ˆ ˆ1 0ˆ1
CR CL

I I j L M I I I
j C j C

	 (8.54)

Now, let’s write mesh equations for the circuit shown in Figure 8.15.
For the left‐most mesh we have:

	
3 2 3

150 0ˆ ˆ
2

ˆ
DL

I I I
j C

	 (8.55)

For the second mesh we write

	
2 3 2 1

15 ˆ ˆ ˆ0 ˆ 0
CL

I I I I
j C

	 (8.56)

L -M

CCR 2CCR
2CDL CCL

50 Ω ̂I1 ̂ ̂ID
̂I2

̂ ̂I3 VD

+

–

I
4

Figure 8.15  Equivalent circuit to that shown in Figure 8.13.
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Mesh one produces

	
1 4 1 1 2

ˆ ˆ ˆ ˆ1 0ˆ1
CR CL

I I j L M I I I
j C j C

	 (8.57)

and for the fourth mesh we write

	
4 4 1

1 ˆ ˆ1 0
2

ˆ
DR CR

I I I
j C j C

	 (8.58)

Compare Eq. (8.47) with Eq. (8.55); Eq. (8.50) with Eq. (8.58); Eq. (8.52) with Eq. (8.56); 
and Eq. (8.54) with Eq. (8.57). They are the same equations!

Thus, the circuit in Figure 8.15 is an equivalent circuit for differential‐mode currents 
for the filter and LISN for the phase‐ground or neutral‐ground configurations.
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9

9.1  Superposition

Consider a linear circuit with several independent voltage or current sources, like the 
one shown in Figure 9.1.

Say, we want to calculate the voltage or current somewhere in the circuit; voltage V 
across R2 in this case. We could, of course, solve this circuit using the node voltage or 
mesh current methods discussed previously in Chapter 7.

However, we could also solve this circuit using the principle of superposition (Nilsson 
and Riedel, 2015, p. 122) which states then whenever a linear circuit is driven by more 
than one independent source, the response of the circuit can be obtained as the sum of 
the individual responses due to each independent source acting alone.

We can think of each independent source as the input to the circuit, and the voltage 
or current somewhere in the circuit as the output. Then the principle of superposition 
can be illustrated in block diagram form as shown in Figure 9.2.

In Figure 9.2(a) the circuit is driven by several inputs u1 to uN. The output of the sys-
tem is equal to y. In Figures 8.2(b)–(d), the circuit is driven by one input at time uk, 
resulting in the corresponding output yk.

According to the principle of superposition, the total output y, when all inputs are 
present, can be obtained by summing the individual outputs yk due to each input acting 
alone. That is,

	 y y y yN1 2 	 (9.1)

When an individual source is acting alone, the other sources are deactivated, or sup-
pressed: the voltage sources are replaced by a short circuit, while the current sources are 
replaced by an open circuit.

Let’s apply the principle of superposition to the circuit shown in Figure 9.1. First, let’s 
drive the circuit by a voltage source VS1, as shown in Figure 9.3.

When the circuit is driven by a voltage source VS2, we obtain the circuit shown in 
Figure 9.4.

And finally, when the circuit is driven by a current source, we have the configuration 
shown in Figure 9.5.

Circuit Theorems and Techniques
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Figure 9.1  Linear circuit driven by several 
independent sources.
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Figure 9.2  The principle of superposition.
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Figure 9.3  Circuit driven by the voltage 
source VS1.
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Figure 9.4  Circuit driven by the voltage 
source VS2.
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According to the principle of superposition we have

	 V V V V1 2 3	 (9.2)

Example 9.1  Superposition
Verify the principle of superposition for the circuit shown in Figure 9.6.

We will first solve for the output voltage V0 using the node voltage method. Then, we 
will solve for it using the superposition approach.

Applying KCL at the upper node we have

	
V V

R
I V

R
S o

S
o

1 2
	 (9.3)

Moving the inputs to the left side of this equation yields

	
V
R

I V
R

V
R

S
S

o o

1 1 2
	 (9.4)

or

	
V
R

I R R
R R

VS
S o

1

1 2

1 2
	 (9.5)

R1

R2 R4

R3 V3

IS

+

–

R5

Figure 9.5  Circuit driven by the current source IS.
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R2VS
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–

+

–

IS V0

Figure 9.6  Circuit for Example 9.1.
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resulting in

	
V R

R R
V R R

R R
Io S S

2

1 2

1 2

1 2
	 (9.6)

We will now find Vo using the superposition method. We will first deactivate the 
current source and replace it with an open circuit as shown in Figure 9.7.

Using the voltage divider we get

	
V R

R R
VS01

2

1 2
	 (9.7)

Next, we deactivate the voltage source leaving the current source turned on, as shown 
in Figure 9.8.

Using Ohm’s law and the current divider we obtain

	
V R R

R R
IS02 2

1

1 2
	 (9.8)

Applying the superposition principle, we find the response with both sources active by 
adding the two responses V01 and V02

	
V V V R

R R
V R R

R R
IS S0 01 02

2

1 2

1 2

1 2
	 (9.9)

R1

R2VS V01

+

+

–

–

Figure 9.7  Circuit with the current source 
deactivated.

R1

R2IS V02

+

–

Figure 9.8  Circuit with the voltage source 
deactivated.
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9.2  Source Transformation

The analysis of complex circuits can usually be accomplished by either the node voltage 
or the mesh current method. In both the node and the mesh methods, it is often desir-
able to have the sources of the same kind: current sources in the node voltage method, 
and voltage sources in the mesh current method.

If a circuit, however, has both current sources and voltage sources, it is desirable to 
make adjustments to the circuit so that all the sources are of the same type.

A source transformation (Alexander and Sadiku, 2009, p. 135), shown in Figure 9.9 
allows a voltage source in series with a resistor to be replaced by a current source in 
parallel with a resistor, or vice versa.

The fundamental concept behind this technique is the concept of equivalence. We 
recall that two circuits are equivalent with respect to the same two nodes if they have 
the same v–i characteristics at those nodes.

Let’s determine the required relationships between the sources and the resistances, so 
that they are equivalent with respect to nodes A and B.

Since the two circuits are to be equivalent, we require that both circuits have the same 
v–i characteristic for all values of an external resistor R connected between terminals A 
and B as shown in Figure 9.10.

RS

RP IS VS
+

–

A

B

A

B

Figure 9.9  Source transformations.

RS

VS
+

–
R

A

B

A

B

RRPIS

Figure 9.10  Equivalent circuits.



Foundations of Electromagnetic Compatibility208

First, let’s try the extreme values of R first, namely R = 0 and R = ∞. With R = 0, we have 
a short circuit across the terminals A and B, as shown in Figure 9.11.

Equivalence requires that the currents in both circuits are the same. For the circuit in 
Figure 9.11(a) we have

	
I V

R
S

S
	 (9.10)

While for the circuit in Figure 9.11(b) we write

	 I IS	 (9.11)

Comparison of Eqs (9.10) and (9.11) leads to

	
I V

RS
S

S
	 (9.12)

With R = ∞, we have an open circuit across the terminals A and B, as shown in 
Figure 9.12.

Equivalence requires that the voltages in both circuits are the same. For the circuit in 
Figure 9.12(a) we have

	 V VAB S	 (9.13)

RS

VS VAB = 0 VAB = 0RP

I I

IS

+

–

+

–

+

–

A

B

A

B

(a) (b)

Figure 9.11  Equivalence for R = 0.
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–

A

B

+

–

– VAB = VS VAB

Figure 9.12  Equivalence for R = ∞.
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while for the circuit in Figure 9.12(b) we write

	 V R IAB P S 	 (9.14)

Comparison of Eqs (9.13) and (9.14) leads to

	 V R IS P S	 (9.15)

At the same time, according to Eq. (9.12) we have

	 V R IS S S 	 (9.16)

Thus, for two circuits to be equivalent,

	 R RS P	 (9.17)

and

	 V R IS S S 	 (9.18)

We have shown the equivalence under the conditions (9.17) and (9.18) for the extreme 
values of R = 0 and R = ∞. Next, using the circuit shown in Figure 9.13, we will show that 
the equivalence under these conditions holds for any value of R.

For the circuit in Figure 9.13(a) we use KVL to obtain

	 V R I VS S AB	 (9.19)

or

	
V
R

I V
R

S

S

AB

S
	 (9.20)

For the circuit 9.13(b) we use KCL to obtain

	
I I V

RS
AB

P
	 (9.21)

RS

RPVS
+

–

+

–

VAB
VABR R

(a) (b)

I

IS

I

A

B

+

–

A

B

Figure 9.13  Equivalence for any R.
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Now, if

	
I V

RS
S

S
	 (9.22)

and

	 R RS P	 (9.23)

the two circuits are equivalent.

Example 9.2  Source transformations
In the circuit shown in Figure 9.14, use a series of source transformations to determine 
the current I.

Solution:  Applying the source transformation to the 12 V voltage source and 3 Ω resistor 
produces the circuit shown in Figure 9.15.

The combination of 3 Ω in parallel with 6 Ω results in an equivalent resistance of 2 Ω, 
being in parallel with the 4 A current source. Applying source transformation to that 
configuration results in the circuit shown in Figure 9.16.

3Ω 4Ω

4Ω 12Ω

3.6Ω

6Ω12V
+

–
2A

I

Figure 9.14  Circuit for Example 9.2.

4Ω

4Ω2/3A4A

I

12Ω3Ω 6Ω

3.6Ω Figure 9.15  Source 
transformations – Example 9.2.
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Next, we apply source transformation to the 
8 V source in series with 6 Ω resistance, result-
ing in the circuit shown in Figure 9.17.

Combining current sources in parallel and 
resistor 6 Ω and 4 Ω in parallel results in the 
circuit shown in Figure 9.18.

Now applying the current divider rule we get

	
I 2 4

2 4 3 6 12
2 0 3.

. .
. A

9.3  Thévenin Equivalent Circuit

Consider a linear circuit driving a load, as shown 
in Figure 9.19.

The driving circuit, with the load disconnected 
is shown in Figure 9.20.

According to the Thévenin theorem (Nilsson 
and Riedel, 2015, p. 113), the circuit shown in 
Figure  9.20(a) is equivalent (with respect to 
nodes A and B) to a circuit consisting of an inde-
pendent voltage source in series with resistor, as 
shown in Figure 9.21(b).

8V
+

–
2/3A

I

4Ω 12Ω

4Ω2Ω 3.6ΩFigure 9.16  Source 
transformations – Example 9.2.

4/3A 2/3A

I

6Ω 4Ω 12Ω

3.6ΩFigure 9.17  Source 
transformations – Example 9.2.

2A

I

2.4Ω 12Ω

3.6Ω

Figure 9.18  Source 
transformations – Example 9.2.

Linear
circuit

A

B

RL

IL +

–

Figure 9.19  Linear circuit driving a load.



Foundations of Electromagnetic Compatibility212

The equivalence, of course, means that the 
circuits shown in Figures  9.21(a) and (b) have 
the same i–v characteristics with respect to 
nodes A and B.

Since these are equivalent, we could replace 
the driving circuit in Figure  9.19 with its 
Thévenin equivalent, to obtain the circuit shown 
in Figure 9.22.

It should be obvious that calculating the voltage 
or current associated with the load is trivial for this 
circuit, whereas such calculations for the circuit 
shown in Figure 9.19 might be quite involved.

The question, of course, remains: How do we 
determine the values of VT and RT?

According to the Thévenin theorem, the 
value of VT is just the value of the voltage 
between nodes A and B, VAB when the load is 
not connected. This voltage is often referred to 
as an open‐circuit voltage, Voc, and is shown in 
Figure 9.23.

Thévenin resistance, RT, can be obtained in a number of ways, depending on the cir-
cuit complexity and the types of sources present in the driving circuitry.

When the circuit consists of independent sources and resistors, we deactivate the 
sources and simply calculate the resistance between nodes A and B. The following 
example illustrates this approach.

Linear
circuit

A

B

VAB

I

+

–

Figure 9.20  Driving circuit with the load disconnected.

A

B

(a) (b)
I I

VT
+

–

+

–

VAB

A

B

+

–

VAB

RT

Linear
circuit

Figure 9.21  Thévenin equivalent circuit.

RT

VT
+

–
VLRL

IL +

–

A

B

Figure 9.22  Thévenin equivalent circuit.

A

B

+
Linear
circuit

–

VT= VOC

Figure 9.23  Thévenin voltage.
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Example 9.3  Thévenin equivalent circuit
Determine the Thévenin equivalent with respect to nodes A and B, for the circuit shown 
in Figure 9.24.

The Thévenin voltage is the voltage Voc between nodes A and B when the load is 
disconnected (or not present), and is shown in Figure 9.25.

To calculate this voltage we can use any appropriate circuit analysis method. Let’s 
use the principle of superposition, discussed earlier in this chapter. Let’s suppress the 
current source first, as shown in Figure 9.26(a).

Since no current flows through the 2 Ω and 5 Ω resistors, the open circuit voltage Voc1 
is the voltage across the 6 Ω resistor.

Using the voltage divider

	
V Voc1

6
8 6 4

12 4
	

12 V
+
–

2 A

A

B

RL

6 Ω

2 Ω

5 Ω8 Ω

4 Ω

Figure 9.24  Circuit for Example 9.3.

12 V
+

+

–

–

2 A

A

B

VT = VOC

6 Ω

2 Ω

5 Ω8 Ω

4 Ω

Figure 9.25  Open‐circuit voltage.
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Next, let’s suppress the voltage source, as shown in Figure 9.26(b). Note that

	 V V Voc2 1 2	

where

	 V2 2 2 4 V	

and V1 can be obtained using the current divider and Ohm’s law, as follows

	 V I1 16 	

I1 can be obtained using current divider as

	
I1

4
4 6 8

2 4
9

A
	

and thus

	
V I1 16 24

9
2 6667. V

	

thus

	 V V Voc2 1 2 4 2 6667 6 6667. . V	

Therefore, the Thévenin voltage is

	 V V VT oc oc1 2 4 6 6667 10 6667. . V	

12 V

2 A

2 A

I1

+
–

A

B

A

B

+
+

–

–

VOC1

+

–

VOC2

VOC1

+

–

V2

+

–

V16 Ω 6 Ω

2 Ω 2 Ω

5 Ω 5 Ω8 Ω(a) (b) 8 Ω

4 Ω 4 Ω

Figure 9.26  Circuits for calculation of open‐circuit voltage.
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Thévenin resistance is the resistance between nodes A and B when the load is discon-
nected and the independent sources are deactivated. The resulting circuit is shown in 
Figure 9.27.

Thus the Thévenin resistance is

	 RT 5 8 4 6 2 11

The Thévenin equivalent circuit is shown in 
Figure 9.28.

When the circuit consists of independent and 
dependent sources and resistors, we use another 
approach to determine the Thévenin resistance. We 
deactivate the independent sources and drive the 
circuit with an external voltage or current source 
connected between nodes A and B. (We will use 
this approach later in this chapter when discussing 
the two‐port networks.)

This approach is based on the following discus-
sion. Consider a linear circuit with no independent 
sources (or the independent sources suppressed) 
and/or dependent sources, as shown in Figure 9.29(a).

Figure  9.29(b) shows its Thévenin equivalent 
resistance. The Thévenin resistance of this circuit 
can be obtained by applying an external voltage or 
current source as shown in Figures 9.30 (a) and (b).

Now consider the circuits shown in Figure 9.31.
Since the circuits to the left of nodes A and B 

are equivalent, it follows that in order to obtain 
the Thévenin resistance of an arbitrary linear 
circuit, we first deactivate the independent 
sources (if present). Then we drive the circuit 
with an arbitrary voltage VS and calculate the 
resulting current Is, or alternatively we drive the 
circuit with an arbitrary current IS and calculate 
the resulting voltage VS.

The following example illustrates this approach.

A

B

RT

6Ω

2Ω

5Ω8Ω

4Ω

Figure 9.27  Circuit for calculation of 
Thévenin Resistance.

11Ω

10.6667V
+

–

A

B

Figure 9.28  Thévenin equivalent for 
Example 9.3.

Linear
circuit
w/o
independent
sources

A

(a) (b)

B

A

RT

B

Figure 9.29  Thévenin equivalent 
resistance.
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Example 9.4  Calculation of Thévenin resistance
Determine the Thévenin resistance of the circuit shown in Figure 9.32 by energizing it 
with an external voltage source.

VS VSRT =
VS
IS

+

–

+

–

B

A

B

A

RT

IS

IS
RT

(a) (b)

RT =
VS
IS

Figure 9.30  Calculation of Thévenin resistance.

VS VS

+
–

IS

RT =
VS
IS

VS VS
+
–

+

–

B

A

B

A

RT

IS

IS
RT

Linear
circuit
w/o
independent
sources

Linear
circuit
w/o
independent
sources

A

B

IS

+

–

RT =
VS
IS

A

B

RT =VS
IS

RT =VS
IS

(a) (b)

(c) (d)

Figure 9.31  Calculation of Thévenin resistance.

ix

+
–

A

B

25Ω
5Ω50Ω

6.5ix

12Ω10Ω

Figure 9.32  Calculation of Thévenin resistance.
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Solution:  Since the value of the external voltage source does not matter, we often energize 
the circuit with a 1 V source, as shown in Figure 9.33.

Next, we write the mesh equations

	

Mesh 1 50 5 6 5 01 1 2

2 3

: .i i i i
i i i

x

x 	

	 Mesh 2 6 5 5 10 25 02 3 2 1 2 2 3: . i i i i i i i 	

	 Mesh 3 25 12 1 03 2 3: i i i 	

The solution to these equation is

	

i
i
i

1

2

3

0 0012
0 0340
0 05

.

.

. A 	

The Thévenin resistance is, therefore,

	
R V

I iT
S

S

1 1
0 05

20
3 . 	

9.4  Norton Equivalent Circuit

Norton equivalent circuit provides an alternative to the Thévenin equivalent (Alexander 
and Sadiku, 2009, p. 145). The underlying concepts leading to that equivalent are 
the same.

Consider a linear two‐ terminal circuit driving a load and shown in Figure 9.34(a). 
The same driving circuit with the load disconnected is shown in Figure 9.34(b).

According to Norton’s theorem, the circuit shown in Figure 9.34(b) is equivalent (with 
respect to nodes A and B) to a circuit consisting of an independent current source in 
parallel with resistor, as shown in Figure 9.35.

ix

i1

i2

i3

+
–

A

B

25Ω
5Ω50Ω

6.5ix

12Ω10Ω

1V
+
–

Figure 9.33  Calculation of Thévenin resistance.



Foundations of Electromagnetic Compatibility218

The Norton resistance, RN, in Figure 9.35 (b), is the same as the Thévenin resistance. 
The Norton current, IN, is obtained by placing a short circuit across nodes A and B, as 
shown in Figure 9.36, and calculating the so‐called short‐circuit current flowing from 
A to B.

Note that the Norton equivalent can of course be obtained from the Thévenin 
equivalent by a source transformation, as shown in Figure 9.37.

Linear
circuit

(a) (b)

A

B

RL

IL +

–

Linear
circuit

A

B

VABVL

I

+

–

Figure 9.34  Driving circuit with and without the load.

Linear
circuit

(a) (b)

A

B

VAB

I

+

–

I A

B

+

–

VAB
IN RN

Figure 9.35  Norton equivalent circuit.

Linear
circuit

A

IN =Isc

B

Figure 9.36  Short‐circuit current.

RT

RN
IN

A

B

A

B

VT
+

–

Figure 9.37  Thévenin and Norton Equivalence.
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Therefore,

	
I V

RN
T

T
	 (9.24)

or

	 V R IT N N 	 (9.25)

It also follows that the Thévenin or Norton resistance can be obtained from

	
R V

I
V
IT

T

N

oc

sc
	 (9.26)

The following example illustrates the application of Norton’s theorem.

Example 9.5  Norton equivalent circuit
Determine the Norton equivalent with respect to nodes A and B, for the circuit shown 
in Figure  9.38. (This is the same circuit as we used for the Thévenin equivalent in 
Example 9.3.)

Norton resistance is the same as the Thévenin resistance calculated in Example 9.3:

	 R RN T 11 	

The Norton current is the current flowing through a short circuit from A to B when 
the load is disconnected (or not present), and is shown in Figure 9.39.

To calculate the short‐circuit current we could use any appropriate method of circuit 
analysis. For this particular circuit, mesh analysis would be well suited.

Let’s assign mesh currents, as shown in Figure 9.39. Note that

	 i3 2 A	

8 Ω

6 Ω12 V
+

–

2 A 2 Ω

4 Ω

5 Ω

RL

B

A
Figure 9.38  Circuit for Example 9.4.
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and the Norton current is

	 I iN 2	

Writing KVL around the first mesh results in

	 12 8 6 4 2 01 1 2 1i i i i 	
Writing KVL around the second mesh results in

	 5 2 2 6 02 2 1 2i i i i 	
This system of equations yields:

	

i
i
1

2

1 4343
0 9697
.
.

A
A	

and thus

	 IN 0 9697. A	
The Norton resistance can be now calculated from

	
R V

IN
T

N

10 6667
0 9697

11.
. 	

which, of course agrees with the result of Example 9.3.

9.5  Maximum Power Transfer

9.5.1  Maximum Power Transfer – Resistive Circuits

When interfacing the driving circuitry to the load, it is important to consider the 
voltage, current, and power available at an interface between a fixed source and an 
adjustable load.

8 Ω

6 Ω
i2

i1

i3

12 V
+

–

2 A

IN =Isc

2 Ω

4 Ω

5 Ω
A

B

Figure 9.39  Short‐circuit current.
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For simplicity we will consider the case in which both the source and the load are 
linear resistive circuits. The source can be represented by a Thévenin equivalent, and 
the load by an equivalent resistance RL, as shown in Figure 9.40.

For a fixed source, the parameters VT and RT are given and the interface signal levels 
are functions of the load resistance RL. By voltage division, the interface voltage is

	
v R

R R
VL

L T
T 	 (9.27)

This relation can be rewritten as

	

v
R
R

V
T

L

T
1

1
	 (9.28)

For a fixed source (RT = const), and a variable load RL, the voltage v will be at maxi-
mum when RL is made very large compared with RT. Ideally, RL should be made infinite 
(an open circuit), in which case

	 v V VMAX T oc	 (9.29)

Therefore, the maximum voltage available at the interface is the source open‐circuit 
voltage Voc.

The current delivered at the interface is

	
i V

R R
T

L T
	 (9.30)

For a fixed source and a variable load, the current will be a maximum if RL is made 
very small compared with RT. Ideally, RL should be zero (a short circuit), in which case

	
i V

R
I IMAX

T

T
N sc	 (9.31)

Therefore, the maximum current available at the interface is the source short‐circuit 
current Isc.

The power delivered to the load is

	 p v i	 (9.32)

A

i

B

RL

RT

VT
+

–

+

–

V

Figure 9.40  Thévenin equivalent of the driving circuitry.
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Using Eqs (9.27) and (9.30), the power delivered to the load is

	
p R

R R
V V

R R
V

R R
RL

L T
T

T

L T

T

L T
L

2

	 (9.33)

For a given source, the parameters VT and RT are fixed, and the delivered power is a 
function of a single variable RL. We wish to find the value of the load RL such that the 
maximum power is delivered to it.

The condition for maximum voltage (RL ) and the condition for maximum current 
(RL 0) both produce zero power. The value of RL that maximizes the power lies 
somewhere between these two extrema.

To find the value of RL that maximizes the power, we differentiate Eq. (9.33) with 
respect to RL and solve for the value of RL for which the derivative dp dRL/ 0.

	

dp
dR

V d
dR

R
R R

V
R R R R R

L
T

L

L

L T
T

L T L L T2
2

2
21 2 1

RR RL T
4 	 (9.34)

Equating this derivative to zero gives

	 R R R R RL T L L T
2 2 0	 (9.35a)

or

	 R R R R RL T L T L2 0	 (9.35b)

Solving for RL gives

	 R RL T 	 (9.36)

This is the value of RL at which the extremum of power p happens. To determine 
whether it is a maximum or minimum, the second derivative of p with respect to RL 
needs to be evaluated at R RL T . If the value of that derivative is negative, the extremum 
corresponds to the maximum.

One way to determine whether it is a maximum or minimum is to evaluate the second 
derivative of p (at RL = RT) with respect to RL.

The maximum power delivered to RL is then

	
p p R R v

R R
R v R

R
v
RMAX L T

T

T T
T T

T

T

T

T

2
2

2

2

4 4
	 (9.37)

Since

	 V R IT T N 	 (9.38)

the above result can also be written as

	
p R I

MAX
T N

2

4
	 (9.39)
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or

	
p V I v i

MAX
T N oc sc

4 2 2
	 (9.40)

9.5.2  Maximum Power Transfer – Sinusoidal Steady State

To address the maximum power transfer in the sinusoidal steady state, we use the circuit 
shown in Figure 9.41.

The source is represented by a Thévenin equivalent with a phasor voltage T̂V  and the 
source impedance ẐT, where

	 ˆ
T T TZ R jX 	 (9.41)

The load circuit is represented by an equivalent impedance ẐL, where

	 ˆ
L L LZ R jX 	 (9.42)

In the maximum power transfer problem, the driving circuitry, T̂V , RT, and XT, is fixed, 
and the objective is to adjust the load impedance RL and XL so that the average power 
delivered to the load is at its maximum.

The average power delivered to the load is

	
21

2
ˆ

LP R I 	 (9.43)

The magnitude of the load current is

	
2 2

ˆ ˆˆ
ˆ ˆ

ˆ

T T

T L T LT L

T

T L T L

V VI
R R j X XZ Z

V

R R X X

	 (9.44)

Î

Ẑ T
A

B

Ẑ LV̂T

+

+

–

–
V̂

Figure 9.41  Source‐load interface in the sinusoidal 
steady state.
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Substituting Eq. (9.44) into Eq. (9.43) produces

	

2

2 2

ˆ1
2

L T

T L T L

R V
P

R R X X
	 (9.45)

Since the driving circuitry is fixed, we can only adjust XT and XL to maximize the 
power delivered to the load.

Clearly, the power is maximized when

	 X XL T 	 (9.46)

Under this condition, the expression for average power reduces to

	

2

22

ˆ
L T

T L

R V
P

R R
	 (9.47)

This equation has the same form as Eq. (9.33) in the previous section. From the deri-
vation in the previous section we know that the power is maximized when

	 R RL T 	 (9.48)

The conditions in Eqs (9.46) and (9.48) can be combined as

	 Z ZL T
* 	 (9.49)

Thus, the maximum power transfer occurs under a conjugate match condition.
Under the conjugate match condition, the maximum power available from the 

source equals

	
2 2 82 2 2

ˆ ˆ ˆ

L T

L T T T T

TT L T
R R

R V R V V
P

RR R R
	 (9.50)

9.6  Two‐Port Networks

So far we have discussed several circuit analysis techniques including Kirchhoff ’s laws, 
node‐voltage or mesh‐current analysis, and Thévenin or Norton theorems.

Using Kirchhoff ’s laws or node‐voltage/mesh current methods we can calculate 
voltages and current anywhere in the circuit. Thévenin or Norton theorems allow us 
to  obtain an equivalent circuit model with respect to the specified pair of terminals 
(usually the output terminals, or the output port) of the network.

Another way of describing the circuit with respect to the two terminals is by treating 
the network as a two‐port circuit. In many electrical circuits obtaining voltages and 
currents at the input and output ports, instead of any point in the circuit, is more 
convenient and practical.
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Thus, the fundamental principle underlying the two‐port circuit analysis is that 
only  the terminal variables (input voltage/current and output voltage/current) are of 
interest. We are not interested in calculating voltages and current inside the circuit.

The most general description of the two‐port network is carried in the s domain 
(sinusoidal steady state is a special case of s domain analysis). Figure 9.42 shows the 
basic building block in terms of the s domain variables.

The voltage and current reference directions at each port are symmetric with respect 
to each other; that is, at each port the current flows into the upper terminal and the 
voltage at that terminal has a plus for its reference direction. This symmetry makes it 
easier to generalize the analysis of two‐port networks.

Of the four terminal variables only two are independent. Thus, for any two‐port 
network, once we specify two of the four variables, the other two can be obtained. It 
follows that the description of a two‐port network requires only two simultaneous 
equations.

There are six different ways of writing the two equation involving the four variables:

	

1 11 1 12 2

2 21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
V z I z I

V z I z I
	 (9.51)

	

1 11 1 12 2

2 21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
I y V y V

I y V y V
	 (9.52)

	

1 11 2 12 2

1 21 2 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
V a V a I

I a V a I
	 (9.53)

	

2 11 1 12 1

2 21 1 22 1

ˆ ˆ ˆ

ˆ ˆ ˆ
V b V b I

I b V b I
	 (9.54)

	

1 11 1 12 2

2 21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
V h I h V

I h I h V
	 (9.55)

	

1 11 1 12 2

2 21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
I g V g I

V g V g I
	 (9.56)

Circuit

Î 1 Î 2

+

–

V̂1

+

–

V̂2

Figure 9.42  Two‐port network.
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In matrix notation, equations (9.51)–(9.56) may be written as

	

1 11 12 1

21 222 2

ˆ ˆ

ˆ ˆ
V z z I

z zV I 	 (9.57)

	

1 11 12 1

21 222 2

ˆ ˆ

ˆ ˆ
I y y V

y yI V
	 (9.58)

	

1 11 12 2

21 221 2

ˆ ˆ

ˆ ˆ
V a a V

a aI I
	 (9.59)

	

2 11 12 1

21 222 1

ˆ ˆ

ˆ ˆ
V b b V

b bI I
	 (9.60)

	

1 11 12 1

21 222 2

ˆ ˆ

ˆ ˆ
V h h I

h hI V
	 (9.61)

	

1 11 12 1

21 222 2

ˆ ˆ

ˆ ˆ
I g g V

g gV I
	 (9.62)

The coefficients in the square matrices in Eqs (9.57)–(9.62) are called the parameters 
of the two‐port network. We refer to them as the z parameters, y parameters, a param-
eters, b parameters, h parameters, or g parameters of the network.

All parameter sets contain the same information about a network, and it is always 
possible to calculate any set in terms of any other set.

Consider Eq. (9.51), repeated here,

	

1 11 1 12 2

2 21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
V z I z I

V z I z I
	 (9.63)

The z parameters can be obtained as

	 2

1
11

1 ˆ 0

ˆ
ˆ

I

Vz
I

	 (9.64a)

	 1

1
12

2 ˆ 0

ˆ
ˆ

I

Vz
I

	 (9.64b)

	 2

2
21

1 ˆ 0

ˆ
ˆ

I

Vz
I

	 (9.64c)

	 1

2
11

2 ˆ 0

ˆ
ˆ

I

Vz
I

	 (9.64d)
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Thus, the z parameters can be obtained from the voltage and current measurements 
when each port, one at a time, is open‐circuited.

Example 9.6  Calculation of z parameters
Determine the z parameters of the circuit shown in Figure 9.43.

When port 2 is open, I2 0, and we have a circuit shown in Figure 9.44.
The z parameters for this circuit are obtained as

	
z V

I
I

II
11

1

1 0

1

12

6 8 4 14 4
14 4

3 1111.
	

	

z V
I

V

V
V

VI
21

2

1 0

1

1

1

1
2

8
8 6

6 8 4

0 5714

3 1111

1 7778.

.

.

	

When port 1 is open, we have a circuit shown in Figure 9.45.

I1

+

–

V1 V2

+

–

I26 Ω

8 Ω4 Ω

Figure 9.43  Resistive circuit for Example 9.6.
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I1

+

–

V1 V2

+

–

Figure 9.44  Port 2 open‐circuited.

I2

+

–

V1 V2

+

–

6 Ω

8 Ω4 Ω

Figure 9.45  Port 1 open‐circuited.
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The z parameters for this circuit are obtained as

	
z V

I
I

II
22

2

2 0

2

21

6 4 8 10 8
10 8

4 4444.
	

	

z V
I

V

V
V

V
I

12
1

2 0

2

2

2

2
1

4
4 6

6 4 8

0 4

4 4444

1 7778.

.

.

	
▪

To determine the y parameters we reconsider Eq. (9.52), repeated here

	

1 11 1 12 2

2 21 1 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
I y V y V

I y V y V
	 (9.65)

The y parameters can be obtained as

	 2

1
11

1 ˆ 0

ˆ
Sˆ

V

Iy
V

	 (9.66a)

	 1

1
12

2 ˆ 0

ˆ
Sˆ

V

Iy
V

	 (9.66b)

	 2

2
21

1 ˆ 0

ˆ
Sˆ

V

Iy
V

	 (9.66c)

	 1

2
22

2 ˆ 0

ˆ
Sˆ

I

Iy
V

	 (9.66d)

Thus, the y parameters can be obtained from the voltage and current measurements 
when each port, one at a time, is short‐circuited.

The remaining port parameters are obtained in a similar manner. For instance, since

	

1 11 2 12 2

1 21 2 22 2

ˆ ˆ ˆ

ˆ ˆ ˆ
V a V a I

I a V a I
	 (9.67)

we have

	 2

1
11

2 ˆ 0

ˆ
ˆ

I

Va
V

	 (9.68a)
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	 2

1
12

2 ˆ 0

ˆ
ˆ

V

Va
I

	 (9.68b)

	 2

1
21

2 ˆ 0

ˆ
Sˆ

I

Ia
V

	 (9.68c)

	 2

1
22

2 ˆ 0

ˆ
ˆ

V

Ia
I

	 (9.68d)

Thus, to obtain the a parameters, both the open‐circuit and short‐circuit measure-
ments at port 2 are needed.

Example 9.7  Calculation of a parameters
The circuit operates in sinusoidal steady state. When the voltage of v t1 160 4000cos  is 
applied to port 1 of the two‐port network, the following measurements are taken with 
port 2 open circuited:

	

i t
v t
1

2

10 30
80 20

cos
cos

 

 	

With port 2 short circuited when the voltage of v t1 60 4000cos  is applied to port 1 the 
following measurements are taken:

	

i t
i t
1

2

6 10
4 40

cos
cos

 

 	

Determine the a parameters that describe the sinusoidal steady state operation of 
the circuit.

Solution:  The first set of measurements is described by

	

1

1

2

2

ˆ 160 0 V
ˆ 10 30 A
ˆ 80 20 V
ˆ 0 A

V

I

V

I 	

From Eq. (9.68) we get

	 2

1
11

2 ˆ 0

ˆ 160 0 2 20ˆ 80 20
I

Va
V 	

	 2

1
21

2 ˆ 0

ˆ 10 30 0.125 50ˆ 80 20
I

Ia
V 	
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The second set of measurements is described by

	

1

1

2

2

ˆ 60 0 V
ˆ 3 10 A
ˆ 0 V
ˆ 4 40 A

V

I

V

I 	

Thus,

	 2

1
12

2 ˆ 0

ˆ 60 0 15 40 15 220ˆ 4 40
V

Va
I 	

	 2

1
22

2 ˆ 0

ˆ 3 10 0.75 50 0.75 230ˆ 4 40
V

Ia
I 	

▪

In the typical application of a two‐port network, the circuit is driven at port 1 and 
terminated by a load at port 2, as shown in Figure 9.46.

In this case, we are usually interested in determining the port 2 voltage and current 
2 2

ˆ , ˆV I  in terms of the two‐port parameters and ˆˆ ,G GV Z  and ZL̂. These terminal currents 
and voltages give rise to six characteristics describing this two‐port network:

●● input impedance 1 1
ˆ ˆ /ˆ

inZ V I , or the input admittance 1 1
ˆ ˆ / ˆ
inY I V

●● output current Î2
●● Thévenin voltage and impedance with respect to port 2, , ˆ

T̂H THV Z
●● current gain Î2/Î1
●● voltage gain 2 1

ˆ / ˆV V
●● voltage gain 2̂

ˆ/ GV V

To illustrate the approach we will use the z parameter set (Nielson and Riedel, 2015, 
p. 687). We begin with the two defining equations (9.51), repeated here,

	 1 11 1 12 2
ˆ ˆ ˆV z I z I 	 (9.69)

	 2 21 1 22 2
ˆ ˆ ˆV z I z I 	 (9.70)

CircuitV̂G

ẐG

ẐLV̂1

Î 1 Î 2

+

–

V̂2

+

–

+
–

Figure 9.46  Typical two‐port circuit.
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The circuit shown in Figure 9.46 produces two additional equations:

	 1 1
ˆˆ ˆ ˆ

G GV V Z I 	 (9.71)

	 2 2
ˆˆ ˆ

LV Z I 	 (9.72)

Determining the input impedance Zîn = V1̂/I1̂  Using Eq. (9.72) in Eq. (9.70) we obtain

	 2 21 1 22 2
ˆ ˆ ˆ ˆ

LZ I z I z I 	 (9.73)

and thus

	
21

2 1
22

ˆ ˆ
ˆ

L

zI I
z Z

	 (9.74)

Using Eq. (9.74) in Eq. (9.69) we get

	
12 21

1 11 1 1
22

ˆ ˆ ˆ
ˆ

L

z zV z I I
z Z

	 (9.75)

thus, the input impedance is

	

12 21
11

22

ˆ
ˆin

L

z zZ z
z Z 	 (9.76)

Determining the current Î2  From Eq. (9.69)

	
1 12 2

1
11

ˆ ˆˆ V z II
z

	 (9.77)

Using Eq. (9.71) in Eq. (9.77) produces

	
1 12 2

1
11

ˆˆ ˆ ˆˆ G GV Z I z II
z

	 (9.78)

or

	

11 1 1 12 2

11 1 12 2

ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
G G

G G

z I V Z I z I

z Z I V z I
	 (9.79)

and

	
12 2

1
11

ˆ ˆˆ
ˆ

G

G

V z II
z Z

	 (9.80)

Now, we substitute Eq. (9.80) into Eq. (9.74) to obtain

	
21 12 2

2
22 11

ˆ ˆˆ
ˆ ˆ

G

L G

z V z II
z Z z Z

	 (9.81)
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or

	 22 11 2 21 21 12 2
ˆ ˆ ˆ ˆ ˆ

L G Gz Z z Z I z V z z I 	 (9.82)

and therefore

	

21
2

22 11 21 12

ˆˆ
ˆ ˆ

G

L G

z VI
z Z z Z z z 	 (9.83)

Determining the Thévenin voltage with respect to port 2  The Thévenin voltage with respect 
to port 2 is equal to 2̂V  with the imposed condition of 2̂ 0I . Setting 2̂ 0I  in Eqs (9.69) 
and (9.70) produces

	 1 11 1 2
ˆ ˆ ˆ 0V z I I 	 (9.84)

	 2 21 1 2
ˆ ˆ ˆ 0V z I I 	 (9.85)

Utilizing Eq. (9.84) in Eq. (9.85) gives

	
21

2 1 2
11

ˆ ˆ ˆ 0zV V I
z

	 (9.86)

Using Eq. (9.71) in Eq. (9.86) results in

	
21

2 1 2
11

ˆˆ ˆ ˆ ˆ 0G G
zV V Z I I
z

	 (9.87)

Setting 2̂ 0I  in Eqs (9.80) produces

	
1 2

11

ˆˆ ˆ 0ˆ
G

G

VI I
z Z

	 (9.88)

Substituting Eq. (9.88) into Eq. (9.87) gives

	

21
2 2

11 11

1121
2

11 11

21 11
2

11 11

ˆˆˆ ˆ ˆ 0ˆ

ˆ ˆˆ ˆ
ˆ

ˆ

ˆˆ
ˆ

G
G G

G

G G G G

G

G

G

z VV V Z I
z z Z

z Z V Z VzV
z z Z

z z VV
z z Z

	 (9.89)

and thus the Thévenin voltage with respect to port 2 is given by

	

21

11

ˆ ˆ
ˆTH G

G

zV V
z Z 	 (9.90)
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The Thévenin, or output impedance, can be obtained from

	
2

2

ˆˆ ˆ
ˆ , 0TH G

VZ V
I

	 (9.91)

When ˆ 0GV , Eq, (9.71), repeated here

	 1 1
ˆˆ ˆ ˆ

G GV V Z I 	 (9.92)

reduces to

	 1 1
ˆˆ ˆ

GV Z I 	 (9.93)

Using Eq. (9.93) in Eq. (9.69), repeated here,

	 1 11 1 12 2
ˆ ˆ ˆV z I z I 	 (9.94)

gives

	 1 11 1 12 2
ˆ ˆ ˆ ˆ

GZ I z I z I 	 (9.95)

or

	 11 1 12 2
ˆ ˆ ˆ

Gz Z I z I 	 (9.96)

resulting in

	
12 2

1
11

ˆˆ ˆ, 0ˆ G
G

z II V
z Z

	 (9.97)

Using Eq. (9.97) in Eq. (9.70), repeated here

	 2 21 1 22 2
ˆ ˆ ˆV z I z I 	 (9.98)

produces

	

12 2
2 21 22 2

11

ˆˆ ˆ
ˆ

G

z IV z z I
z Z

	 (9.99)

or

	

21 12
2 22 2

11

ˆ ˆ ˆ, 0ˆ G
G

z zV z I V
z Z

	 (9.100)

resulting in Thévenin impedance of

	

2 21 12
22

2 11

ˆˆ
ˆ ˆTH

G

V z zZ z
I z Z 	 (9.101)
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Determining the  current gain Î2/Î1  The current gain can be obtained directly from Eq. 
(9.74), repeated here

	
21

2 1
22

ˆ ˆ
ˆ

L

zI I
z Z

	 (9.102)

Thus,

	

2 21

1 22

ˆ
ˆ ˆ

L

I z
I z Z 	 (9.103)

Determining the voltage gain V2̂/V1̂  We start with Eq. (9.70) and (9.72), repeated here,

	 2 21 1 22 2
ˆ ˆ ˆV z I z I 	 (9.104)

	 2 2
ˆˆ ˆ

LV Z I 	 (9.105)

Solving Eq. (9.105) for I ̂2 and substituting it in Eq. (9.104) produces

	

2
2 21 1 22

ˆˆ ˆ
ˆ

L

VV z I z
Z

	 (9.106)

Now, solving Eq. (9.69), repeated here

	 1 11 1 12 2
ˆ ˆ ˆV z I z I 	 (9.107)

for I ̂2 gives

	
1 12

1 2
11 11

ˆˆ ˆV zI I
z z

	 (9.108)

Solving Eq. (9.105) for I ̂2 and substituting it in Eq. (9.108) produces

	

1 12 2
1

11 11

ˆ ˆˆ
ˆ

L

V z VI
z z Z

	 (9.109)

Substituting Eq. (9.109) into Eq. (9.106) results in

	

1 12 2 2
2 21 22

11 11

ˆ ˆ ˆˆ
ˆ ˆ

L L

V z V VV z z
z z Z Z

	 (9.110)

or

	

12 21 2 2 21
2 22 1

11 11

12 21 22 21
2 1

1111

11 12 21 11 22 21
2 1

1111

ˆ ˆˆ ˆ
ˆ ˆ

ˆ ˆ1 ˆ ˆ
ˆ ˆ ˆ

ˆ

L L

L L

L

L

z z V V zV z V
z zZ Z

z z z zV V
zz Z Z

z Z z z z z zV V
zz Z

	 (9.111)
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and thus

	

2 21

1 11 11 22 12 21

ˆˆ
ˆ ˆ

L

L

V z Z
V z Z z z z z 	 (9.112)

Determining the  voltage gain V̂2/VĜ  We start with Eqs (9.69), (9.71), and (9.72), 
repeated here,

	 1 11 1 12 2
ˆ ˆ ˆV z I z I 	 (9.113)

	 1 1
ˆˆ ˆ ˆ

G GV V Z I 	 (9.114)

	 2 2
ˆˆ ˆ

LV Z I 	 (9.115)

From Eq. (9.115) we obtain

	
2

2

ˆˆ
ˆ

L

VI
Z

	 (9.116)

Using Eqs (9.114) and (9.116) in Eq. (9.113) results in

	

2
1 11 1 12

ˆˆˆ ˆ ˆ
ˆG G

L

VV Z I z I z
Z

	 (9.117)

or

	

2
11 1 1 12

2
11 1 12

ˆˆˆ ˆ ˆ
ˆ
ˆˆ ˆ ˆ
ˆ

G G
L

G G
L

Vz I Z I V z
Z
Vz Z I V z
Z

	 (9.118)

resulting in

	

12 2
1

11 11

ˆ ˆˆ
ˆ ˆ ˆ

G

G L G

V z VI
z Z Z z Z

	 (9.119)

We now use Eq. (9.119) together with Eqs (9.70) and (9.72), repeated here

	 2 21 1 22 2
ˆ ˆ ˆV z I z I 	 (9.120)

	 2 2
ˆˆ ˆ

LV Z I 	 (9.121)

to obtain,

	

12 2 2
2 21 22

11 11

ˆ ˆ ˆˆ
ˆ ˆˆ ˆ

G

G LL G

V z V VV z z
z Z ZZ z Z

	 (9.122)
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or

	

2 21 12 2 21
2 22

1111

22 21 12 21
2

1111

11 22 11 21 12 21
2

1111

ˆ ˆ ˆˆ
ˆ ˆˆ ˆ

ˆˆ1 ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆˆ
ˆˆ ˆ

G

L GL G

G

L GL G

L G G G

GL G

V z z V z VV z
Z z ZZ z Z

z z z z VV
Z z ZZ z Z

Z z Z z z Z z z z VV
z ZZ z Z

	 (9.123)

or

	

11 22 11 21 12
2 21

ˆ ˆ ˆ
ˆ ˆ

ˆ
L G G

G
L

Z z Z z z Z z z
V z V

Z
	 (9.124)

and thus

	

2 21

22 11 21 12

ˆˆ
ˆ ˆ ˆ

L

G L G

V z Z
V Z z z Z z z 	 (9.125)

9.7  EMC Applications

9.7.1  Fourier Series Representation of Signals

Fourier series representation of periodic signals is perhaps the greatest example of an 
application of the superposition principle in EMC. (We will devote the entire Chapter 12 
to this important topic.)

A periodic signal x(t) can be represented as an infinite series of the form

	
0 0 1 1 2 2

0
n n

n
x t c t c t c t c t 	 (9.126)

where the cn are called the expansion coefficients and the φn(t) are called the basis 
functions – they are periodic with the same period as x(t).

If we know the response of a linear system, yi(t), to each basis function, φi(t), as 
illustrated in Figure 9.47, then the response of the system, y(t), to the original signal 
x(t), as shown in Figure  9.48, can be obtained as a weighted sum of the individual 
responses

φi(t) Linear
system

yi(t)
Figure 9.47  Response of a linear system to a basis 
function.
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y t c y t c y t c y t c y t

n
n n

0
0 0 1 1 2 2 	 (9.127)

Not only are the individual responses easier to obtain or analyze, but they also give us 
an insight into the nature of the system.

There are infinitely many representations of the form in Eq. (9.126). One extremely 
useful form in EMC is the Fourier series representation (Kreyszig, 1999, p. 528) which, 
in the time domain, can be expressed as

	
x t a a n t b n t t t t T

n
n n0

1
0 0 1 1cos sin , 	 (9.128)

where the Fourier coefficients are given by

	
a

T
x t dt

t

t T

0
1

1

1

	 (9.129a)

	
a

T
x t n tdtn

t

t T2

1

1

0cos 	 (9.129b)

	
b

T
x t n tdtn

t

t T2

1

1

0sin 	 (9.129c)

In Chapter 12, we will show that the time‐domain representation (9.128) is equivalent 
to the complex Fourier series representation

	
x t c c n t

n
n cn0

1
02 cos 	 (9.130a)

	 ˆ cnj
n n cn nc c c e 	 (9.130b)

We will use this representation to analyze the spectrum of a digital signal, like the one 
shown in Figure 9.49.

x(t) Linear
system

y(t)
Figure 9.48  Response of a linear system to the 
signal x(t).

x(t)

A

tr

τ

tf
T t

Figure 9.49  Trapezoidal clock signal.
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That analysis will allow us to determine spectral bounds on clock signals and estimate 
the bandwidth of such signals.

9.7.2  Maximum Power Radiated by an Antenna

In Chapter 18 we will discuss the radiation mechanism from the typical EMC antennas. 
A physical model of an antenna in a transmitting mode is shown in Figure 9.50.

A circuit model of such an antenna is shown in Figure 9.51.
ˆ

inZ  is the input impedance of the antenna, i.e. the impedance presented by the antenna 
to the generator circuit at the antenna’s input terminals A‐B. Figure  9.52 shows the 
details of the two impedances shown in Figure 9.51.

The antenna and generator impedances are given by

	 ˆ
in in inZ R jX 	 (9.131)

	 R R Rin loss rad	 (9.132)

	
ˆ

g g gZ R jX 	 (9.133)

V̂g

Generator
circuit

Radiated
wave

Antenna in
transmitting mode

A

B

Ẑg

+
–

Figure 9.50  Physical model of an antenna in a transmitting mode.

Generator
circuit

Antenna in
transmitting mode

Ẑ g

Ẑ inV̂ g
+
–

A

B

Figure 9.51  Circuit model of an antenna in 
a transmitting mode.

V̂g

X̂g X̂in
A

B

Rg

+
–

Rrad

Rloss

Figure 9.52  Detailed circuit model of an 
antenna in a transmitting mode.
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Here Rin is the antenna resistance at terminals A‐B, Xin is the antenna reactance at 
terminals A‐B, Rloss is the loss resistance of the antenna, Rrad is the radiation resistance 
of the antenna, Rg is the generator resistance, and Xg is the generator reactance.

In order to determine the maximum power transfer to the antenna, we first obtain an 
expression for the current flowing in the circuit, as shown in Figure 9.53.

The magnitude of the antenna current is

	
2 2

ˆ
ˆ g

g

rad loss g in g

V
I

R R R X X
	 (9.134)

The power supplied by the generator is

	

*
*

ˆ
ˆ ˆ ˆ1 1

2 2
g

s g g g
rad loss g in g

V
P V I V

R R R j X X
	 (9.135)

The power dissipated in the generator as heat is

	

2
2

2 2

ˆ1 W
2 2

ˆ g g
g g g

rad loss g in g

V R
P I R

R R R X X
	 (9.136)

The power dissipated in the antenna as heat is

	

2
2

2 2 Wˆ1
2

ˆ

2
g loss

loss g loss
rad loss g in g

V RP I R
R R R X X

	 (9.137)

Finally, the power radiated by the antenna is

	

2
2

2 2
1
2 2

ˆ
ˆ W

g rad
rad g rad

rad loss g in g

V RP I R
R R R X X

	 (9.138)

The maximum power delivered to the antenna for radiation occurs when

	
*ˆ ˆ

in gZ Z 	 (9.139)

V̂g

X̂g

Îg

X̂inRg

+
–

Rrad

Rloss

Figure 9.53  Antenna current.
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and thus

	 R R Rrad loss g 	 (9.140a)

	 X Xin g	 (9.140b)

Under the conditions in Eq. (9.140) the maximum power radiated by the antenna is

	

2 2

2 2

ˆ ˆ

2 82

g grad rad
rad

rad lossrad loss

V VR RP
R RR R

	 (9.141)

9.7.3  s Parameters

The two‐port parameter sets described in this chapter require the input and output 
terminals of the network to be either open‐ or short‐circuited. This can be hard to do at 
high frequencies where lead inductance and capacitance make short and open circuits 
difficult to obtain.

To characterize high‐frequency circuits using s parameters, we use matched termina-
tions instead of the open or short circuits.

Just like the other sets of parameters, s parameters completely describe the perfor-
mance of a two‐port network.

Unlike the other sets of parameters, s parameters do not make use of open‐circuit or 
short‐circuit measurements voltage or current measurements, but rather relate the 
traveling waves that are incident, reflected, and transmitted when a two‐port network 
in inserted into a transmission line. This is depicted in Figure 9.54.

Travelling waves, unlike terminal voltages and currents, do not vary in magnitude at 
points along a lossless transmission line (waves and transmission lines will be discussed 
in Chapters 16 and 17, respectively). This means that the s parameters can be measured 
with the device at some distance from the measurement ports, provided that the line is 
a low‐loss transmission line.

s Parameters are usually measured with the device embedded between a 50 Ω load 
and a 50 Ω source.

The incident waves (a1, a2) and reflected waves (b1, b2) used to define s parameters for 
a two‐port network are shown in Figure 9.55.

Port 1

Incident wave

Reflected wave
Transmitted wave

Circuit

Port 2

Figure 9.54  s Parameters are related to the traveling waves.
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The linear equations describing this two‐port network in terms of the s parameters are

	

b s a s a
b s a s a

1 11 1 12 2

2 21 1 22 2
	 (9.142)

or in a matrix form

	

b
b

s s
s s

a
a

1

2

11 12

21 22

1

2
	 (9.143)

where S is the scattering matrix given by

	
S

s s
s s
11 12

21 22
	 (9.144)
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10

10.1  Self and Mutual Inductance

Consider the circuit shown in Figure 10.1.
Time‐varying current i1(t) gives rise to the time‐varying flux Φ11 that crosses the loop 

in which the current i1 flows. According to Faraday’s law this time‐varying flux crossing 
the loop induces a voltage in the loop.

We model this by introducing the concept of the self inductance of circuit 1, defined as

	
L

i1
11

1
	 (10.1)

We then augment the circuit of Figure 10.1 to that shown in Figure 10.2.
Note that the loop inductance is a property of the loop itself and does not depend on 

the voltage VS or the current i (just like the resistance of a resistor does not depend on 
the voltage across it or the current through it).

That is, any closed loop will have its own self inductance, whether current flows 
through it or not. It can, therefore, be represented by the circuit model shown in 
Figure 10.3.

Now consider the situation where another circuit (with its own self inductance) is 
placed next to the original circuit, as shown in Figure 10.4.

The time‐varying flux Φ12 created by the current i1 flowing in loop 1 and intersecting 
loop 2 induces a voltage in loop 2.

We model this by introducing the concept of the mutual inductance between the 
circuits 1 and 2 as

	
M

i12
12

1
	 (10.2)

Using the concept of the mutual inductance we can now augment the circuit of 
Figure 10.4 to that shown in Figure 10.5.

Similar discussion leads to the scenario shown in Figure 10.6. Here circuit 2 is driven 
by a voltage source and circuit 1 is represented by a loop containing resistance and self 
inductance.

In many practical cases (Alexander and Sadiku, 2009, p. 558)

	 M M M12 12 	 (10.3)
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Φ11
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Figure 10.1  Magnetic flux produced by the current 
flowing in a loop.
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L1VS1

i1
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–

Figure 10.2  Loop self‐inductance.

R

L

Figure 10.3  Circuit model of a loop.
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R2
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Φ12

Φ11
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–

Figure 10.4  Flux caused by current in loop 1 intersects loop 2.
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Let’s combine the two scenarios shown in Figures  10.5 and 10.6, as shown in 
Figure 10.7.

When the time‐varying current flows through the self inductance it gives rise to the 
voltage across it according to

	
v L di

dt
	 (10.4a)

R1 R2i1 M12

VS1 L1 L2+
–

Figure 10.5  Mutual inductance between loops 1 and 2.

R1 R2 i2
M21

L2 VS2
L1

+
–

Figure 10.6  Mutual inductance between loops 2 and 1.

R1 i1 i2
M R2

L2 v2(t)v1(t)
L1

+

–

+

–

Figure 10.7  Mutual inductance between loops 2 and 1.
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when the passive sign convention is satisfied, or according to

	
v L di

dt
	 (10.4b)

when the passive sign convention is not satisfied.
The polarity of the voltage due to the mutual inductance cannot be determined using 

the passive sign convention.

	
v M di

dt
	 (10.5)

The choice of the correct polarity for M di/dt depends on the physical configuration 
of the circuit. This is indicated in the circuit by the dot marking, as shown in 
Figure 10.8.

The dot convention allows us to determine the polarity of the induced voltage according 
to the following rule (Nilsson and Riedel, 2015, p. 190).

When the reference direction of the current in one circuit enters the dotted terminal, 
the reference polarity of the induced voltage in another circuit is positive at the dotted 
terminal.

Figure 10.9 shows how to apply the dot convention.
Figure  10.10 shows the polarities of the induced voltages for the circuit shown in 

Figure 10.8.
KVL for the circuit on the left results in

	
v R i L di

dt
M di

dt1 1 1 1
1 2 	 (10.6a)

while for the circuit on the right we have

	
v R i L di

dt
M di

dt2 2 2 2
2 1 0	 (10.6b)

R1 R2

L2L1

i1 M i2

+

–

+

–

v1(t) v2(t)

Figure 10.8  Mutual inductance with dot convention.
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Example 10.1  Coupled transmission lines
In Chapter 15 we will discuss the distributed‐parameter transmission lines. The per‐unit‐
length equivalent circuit of a three‐conductor transmission line is shown in Figure 10.11 
(Paul, 2006, p. 566).

KVL along the outside loop yields

	
V z t l z

I z t
t

l z
I z t

t
V z z tG G

G
m

R
G,

, ,
, 0	 (10.7a)

while the KVL along the lower loop in Figure 10.11 produces

	
V z t l z

I z t
t

l z
I z t

t
V z z tR R

R
m

G
R,

, ,
, 0	 (10.7b)

i1
M

M M

i1
M

M

+

+–

–

di1

i2 i2

dt

M
di2

dt M
di2

dt

M
di1

dt

+

– +

–

Figure 10.9  Dot convention application.

R1
Mi1 i2

L1 L2

R2

v1(t)

+

–

v2(t)

+

–

+
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+

M
di2

dt
M

di1
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Figure 10.10  Polarities of the induced voltages.
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10.2  Energy in a Coupled Circuit

Recall that energy stored in an inductor is given by

	
w Li1

2
2	 (10.8)

Let’s determine the energy stored in magnetically coupled coils. Consider the circuit 
shown in Figure 10.12.

Let’s assume that the initial current sin the coils are zero so there is no initial energy 
stored in the coils.

First we increase i1 from zero to I1, while keeping i2 = 0. Since i2 = 0 there is no mutual 
voltage induced in coil 1. The mutual voltage induced in coil 2 is M di1/dt.

The energy stored in both coils is

	

w p t dt L di
dt

i t dt M di
dt

i dt
t t t

1 1
0

1
1

1
0

1
2

0

LL i t di L I
i

i I

1 1 1
0

1 1
2

1

1 1

0 1
2

	 (10.9)

If we maintain i1 = I1 and increase i2 from zero to I2 the mutual voltage induced in coil 
1 is M di2/dt. The mutual voltage induced in coil 2 is zero since i1 = const.

The energy stored in both coils now is

	

w p t dt L di
dt

i t dt M di
dt

I dt
t t t

2
0

2
0

2
2

2
0

2
1

LL i t di MI di L I MI I
i

i I

i

i I

1
0

2 2 1
0

2 2 2
2

1 2

2

2 2

2

2 2 1
2

	 (10.10)

IG (z, t) IG (z + Δz, t)

IR (z + Δz, t)

VG (z + Δz, t)

VR (z + Δz, t)VR (z, t)

VG (z, t)

lm Δz cm Δz

lG Δz

lR Δz

cR Δz cG Δz

IR (z, t)

IG (z, t) + IR (z, t)

Generator conductor

Receptor conductor

Reference conductor
z + Δzz

+

+

––

+

–

+

–

Figure 10.11  Per‐unit length circuit model of three‐conductor transmission line.
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The total energy stored in the coils when both i1 and i2 have reached constant values is

	
w w w L I L I MI I1 2 1 1

2
2 2

2
1 2

1
2

1
2

	 (10.11)

Equation (10.11) was derived with the assumption that the coil currents both entered 
the dotted terminals. If one current enters the dotted terminal and the other does not, 
the mutual voltage is negative and the mutual energy MI1I2 is also negative.

The total energy in the system then is

	
w w w L I L I MI I1 2 1 1

2
2 2

2
1 2

1
2

1
2

	 (10.12)

Since I1 and I2 were arbitrarily chosen, we may replace them by any other values. Let’s 
replace them by i1 and i2. Then we obtain a general expression for the instantaneous 
energy stored in the system:

	
w L i L i Mi i1

2
1
21 1

2
2 2

2
1 2	 (10.13)

Equation (10.13) allows us to determine the upper limit for the value of the mutual 
inductance. Since the circuit consists of passive elements, the energy stored in it cannot 
be negative. Thus,

	
1
2

1
2

01 1
2

2 2
2

1 2L i L i Mi i 	 (10.14)

Then, since

	
1
2

1
2

1
21 1 2 2

2
1 1

2
1 2 1 2 2 2

2i L i L L i i i L L L i 	 (10.15)

inequality (10.14) can be written as

	
1
2

01 1 2 2
2

1 2 1 2 1 2i L i L i i L L Mi i 	 (10.16)

The first term is never negative. This leads to the condition

	 i i L L M1 2 1 2 0	 (10.17)

i1 i2

L1 L2
v2(t)v1(t)

M

++

––

Figure 10.12  Coupled coils.
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thus

	 L L M1 2 0	 (10.18)

or

	 1 2M L L 	 (10.19)

Thus, the mutual inductance cannot be greater than the geometric mean of the self 
inductances of the coils.

Coefficient of coupling specifies the extent to which the mutual inductance approaches 
its limit.

	
k M

L L1 2
	 (10.20)

or, equivalently,

	 M k L L1 2 	 (10.21)

10.3  Linear (Air‐Core) Transformers

Figure 10.13 shows a circuit model of a linear transformer.
The coil connected directly to the voltage source is called the primary winding. The coil 

connected to the load is the secondary winding. The resistors R1 and R2 account for the 
power losses. The transformer is said to be linear if the coils are wound on a magnetically 
linear material – a material with a constant magnetic permeability. Linear transformers 
are sometimes called air‐core transformers (Alexander and Sadiku, 2009, p. 568).

Let’s obtain the input impedance, Z ̂in, as seen by the source. Applying KVL to the 
primary and the secondary coils gives

	 1 1 1 1 2
ˆ ˆ ˆ ˆV R I j L I j MI 	 (10.22a)

	 2 2 2 2 2 1
ˆˆ ˆ ˆ0 ˆ

LI I IR L Z j MIj 	 (10.22b)

R1

Primary coil Secondary coil

R2

L2L1

M

I2
I1V

̂̂ ̂+
– ZL

̂

Figure 10.13  A linear transformer.
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From Eq. (10.22b) we get

	

1
2

2 2

ˆ
ˆ

ˆ
L

j MI
I

R j L Z
	 (10.23)

Substituting Eq. (10.23) into Eq. (10.22a) we obtain

	

1
1 1 1

2 2

ˆ
ˆ ˆ

ˆ
L

j MI
V R j L I j M

R j L Z
	 (10.24)

or

	

2 2

1 1 1 1
2 2

ˆ ˆ ˆ
ˆ

L

j M
V R j L I I

R j L Z
	 (10.25)

Thus the input impedance seen by the source is

	

2 2

1 1
1 2 2

ˆˆ
ˆ ˆin

L

j MVZ R j L
I R j L Z

	 (10.26)

The first term on the right‐hand side of Eq. (10.26), R j L1 1, is the primary impedance. 
The second term is the result of the coupling between the primary and secondary 
windings. It is known as the reflected impedance ẐR,

	

2 2

2 2

ˆ
ˆR

L

j M
Z

R j L Z
	 (10.27)

10.4  Ideal (Iron‐Core) Transformers

An ideal transformer consists of two or more coils with a large number of turns wound 
on a common core of high permeability (with no losses or magnetic flux leakage). 
Iron‐core transformers are close approximations to ideal transformers (Alexander and 
Sadiku, 2019, p. 574).

The circuit symbol of an ideal transformer is shown in Figure 10.14.

N1 N2

Figure 10.14  Circuit symbol of an ideal transformer.
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The vertical lines between the coils indicate an iron core, as distinct from the air core 
used in linear transformers. In an ideal transformer, the primary and secondary coils are 
lossless ( , )R R1 20 0 .

Consider the circuit shown in Figure 10.15.
The circuit is governed by the following equations

	 1 1 1 2
ˆ ˆ ˆV j L I j MI 	 (10.28a)

	 2 1 2 2
ˆ ˆ ˆV j MI j L I 	 (10.28b)

From Eq. (10.28a) we get

	

1 2
1

1

ˆ ˆ
ˆ V j MI
I

j L
	 (10.29)

Substituting Eq. (10.29) into Eq. (10.28b) gives

	

1 2
2 2 2

1

ˆ ˆ
ˆ ˆV j MI

V j M j L I
j L

	 (10.30)

or

	

2 2
21

2 2 2
1 1

ˆˆˆ ˆM IMVV j L I
L j L

	 (10.31)

leading to

	

2
21

2 2 2
1 1

ˆˆˆ ˆ j M IMVV j L I
L L

	 (10.32)

The ideal transformer is characterized by perfect coupling, that is, k = 1, and therefore

	 M L L1 2 	 (10.33)

Substituting Eq. (10.33) into Eq. (10.32) we get

	

1 2 21 2 1
2 2 2

1 1

ˆˆˆ ˆ j L L IL L VV j L I
L L

	 (10.34)

I1
ˆ I2

ˆ

V1
ˆ

V2
ˆL1 L2

++

––

M Figure 10.15  Coupled coils in frequency domain.
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or

	
2

2 1 1
1

ˆ ˆ ˆLV V nV
L

	 (10.35)

where

	
n L

L
2

1
	 (10.36)

is called the turns ratio.
When a sinusoidal voltage is applied to the primary winding, as shown in Figure 10.16, 

the same magnetic flux Φ flows through both windings.
According to Faraday’s law, the voltages across the primary and the secondary windings, 

are, respectively,

	
v N d

dt1 1 	 (10.37a)

	
v N d

dt2 2 	 (10.37b)

Dividing Eq. (10.37b) by Eq. (10.37a) gives

	
v
v

N
N

n2

1

2

1
	 (10.38)

where n is, again, the turns ratio. When n = 1, the transformer is usually called an isolation 
transformer.

Since there are no losses in an ideal transformer, we have

	 p p1 2	 (10.39)

or

	 v i v i1 1 2 2	 (10.40)

and thus

	
i
i

v
v

N
N n

2

1

1

2

1

2

1 	 (10.41)

I1
ˆ I2

ˆ

V1
ˆ

Vˆ V2
ˆ

ZL
ˆ

+

– –

+

N1 : N2

+
–

Figure 10.16  Voltages and currents in an ideal transformer.
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In phasor form, we have

	
2 2

11

ˆ
ˆ

V N n
NV

	 (10.42a)

	
2 1

21

1ˆ
ˆ
I N

N nI
	 (10.42b)

From Eq. (10.42) we get

	
2

1

ˆˆ VV
n

	 (10.43a)

	 1 2
ˆ ˆI nI 	 (10.43b)

The input impedance as seen by the source in Figure 10.14 is

	
1

1

ˆˆ
ˆin

VZ
I

	 (10.44)

Using Eq. (10.43) in Eq. (10.44) we get

	
2

2
2

ˆ
ˆ

1ˆ
in

VZ
n I

	 (10.45)

From Figure 10.14, it is evident that

	
2

2

ˆ ˆ
ˆ L

V Z
I

	 (10.46)

and thus the input impedance seen by the source is

	 2

ˆˆ L
in

ZZ
n

	 (10.47)

The input impedance is also called the reflected impedance, since it appears as the 
load impedance reflected to the primary side.

As we shall see, the reflected impedance is used in impedance matching for maximum 
power transfer, as explained next.

Consider the circuit shown in Figure 10.17.
Recall that for maximum power transfer the load must be matched to the source 

resistance, i.e. R RL S . In most cases, however, these two resistance are fixed and 
not equal.

An iron‐core transformer can be used to match the load resistance to the source 
resistance. The ideal transformer reflects its load back to the primary with a scaling 
factor of n2. To match this reflected load with the source resistance we set 
them equal

	
R R

n
S

L
2 	 (10.48)
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10.5  EMC Applications

10.5.1  Common‐Mode Choke

A common‐mode choke, shown in Figure  10.18, consists of a pair of wires carrying 
currents 1̂I  and 2̂I  wound around a ferromagnetic core (Paul, 2006, p. 350).

As we shall see, the common‐mode choke blocks the common‐mode (CM) currents 
and has no effect on the differential‐mode (DM) currents.

The currents shown in Figure 10.18 and the total current flowing in each wire, shown 
in Figure 10.19, are related by

	 1̂
ˆ ˆ
CM DMI I I 	 (10.49a)

	 1̂
ˆ ˆ
CM DMI I I 	 (10.49b)

Equivalently, the CM and DM currents can be expressed as

	 1 2
ˆ ˆ

2
ˆ1

CI I I 	 (10.50a)

	 1 2
ˆ ˆ

2
ˆ1

DI I I 	 (10.50b)

Let’s investigate the effect of the choke on the CM and DM mode currents. The circuit 
model of the choke is shown in Figure 10.20.

Using the model in Figure 10.20, we calculate the impedance of each winding as

	

1 21
1

1 1

ˆ ˆˆˆ
ˆ ˆ

j LI j MIVZ
I I

	 (10.51a)

	

2 12
2

2 2

ˆ ˆˆˆ
ˆ ˆ

j LI j MIVZ
I I

	 (10.51b)

RS

RL

1: n

LoadSource

Matching transformer

vs
+
–

Figure 10.17  Circuit with a matching transformer.
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To determine the effect of the choke on the DM currents let

	 1̂
ˆ

DI I 	 (10.52a)

	 2̂
ˆ

DI I 	 (10.52b)

Using Eq. (10.52) in Eq. (10.51a) we get

	

1 21

1 1

ˆ ˆˆˆ
ˆ ˆ

ˆ ˆ

ˆ

DM

D D

D

j LI j MIVZ
I I
j LI j MI

j L M
I

	 (10.53a)

I1
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I2
ˆ

ICM
ˆ

ICM
ˆ IDM

ˆ

IDM
ˆ

Figure 10.19  Total currents flowing in each wire.
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Figure 10.18  Common‐mode choke.
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Figure 10.20  Circuit model of the CM choke.
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Similarly, using Eq. (10.52) in Eq. (10.51b) we get

	

2 12

2 2

ˆ ˆˆˆ
ˆ ˆ

ˆ ˆ

ˆ

DM

D D

D

j LI j MIVZ
I I

j LI j MI
j L M

I

	 (10.53b)

Thus, the impedance seen by the DM current in each winding is

	
ˆ

DMZ j L M 	 (10.54)

In the ideal case, where L = M, we have

	
ˆ 0DMZ 	 (10.55)

Thus, the (ideal) CM choke is transparent to the DM currents, i.e. it does not affect 
them at all.

Now let’s determine the effect of the choke on the CM currents. To this end, let

	 1̂ ĈI I 	 (10.56a)

	 2̂ ĈI I 	 (10.56b)

Using Eq. (10.56) in Eq. (10.51a) we get

	

1 21

1 1

ˆ ˆˆˆ
ˆ ˆ

ˆ ˆ

ˆ

CM

C C

C

j LI j MIVZ
I I
j LI j MI

j L M
I

	 (10.57a)

Similarly, using Eq. (10.56) in Eq. (10.51b) we get

	

2 2 1

2 2

ˆ ˆ ˆˆ
ˆ ˆ

ˆ ˆ

ˆ

CM

C C

C

V j LI j MIZ
I I
j LI j MI

j L M
I

	 (10.57b)

Thus, the impedance seen by the CM current in each winding is

	
ˆ

CMZ j L M 	 (10.58)

Thus, the CM choke inserts an inductance L + M in each winding, and consequently 
it tends to block CM currents.



Foundations of Electromagnetic Compatibility258

References

Alexander, C.K. and Sadiku, N.O., Fundamentals of Electric Circuits, 4th ed., McGraw Hill, 
New York, 2009.

Nilsson, J.W. and Riedel, S.A., Electric Circuits, 10th ed., Pearson, Upper Saddle River, 
NJ, 2015.

Paul, C.R., Introduction to Electromagnetic Compatibility, 2nd ed., John Wiley and Sons, 
New York, 2006.



Foundations of Electromagnetic Compatibility with Practical Applications, First Edition. Bogdan Adamczyk. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

259

11

In Chapter 7, we defined the Laplace transformation and used it to obtain the s domain 
expression for a given time‐domain function, and conversely, we obtained the time‐
domain expression from a given s domain function using inverse Laplace transform.

The real power of Laplace transformation in engineering applications emerges 
when we transform the electrical circuit itself from time domain to s domain and 
analyze it directly in the s domain. The s domain analysis leads to a definition of a 
transfer function, and subsequently to the concept of the frequency transfer function, 
some of the most important concepts in circuit analysis.

In EMC, we are predominantly interested in the sinusoidal steady state and therefore 
we will focus on the frequency transfer function techniques. We begin by defining the 
concept a transfer function.

11.1  Transfer Function

The concept of a transfer function is perhaps the most important concept in frequency 
domain analysis.

A transfer function is defined as the ratio of a Laplace transform of the output Y(s) to 
the Laplace transform of the input X(s), under the assumptions of zero initial conditions 
in the circuit (Nilsson and Riedel, 2015, p. 482).

Thus,

	 0

ˆ
ˆ

ˆ
IC s

Y s
H s

X s
	 (11.1)

Figure 11.1 shows a typical representation of a circuit in the s domain, used to define 
the voltage transfer function.

The transfer function depends on what variables we define as the input and the 
output. Perhaps the voltage transfer function is the most important one; it is used to 
define several frequency‐domain concepts (e.g. frequency transfer function and 
electrical filters).

	

ˆ
ˆ

ˆ
OUT

IN

V s
H s

V s
	 (11.2)

Frequency‐Domain Analysis
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Two additional very useful transfer (or network) functions can be defined using the 
circuits shown in Figures 11.2 and 11.3.

Using the circuit shown Figure 11.2 we define the input (driving point) impedance 
(Alexander and Sadiku, 2009, p. 852) as

	

ˆ
ˆ

ˆ
IN

IN
IN

V s
Z s

I s
	 (11.3)

while using the circuit shown Figure 11.3, we define the output impedance as

	

ˆ
ˆ

ˆ
OUT

OUT
OUT

V s
Z s

I s
	 (11.4)

Once the transfer function of the system, ˆ ( )H s , is obtained, then the output of the 
system, ˆ( )Y s , due to an input ˆ ( )X s  can be obtained as

	 ˆ ˆ ˆY s H s X s 	 (11.5)

The following example illustrates the above defined concepts.

Linear circuit
w/zero initial
conditions

VIN
ˆ

VOUT
ˆ

+

–

+
–

Figure 11.1  Circuit used to define the voltage transfer function.

VG
ˆ

IIN
ˆ

ZG
ˆ

VIN
ˆ

+

– 

Circuit+
–

Figure 11.2  Circuit used to define input impedance.

IOUT
ˆ

VOUT
ˆ

ZS
ˆ

VS
ˆ+

–

+

–

Circuit

Figure 11.3  Circuit used to define output impedance.
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Example 11.1  System network functions
Consider the circuit shown in Figure 11.4.

Determine:

1)	 the circuit’s transfer function
2)	 the input impedance
3)	 the output impedance
4)	 the output ˆ ( )OUTV s  when the input is v t tIN ( ) ,1 0
5)	 the output vOUT(t) when the input is v t cos t tIN ( ) ,3 2 0
6)	 the steady state output vOUT(t) for the input v t cos t tIN ( ) ,3 2 0

Solution:
1. Transfer function
To determine the system’s transfer function let’s transform the circuit into the Laplace 
domain under the zero initial conditions assumption, as shown in Figure 11.5.

The desired transfer function is defined as:

	

ˆ
ˆ

ˆ
OUT

IN

V s
H s

V s 	

First, combine impedances in series:

	
1 1 1

s
s

s 	

1 Ω

1 Ω

1 F

1 H vOUT(t)vIN(t)

+

–

+
–

Figure 11.4  Circuit for Example 11.1.

1

1 s V̂OUT (s)V̂IN(s)

+

–

+
–

1
s

Figure 11.5  Circuit in the s domain.
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Next, combine impedances in parallel:

	
1

1
s s

s 	

The resulting circuit is shown in Figure 11.6.
Using a voltage divider yields:

	

2 22

11 1
1 1 2 2 11

1 1

ˆ
ˆ

ˆ
OUT

IN

s s
V s s sss sH s

s s s s sV s s s
s s s s 	

and thus the circuit’s transfer function is

	

2

22
ˆ

2 1
sH s

s s 	

2. Input impedance
The input impedance is obtained from the circuit shown in Figure 11.7.

s + 1
s

s + 1
s VOUT (s)VIN (s)

+

+

–

–
ˆˆ

Figure 11.6  Simplified circuit.

IIN (s)ˆ

VIN (s)ˆ

1
1

1

s

s+
–

Figure 11.7  Circuit for obtaining the input impedance.
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This circuit is, of course, equivalent to the one shown in Figure 11.8, from which the 
input impedance is obtained as

	

2 2 2

2

11 2 2 1
1

ˆ
ˆ 1

ˆ IN
IN

IN

V s s ss s s sZ s
s s s s s sI s 	

3. Output impedance
The input impedance is obtained from the circuit shown in Figure 11.9.

This circuit is equivalent to the one shown in Figure 11.10, from which the output 
impedance is obtained as

	

2

2 2 22

2

1
1 1

11
1

1 1 1
1 2 2 1 2 2 11

1

ˆ
ˆ

1

ˆ
S

OUT
S

s s
V s s s s sZ s

s ss sI s
s s

s s
s s s s s ss s

s s s ss s 	

IIN (s)ˆ

VIN (s)ˆ

s + 1
s

s + 1
s+

–

Figure 11.8  Equivalent circuit for obtaining the input impedance.

Î s(s)

V̂s(s)

1
1

1

s

s +
–

Figure 11.9  Circuit for obtaining the output impedance.
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4. Output ˆ ( )OUTV s  when the input is v t tIN ( ) ,1 0
The output can be obtained by utilizing the derived transfer function:

	
ˆ ˆ ˆ
OUT INV s H s V s 	

Since

	 v tIN 1	

we have

	
ˆ 1
inV s

s 	

and the output in the s domain is

	

2

2 2

1
12 2 1
2

ÔUT
s sV s

ss s s s
	

5. Output vOUT(t) when the input is v t cos t tIN ( ) ,3 2 0
Again, the output in the s domain can be obtained by utilizing the derived transfer function.

	
ˆ ˆ ˆ
OUT INV s H s V s 	

Since

	 v t tIN 3 2cos 	

we have

	 2
3ˆ

4
in

sV s
s 	

and the output in the s domain is

	

2

22

3
42 2

ˆ
1

OUT
s sV s

ss s 	

Is(s)ˆ

Vs(s)ˆ+
–

s + 1
s

s + 1
s

Figure 11.10  Equivalent circuit for obtaining the output impedance.
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Now, partial fraction expansion yields

	

2

2 2 2 2
3

2 2 1 4 2
ˆ

2 1 4
OUT

s s As B Cs DV s
s s s s s s 	

thus

	 3 4 2 2 13 2 2s As B s Cs D s s 	

or

	 3 4 4 2 2 2 23 3 2 3 2 2s As As Bs B Cs Cs Cs Ds Ds D	

or

	 3 2 2 2 4 2 43 3 2s A C s B C D s A C D s B D 	

therefore,

	

A C
B C D

A C D
B D

2 3
2 2 0

4 2 0
4 0 	

leading to

	

A
B
C
D

0 4154
0 3692
1 2923

1 4769

.

.

.
. 	

thus

	 2 2
0.4154 0.3692 1.2923 1.4769

2 2
ˆ

1 4
OUT

s sV s
s s s 	

Let’s obtain the time domain function represented by the above expression. We will 
use it to obtain the steady state solution for part (5) of this example.

Let’s complete the square for the first term.

	

0 4154 0 3692
2 2 1

0 2077 0 1846
1
2

0 2077 0 184
2 2

. . . . . .s
s s

s

s s

s 66
1
2

1
4

2

s
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Then the result leads to the damped cosine and sine functions, as follows:

	

0 2077 0 1846
1
2

1
4

0 2077 0 88878
1
2

1
4

2 2
. . . .s

s

s

s

0 2077 0 5 0 38878
1
2

1
4

0 2077
0 5

1
2

2
2. . . .
.

s

s

s

s 1
4

0 38878
1
2

1
4

0 2077 0 5
1
2

2
.

. .

s

s

s
22 2 21

4

0 08075
1
2

1
4

0 2077 0 5
1
2

1
4

0 08. . . .

s

s

s

0075
0 5

0 5
1
2

1
4

0 2077 0 5
1
2

1
4

0 1615 0

2

2

.
.

. . .

s

s

s

..5
1
2

1
4

2

s
	

The second term in

	 2 2
0.4154 0.3692 1.2923 1.4769

2 2
ˆ

1 4
OUT

s sV s
s s s 	

can be written as

	

1 2923 1 4769
4

1 2923
4

1 4769
4

1 2923
4

1 47
2 2 2

2

. . . .

. .

s
s

s
s s

s
s

669
2

2
4

1 2923
4

0 7384 2
4

2

2 2

s
s

s s
. .

	

Thus, the output voltage can be expressed as

	

2 2

2 2 2 2

0.4154 0.3692 1.2923 1.4769
2 2 1 4

0.

ˆ

5 0.5 20.2077 0.1615 1.2923 0.7384
4 41 1 1 1

2 4 2 4

OUT
s sV s

s s s
s s

s s
s s

	

Using the tables of Laplace transform pairs we obtain the time domain output as

	 v t t t tOUT
t t0 2077 2 0 1615 2 1 2923 2 00 5 0 5. sin . cos . cos .. .e e 77384 2sin t	

5. Steady‐state output vOUT(t) for the input v t cos t tIN ( ) ,3 2 0
The sinusoidal steady state output is obtained directly from the solution of part (5) as

	 v t t tOUT SS, . cos . sin1 2923 2 0 7384 2 	
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This output can also be expressed as

	 v t tOUT SS, . cos .1 4884 2 29 74 	

In the next section we will show an alternative (and much easier) method of obtaining 
the steady state response due to a sinusoidal input.

11.2  Frequency‐Transfer Function

When the linear system is driven by a sinusoid, the response at steady state is sinusoidal 
at the same frequency as the input. The steady state output differs from the input only 
in the amplitude and phase angle.

The output amplitude and phase angle at each frequency can be determined by using 
the sinusoidal or frequency transfer function.

The frequency transfer function is defined as the transfer function H(s) in which s is 
replaced by jω.

	
ˆ ˆ

s j
H j H s 	 (11.6)

Example 11.2  Sinusoidal transfer function
Given the system’s transfer function

	 2
2ˆ

3 4
sH s

s s 	

Obtain the system’s frequency transfer function

Solution:  To obtain the frequency transfer function from the system’s transfer function, 
we simply replace s by jω in the system’s transfer function.

	
2 2 2

2 2ˆ
3 3 4

ˆ 2
4 4 3s j s j

s j jH j H s
s s jj j 	

� ▪

Obviously, the frequency transfer function is a complex function. As such it has a 
magnitude (which is a function of the frequency ω) and a phase (which is also a function 
of the frequency ω).

Let’s calculate these for the frequency transfer function obtained in the above 
example.

Example 11.3  Magnitude and phase of the sinusoidal transfer function
Determine the magnitude and phase of the frequency transfer function

	
2

ˆ 2
4 3

jH j
j 	
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Solution:  First, let’s determine the magnitude.

	

2 2

2 4 22 22 2

22 4 4
4 3 94 3

ˆ

4 9

jjH j
j j

	

The phase of the frequency transfer function is

	

1 1
2 22

22 3tan tan
24 3 44 3

ˆ jjH j
j j 	

11.2.1  Sinusoidal Steady‐State Output

Frequency response characteristics of a system can be obtained directly from the 
sinusoidal transfer function. Consider the linear time invariant (LTI) system shown in 
Figure 11.11.

The input x(t) is a sinusoid given by

	 x t A tsin 	 (11.7)

Let the transfer function be expressed as a ratio of two polynomials (Nilsson and 
Riedel, 2015, p. 442)

	 1 2

ˆ ˆ
ˆ

ˆ n

N s N s
H s

s p s p s pD s 

	 (11.8)

The output in Laplace domain can be obtained as

	

ˆ
ˆ ˆ ˆ ˆ

ˆ
N s

Y s H s X s X s
D s

	 (11.9)

Input

Input

Output

OutputTransfer
function

Linear
time invariant
systemx(t) = A sin ωt y(t) = B sin (ωt + θ)

X(s)ˆ Y(s)ˆ
H(s)ˆ

(a)

(b)

Figure 11.11  LTI system driven by a sinusoid (a) time domain representation, (b) frequency domain 
representation.
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Let’s consider the systems that are stable. For such systems the real parts of the roots 
in the denominator of ˆ ( )D s  are negative.

Also, since the steady state response of a stable LTI system to a sinusoidal input does 
not depend upon the initial conditions (they give rise to transient terms), we can assume 
that the initial conditions are zero.

In the following discussion, we will consider several cases of roots of the output’s 
denominator ˆ ( )D s .

Case 1: D̂ s( ) has only distinct poles (real or complex)  In this case, the output ˆ( )Y s  can be 
expressed as

	

2 2

2 2
1 2

*
1 2

1 2

ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ

ˆ ˆ
n

n

n

N s N s AY s X s
sD s D s

N s A
s p s p s p s

a a b b b
s j s j s p s p s p





	 (11.10)

where â is a complex constant and bi ( , , )i n1  are real or complex constants. The 
inverse Laplace transform gives

	 

1 2*
1 2e e e eˆ eˆ n

j t j t p t p t p t
ny t a a b b b 	 (11.11)

For a stable system the roots, −pi have negative real parts. Thus, as t ,e pt 0. 
Therefore, at steady state, all the terms, except for the first two vanish, and the output is

	
*ˆ ˆj t j t

ssy t ae a e 	 (11.12)

Case 2: D̂ s( ) has repeated poles (real or complex)  If ˆ ( )D s  has multiple poles pj of multiplicity 
mj, then y(t) will be of the form

	

1 2*
1 2e e e e e ,

0,1,2, , 1

ˆ ˆ j jj t j t h p tp t p t

j j

y t a a b b t
h m



	 (11.13)

Since the real parts of the − pj are negative for a stable system, in steady state the terms 
th p tj je  will also vanish, and again the steady state response becomes

	
*eˆ ˆ ej t j t

ssy t a a 	 (11.14)

The constant â can be evaluated as follows:

	

2 2
ˆ ˆ ˆˆ

ˆ
ˆ

2

s js j

s j

Aa H s X s H s s j
s

AH jAH s
s j j

	 (11.15)
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and

	

*
2 2

ˆ ˆ ˆˆ

ˆ

2
ˆ

s js j

s j

Aa H s X s H s s j
s

AH jAH s
s j j

	 (11.16)

ˆ ( )H j  can be expressed in an exponential form as

	
ˆ eˆ jH j H j 	 (11.17)

Similarly,

	
ˆ ˆ ˆe ej jH j H j H j 	 (11.18)

Now, Eq. (11.14) can be written as

	

*e e e e
2 2

e e

ˆ ˆˆ ˆ

ˆ e e
2 2

e e sin

ˆ

2
ˆ ˆ

j t j t j t j t
ss

j t j tj j

j t j t

A Ay t a a H j H j
j j

A AH j H j
j j

A H j A H j t
j

	 (11.19)

Therefore, the steady state output due to

	 x t A tsin 	 (11.20)

is

	
siˆ ˆnssy t A H j t H j 	 (11.21)

More generally, if the input is of the form

	
x t A tsin 	 (11.23)

then the steady state output is

	
sinˆ ˆ

ssy t A H j t H j 	 (11.24)

Similarly, if the input is a cosine function of the form

	
x t A tcos 	 (11.25)

then the steady state output is

	
cosˆ ˆ

ssy t A H j t H j 	 (11.26)
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This is an extremely important and useful result! The output in steady state, is a sinu-
soid of the same frequency as the input, and its amplitude and phase are determined 
from the frequency transfer function and the input’s amplitude and phase.

Example 11.4  Sinusoidal steady‐state
Let’s use the circuit analyzed in Example 11.1 and redrawn in Figure 11.12.

Determine:

1)	 the system’s transfer function
2)	 the steady‐state solution when the input to the system is v t cos t tin 3 2 0, .

Solution:  In Example 11.1 we found the transfer function of this circuit to be

	

2

22
ˆ

2 1
sH s

s s 	

Thus the frequency transfer function is

	

2 2

2 22 2 1 1 2
ˆ

2
H j

j j 	

Since 2, we have

	

42ˆ
7 4

ˆH j H j
j 	

The magnitude of the frequency transfer function at the frequency of 2 is

	
42 0.4961

49 16
ˆ ˆH j H j

	

The angle of the transfer function is

	
1

42 4 7 4
7 4

4180 tan 180 29.74 180 29.

ˆ

74

ˆ

7

H j H j j
j

	

1Ω

+
–

1Ω

1 F

1 H

+

vOUT (t)vIN (t)

–

Figure 11.12  Circuit for Example 11.4.
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Since v t cos t tin( ) ,3 2 0, we have

	 v t tOUT SS, ( ) ( )( . )cos( . )3 0 4961 2 29 74 	

which, of course, agrees with the steady state solution obtained in Example 11.1.

11.3  Bode Plots

On numerous occasions in EMC we plot the output of the system using a dB scale 
for magnitude, and a logarithmic scale for frequency. We often refer to such plots 
as Bode plots (Alexander and Sadiku, 2009, p. 619). The exact Bode plots can be 
obtained using many available software packages. In many cases, it is more con-
venient and expedient to sketch an approximate magnitude plot using straight‐line 
approximations.

Let’s consider a transfer function with real, first‐order poles and zeros:

	

1

1

ˆ K s z
H s

s s p
	 (11.27)

The first step in creating Bode diagrams is transforming Eq. (11.27) into a 
standard form:

	

1
1

1
1

1
ˆ

1

sKz
zH s
sp s
p

	 (11.28)

The corresponding frequency transfer function is

	

1
1

1
1

ˆ
1

1

jKz
zH j

jp j
p

	 (11.29)

If we let

	
K Kz

p0
1

1
	 (11.30)

then Eq. (11.29) becomes

	

0
1

1
1

ˆ
1 jK

zH j
jj
p

	 (11.31)
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Example 11.5  Standard form of a frequency transfer function
Let

	

150
10 100

ˆ sH s
s s 	

Expressing this transfer function in a standard form we get

	

150 0.15

10 100 1 1 1 1
10 100 10 1 0

ˆ

0

s sH s
s s s s

	

It follows that the frequency transfer function in a standard form is

	

0.15

1 1
10 100

ˆ jH j
j j

	

� ▪

Let’s return to the frequency transfer function in a standard form given in Eq. (11.31). 
Expressing this frequency transfer function in polar form gives

	

0 1 0
1 1

1 1

1
1 1

1 1
90

90 1 1
ˆ

j jK Kz z
H j

j j
p p

	 (11.32)

where

	
1

1

1
tan

z
	 (11.33a)

	
1

1

1
tan

p
	 (11.33b)

and thus, the magnitude and the phase of the transfer function are given by

	

0
1

1

1
ˆ

1

jK z
H j

j
p

	 (11.34)

	 1 1
ˆ 90H j 	 (11.35)
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Let’s focus on the magnitude. Expressing Eq. (11.34) in dB gives

	

0
1

10

1

10 0 10 10 10
1 1

1
20log

1

20log 20l

ˆ

og 1 20log 20log 1

dB

jK z
H j

j
p

j jK z p

	 (11.36)

Thus the magnitude of the transfer function in dB can be obtained by plotting each 
term in the equation separately and then combining the separate plots graphically. The 
individual factors are easy to plot because they can be approximated in all cases by 
straight lines, as discussed next.

The plot of 20log10K0 is a horizontal straight line because K0 is not a function of ω. 
The value of this term is:

	

K K
K K

K K

dB

dB

dB

0 0

0 0

0 0

1 0
1 0

0 1 0

,

,

,

	 (11.37)

The plot of this term is shown in Figure 11.13.
Next, let’s look at the term of the form

	
10

1
20log 1ˆ

dB

jH j z 	 (11.38)

For small values of ω, we obtain

	
20 1 20 1 0 010

1
10log log ,j

z 	 (11.39)

On a log scale, this is a horizontal line at a dB = 0 value. For the large values of ω, we have

	
20 1 2010

1
10

1
log log ,j

z z 	 (11.40)

∣H(jω)dB∣ˆ

K0

ω

Figure 11.13  Magnitude plot for the factor in Eq. (11.37).
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On a log scale, this is a straight line with a slope of +20 dB/decade. This straight line 
intersects the 0 dB axis at z1, since

	
20 20 1 010 1

1
10log logz

z dB	 (11.41)

This value of ω is called the corner frequency. Figure 11.14 shows the Bode plot for the 
factor in Eq. (11.38)

When z1 = 0, i.e,

	 1Ĥ s s z s	 (11.42)

and subsequently

	 Ĥ j j 	 (11.43)

the magnitude plot takes on the form shown in Figure 11.15.
Next, let’s look at the term of the form

	
10

1
20log 1ˆ

dB

jH j p 	 (11.44)

∣H(jω)dB∣ˆ

ωω = z1 10z1

40

20 dB / d
eca

de

20

0

–20

Figure 11.14  Magnitude plot for the factor in Eq. (11.38).

ω

20 dB / d
eca

de

∣H(jω)dB∣

40

20

0

–20

ˆ

Figure 11.15  Magnitude plot for the transfer function in Eq. (11.43).
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For small values of ω, we obtain

	
20 1 20 1 0 010

1
10log log ,j

p 	 (11.45)

For the large values of ω, we have

	
20 1 2010

1
10

1
log log ,j

p p 	 (11.46)

On a log scale, this is a straight line with a slope of −20 dB/decade. This straight line 
intersects the 0 dB axis at p1, since

	
20 20 1 010

1
1

10log logp
p dB	 (11.47)

Figure 11.16 shows the Bode plot for the factor in Eq. (11.44).
When p1 = 0, i.e,

	 1

ˆ 1 1H s
s p s

	 (11.48)

and subsequently

	
ˆ 1H j

j
	 (11.49)

the magnitude plot takes on the form shown in Figure 11.17.

∣H(jω)dB∣

40

20

0

–20

ω = p1
10p1 ω

–20dB / decade

ˆ

Figure 11.16  Magnitude plot for the factor in Eq. (11.44).
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11.4   Passive Filters

To study the behavior of electrical filters we utilize the frequency transfer function 
discussed in the previous section.

Recall: the output of the circuit in steady state is given by

	
siˆ ˆnssy t A H j t H j 	 (11.50)

In our discussion of passive filters (filters consisting of resistors, inductors, and 
capacitors) we will use the transfer function of the form

	

ˆ
ˆ

ˆ
out

in

V s
H s

V s
	 (11.51)

That is, we will study the behavior of the electrical filter where both the input and the 
output signals are voltages. In our study we vary the frequency over the frequency range 
of interest and determine the magnitude and phase of Ĥ j  in that frequency range.

Based on the magnitude response plots, the passive filters fall into four major catego-
ries, as shown in Figure 11.18.

11.4.1  RL and RC Low‐Pass Filters

In this section we will examine two of the most basic low‐pass RL and RC filters.

RL low‐pass filter  An RL low‐pass filter is shown in Figure 11.19.
In order to analyze this filter (and all the remaining passive filters) we need to trans-

form this circuit to the s domain. This is shown in Figure 11.20.
The voltage transfer function for this circuit can be obtained using the voltage divider

	

ˆ
ˆ

ˆ
OUT

IN

R
V s R LH s

RsL RV s s
L

	 (11.52)

40

20

0

–20
–20 dB / decade

∣Ĥ( jω)dB∣

ω

Figure 11.17  Magnitude plot for the transfer function in Eq. (11.49).
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∣Ĥ(jω)∣ ∣Ĥ(jω)∣

1

∣Ĥ(jω)∣ ∣Ĥ(jω)∣

1 1

1

ωC

ωC1 ωC2

ω

ω ωC1 ωC2 ω

ωC ω

Passband

Passband Passband Passband

PassbandStopband Stopband

Stopband Stopband Stopband

LOW-PASS FILTER

BANDPASS FILTER BAND-REJECT FILTER

HIGH-PASS FILTER

Figure 11.18  Frequency response of the four types of ideal filters.

L

RvIN (t)

+

–

vOUT (t)

+

–

Figure 11.19  RL low‐pass filter.

R

sL

VIN (s)ˆ VOUT (s)ˆ

+

–

+

–

Figure 11.20  RL low‐pass filter.
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The corresponding frequency transfer function is

	

ˆ
R
LH j

Rj
L

	 (11.53)

Figure 11.21 shows the frequency response of this RL filter.
The corner frequency of this filter is

	 C
R
L

	 (11.54)

Note that, at the corner frequency, the angle of the transfer function is − 45 °.
The RL low‐pass filter transfer function can be now be expressed in terms of the 

corner frequency as

	
ˆ C

C
H s

s
	 (11.55)

RC low‐pass filter  An RC circuit shown in Figure 11.22 is also a low‐pass filter.

∣Ĥ( jω)∣

1.0

0 ωC ω

1

√2

θ( jω)

0°

–45°

–95°

Figure 11.21  RL low‐pass filter frequency response.

VOUT (s)ˆVIN (s)ˆ

+
+

– –

1
sC

R

Figure 11.22  RC low‐pass filter.
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The voltage transfer function for this circuit can be obtained using the voltage 
divider as

	
1

ˆ
1 1

1
11

sC RCH s
RsCR s

sC RC

	 (11.56)

The corresponding frequency transfer function is

	

1

1
ˆ RCH j

j
RC

	 (11.57)

Figure 11.23 shows the frequency response of this RC filter.
Note that this filter has the same shape of frequency response as that for the low‐pass 

RL filter. The corner frequency of this filter is

	
C RC

1 	 (11.58)

The RC low‐pass filter transfer function can be now expressed in terms of the corner 
frequency as

	
ˆ C

C
H s

s
	 (11.59)

which has the same form as the RL low‐pass filter transfer function in Eq. (11.55).
The Bode plot of the RL and RC low pass filter is shown in Figure 11.24.

11.4.2  RL and RC High‐Pass Filters

RL high‐pass filter  An RL high‐pass filter is shown in Figure 11.25.

∣H(jω)∣ˆ

1.0

0 ωC ω

1

√2

θ(jω)

0°

–45°

–90°

Figure 11.23  RC low‐pass filter frequency response.
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The voltage transfer function for this filter is

	

ˆ
ˆ

ˆ
OUT

IN

V s sL sH s
RsL RV s s
L

	 (11.60)

The corresponding frequency transfer function is

	

ˆ jH j
Rj
L

	 (11.61)

Figure 11.26 shows the frequency response of this RL filter.
The corner frequency of this filter is

	 C
R
L

	 (11.62)

0

–3

–20

1 10 ω/ωC

│H(jω)│dBˆ

Figure 11.24  Bode magnitude plot of the RL and RC low‐pass filter.

VOUT (s)ˆ

+

––

sL

R

VIN (s)ˆ

+

Figure 11.25  RL high‐pass filter.



Foundations of Electromagnetic Compatibility282

Note that at the corner frequency the angle of the transfer function is 45 °.
The RL high‐pass filter transfer function can be now expressed in terms of the corner 

frequency as

	
ˆ

C

sH s
s

	 (11.63)

RC high‐pass filter  An RC high‐pass filter is shown in Figure 11.27.
The voltage transfer function for this circuit is

	
1 11

ˆ R RCs sH s
RCsR s

sC RC

	 (11.64)

The corresponding frequency transfer function is

	
1

ˆ jH j
j

RC

	 (11.65)

∣H(jω)∣ˆ

1.0

0

1

√2

ωC ω

θ( jω)

0°

45°

90°

Figure 11.26  RL high‐pass filter frequency response.

VOUT (s)ˆVIN (s)ˆ

++

– –

1
sC

R

Figure 11.27  RC high‐pass filter.



Frequency‐Domain Analysis 283

Figure 11.28 shows the frequency response of this RC filter.
Note that this filter has the same shape of frequency response as that for the high‐pass 

RL filter. The corner frequency of this filter is

	
C RC

1 	 (11.66)

Note that this is the same value as that obtained for the low‐pass RC filter. The RC 
high‐pass filter transfer function can be now expressed in terms of the corner fre-
quency as

	
ˆ

C

sH s
s

	 (11.67)

which has the same form as the RL high‐pass filter transfer function.
The Bode plot of the RC and RL high‐pass filter is shown in Figure 11.29.
The summary of the first order low‐pass and high‐pass filters is presented in Table 11.1.

∣H(jω)∣ˆ

1.0

0

1

√2

ωC ω

θ(jω)

0°

45°

90°

Figure 11.28  RC high‐pass filter frequency response.

∣H(jω)∣dB
ˆ

10.1 ω /ωC

0
–3

–20

Figure 11.29  Bode magnitude plot of RL and RC high‐pass filters.
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11.4.3  Series and Parallel RLC Bandpass Filters

In this section we will examine two fundamental RLC filter configurations: the series 
RLC filter and the parallel RLC filter. Both configurations can be implemented as either 
bandpass or band‐reject filters.

Understanding of these filters facilitates the discussion of the very important topic of 
resonance presented in the following section. We begin with the bandpass configurations.

Series RLC bandpass filter  A series RLC bandpass filter is shown in Figure 11.30.
The transfer function of this circuit can be obtained from the voltage divider as

	

2 21
ˆ

1 1

R sR RCs LH s
RRCs s LCR sL s s

sC L LC

	 (11.68)

The frequency transfer function is

	
2

ˆ
1

Rj
LH j

Rj
LC L

	 (11.69)

The frequency plot of this filter is shown in Figure 11.31.
The Bode magnitude plot is shown in Figure 11.32.

Table 11.1  First‐order filter descriptions.

Low‐pass RL Low‐pass RC High‐pass RL High‐pass RC

Corner frequency C
R
L C RC

1
C

R
L C RC

1

Transfer function H s
s

C

C
H s

s
C

C
H s s

s C
H s s

s C

VIN (s)ˆ
VOUT (s)ˆ

+

–

+

–

sL

R

1

sC

Figure 11.30  Series RLC bandpass filter.



Frequency‐Domain Analysis 285

The maximum magnitude occurs at

	
M

LC
1 	 (11.70)

This frequency is often called the center frequency. For this series RLC circuit, this 
frequency is equal to the undamped natural frequency of a pure LC tank, which is 
denoted as

	
0

1
LC

	 (11.71)

We will see in the next section that it is also the resonant frequency of this circuit.

∣H(jω)∣ˆ

1.0 90°

45°

–45°

–90°
0

1

√2

ωC1 ωC2ω0 ω

θ(jω)

Figure 11.31  Series RLC bandpass filter frequency response.

∣H( jω)∣dB
ˆ

0
–3

–23

0.1 1 10 ω/ωC
ωC2ωC1 ω0

Figure 11.32  Series RLC bandpass filter – Bode magnitude plot.
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The filter has two corner frequencies that can be calculated by setting the magnitude 
in Eq. (11.69) equal to:

	
ˆ 1

2
cH j 	 (11.72)

The result is (Nilsson and Riedel, 2015, p. 537)

	
C

R
L

R
L LC1 2 2

1 	 (11.73a)

	
c

R
L

R
L LC2 2 2

1 	 (11.73b)

The bandwidth β of the bandpass filter is defined as the difference of the corner 
frequencies:

	 C C
R
L2 1 	 (11.74)

In terms of the bandwidth and the center frequency, the corner frequencies can be 
expressed as

	
c1

2

0
2

2 2
	 (11.75a)

	
c2

2

0
2

2 2
	 (11.75b)

Additionally, for this filter, the center frequency is the geometric mean of the corner 
frequencies.

	 0 1 2c c 	 (11.76)

The quality factor Q of the bandpass filter is defined as the ratio of its center fre-
quency to its bandwidth:

	
Q

R
L
C

0 1 	 (11.77)

The corner frequencies can be expressed in terms of the center frequency and the 
quality factor as

	
c Q Q1 0

21
2

1 1
2

	 (11.78a)

	
c Q Q2 0

21
2

1 1
2

	 (11.78b)
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Finally, the transfer function of the series RLC circuit can be expressed in terms of the 
bandwidth and the center frequency as

	

2 22 01
ˆ

R s sLH s
R s ss s
L LC

	 (11.79)

Parallel RLC bandpass filter  A parallel RLC bandpass filter is shown in Figure 11.33.
The impedance of the parallel configuration of L and C is

	

sL
sC

sL
sC

sL
sC

L
C

sC

s LC
sL

s LC
1

1

1 1 12 2 	 (11.80)

Using the voltage divider, we obtain the transfer function of this filter as

	

2

2 2
2

1
1

1 1
1

ˆ
sL

ssLs LC RCH s
sL s RLC sL RR s s

RC LCs LC

	 (11.81)

The corresponding frequency transfer function is

	
2

ˆ
1

1 1

j
RCH j

j
LC RC

	 (11.82)

The frequency plots for the parallel RLC filter have the same general shape as those 
for the series RLC filter shown in Figures (11.31) and (11.32).

The maximum magnitude of the transfer function is

	 max
1Ĥ j 	 (11.83)

VOUT (s)ˆVIN (s)ˆ 1
sC

sL

R

+

–

+

–

Figure 11.33  Parallel RLC bandpass filter.
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when

	
0

1
LC

	 (11.84)

The two corner frequencies are:

	
C RC RC LC1

21
2

1
2

1 	 (11.85a)

	
C RC RC LC2

21
2

1
2

1 	 (11.85b)

The bandwidth β of the parallel RLC bandpass filter is

	
c c RC2 1

1 	 (11.86)

In terms of the bandwidth and the center frequency, the corner frequencies can be 
expressed as

	
c1

2

0
2

2 2
	 (11.87a)

	
c2

2

0
2

2 2
	 (11.87b)

Additionally, the center frequency is the geometric mean of the corner frequencies.

	 0 1 2c c 	 (11.88)

The quality factor Q of the bandpass filter is

	
Q RC R C

L
R C

L
0

0

2
	 (11.89)

The corner frequencies can be expressed in terms of the center frequency and quality 
factor as

	
c Q Q1 0

21
2

1 1
2

	 (11.90a)

	
c Q Q2 0

21
2

1 1
2

	 (11.90b)
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Finally, the transfer function of the parallel RLC circuit can be expressed in terms of 
the bandwidth and the center frequency as

	

2 22 01
ˆ

s
sRCH s

s s ss
RC LC

	 (11.91)

11.4.4  Series and Parallel RLC Band‐Reject Filters

Series RLC band reject filter  A series RLC band reject filter is shown in Figure 11.34.
The transfer function of this circuit can be obtained from the voltage divider as

	

2
2

2 2

1 1
1

1
ˆ

11

sL ss LCsC LCH s
Rs LC sRCR sL s s

sC L LC

	 (11.92)

The frequency transfer function is

	

2

2

1

1
ˆ LCH j

Rj
LC L

	 (11.93)

The frequency plot of this filter is shown in Figure 11.35.
Bode magnitude plot is shown in Figure 11.36
The magnitude minimum is zero

	 min
0Ĥ j 	 (11.94)

when

	
0

1
LC

	 (11.95)

VOUT (s)ˆVIN (s)ˆ
sL

1
sC

R

+

–

+

–

Figure 11.34  Series RLC band reject filter.



Foundations of Electromagnetic Compatibility290

The two corner frequencies are

	
C

R
L

R
L LC1 2 2

1 	 (11.96a)

	
c

R
L

R
L LC2 2 2

1 	 (11.96b)

The bandwidth β of the series band reject bandpass filter is

	
R
L

	 (11.97)

∣H( jω)∣ˆ

1.0

0

1

√2

ωC1 ω0 ωC2 ω

θ(jω)
90°

45°

–45°

–90°

Figure 11.35  Series RLC band reject filter frequency response.

∣H( jω)∣dB
ˆ

–3
0

ωC1

ω0
ωC2

ω / ωC100.1 1

Figure 11.36  Series RLC band reject filter – Bode magnitude plot.
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In terms of the bandwidth and the center frequency, the corner frequencies can be 
expressed as

	
c1

2

0
2

2 2
	 (11.98a)

	
c2

2

0
2

2 2
	 (11.98b)

Additionally, the center frequency is the geometric mean of the corner frequencies.

	 0 1 2c c 	 (11.99)

The quality factor Q is

	
Q

R
L
C

0 1 	 (11.100)

The corner frequencies can be expressed in terms of the center frequency and quality 
factor as

	
c Q Q1 0

21
2

1 1
2

	 (11.101a)

	
c Q Q2 0

21
2

1 1
2

	 (11.101b)

Finally, the transfer function of the series RLC band reject filter can be expressed in 
terms of the bandwidth and the center frequency as

	

2
2 2

0
2 22 0

1

1
ˆ

s sLCH s
R s ss s
L LC

	 (11.102)

Parallel RLC Band Reject Filter  A parallel RLC band reject filter is shown in Figure 11.37.
The impedance of the parallel configuration of L and C is

	

sL
sC

sL
sC

sL
sC

L
C

sC

s LC
sL

s LC
1

1

1 1 12 2 	 (11.103)
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Using the voltage divider we have

	

2
2

2 2
2

1

1
ˆ

1
1

sR s RLC R LCH s
sL s RLC sL RR s s

RC LCs LC

	 (11.104)

The frequency transfer function is

	

2

2

1

1
ˆ LCH j

Rj
LC L

	 (11.105)

The frequency plots for the parallel RLC band‐reject filter have the same general 
shape as those for the series RLC filter shown in Figures (11.35) and (11.36). Following 
the same steps as those for the series RLC band reject filter, it’s easy to show that the two 
corner frequencies are:

	
C RC RC LC1

21
2

1
2

1 	 (11.106a)

	
C RC RC LC2

21
2

1
2

1 	 (11.106b)

The bandwidth β of the parallel RLC bandpass filter is

	
1

RC
	 (11.107)

In terms of the bandwidth and the center frequency, the corner frequencies can be 
expressed as

	
c1

2

0
2

2 2
	 (11.108a)

	
c2

2

0
2

2 2
	 (11.108b)

VOUT (s)ˆVIN (s)ˆ R

+

–

+

–

1
sC

sL

Figure 11.37  Parallel RLC band reject filter.
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Additionally, the center frequency is the geometric mean of the corner frequencies.

	 0 1 2c c 	 (11.109)

The quality factor Q of this filter is

	
Q RC R C

L
R C

L
0

0

2
	 (11.110)

The corner frequencies can be expressed in terms of the center frequency and quality 
factor as

	
c Q Q1 0

21
2

1 1
2

	 (11.111a)

	
c Q Q2 0

21
2

1 1
2

	 (11.111b)

Finally, the transfer function of the parallel band reject filter can be expressed in terms 
of the bandwidth and the center frequency as

	

2
2 2

0
2 22 0

1

1 1
ˆ

s sLCH s
s ss s

RC LC

	 (11.112)

The summary of the second‐order filters is presented in Table 11.2.

Table 11.2  Second‐order filter descriptions.

Series RLC Bandpass
Parallel RLC 
Bandpass

Series RLC 
Band Reject

Parallel RLC 
Band Reject

Transfer 
function

H s s
s s2

0
2 H s s

s s2
0
2 H s s

s s

2
0
2

2
0
2 H s s

s s

2
0
2

2
0
2

Bandwith R
L

1
RC

R
L

1
RC

Center 
frequency 0

1
LC

Quality 
factor Q

R
L
C

1 Q R C
L

Q
R

L
C

1 Q R C
L

Corner 
frequencies c1

2

0
2

2 2

c2

2

0
2

2 2

c Q Q1 0

21
2

1 1
2

c Q Q2 0

21
2

1 1
2
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11.5  Resonance in RLC Circuits

11.5.1  Resonance in Series RLC Bandpass Filter

Let’s consider a series RLC bandpass filter analyzed in Section  11.4.3 and shown in 
Figure 11.38.

Let’s calculate the input impedance for this filter.

	

ˆ 1in
in

in s j

V s
Z j R j L

I s j C
	 (11.113)

or

	
ˆ 1

in LZ j R j C
	 (11.114)

Let’s determine the frequency when the input impedance is purely real; this hap-
pens when

	
L

C
1 0	 (11.115)

or

	
0

1
LC

	 (11.116)

So, what does this mean? It means that at the frequency of ω0 the input impedance is 
purely real, and thus the voltage phasor and the current phasor are in phase (with 
respect to the input terminals).

	 Z Rin 	 (11.117)

The frequency at which the voltage and current phasors (with respect to the two 
terminals of the circuit) are in phase is called the resonant frequency, ωr.

As we shall see, when the circuit has a resonant frequency (not every circuit does), 
several very interesting and important consequences may follow.

VOUT (s)ˆVIN (s)ˆ

R

+

–

+

–

1
sC

sL

IIN (s)ˆ

Figure 11.38  Series RLC bandpass filter.
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The magnitude of the input impedance in Eq. (11.114) is

	

2
2 1ˆ

inZ R L
C

	 (11.118)

Note that the magnitude of the input impedance is minimum at the resonant fre-
quency and is given by Eq. (11.117); it is infinite at 0 and .

The magnitude plot of the input impedance using a linear scale is shown in Figure 11.39.
Let’s investigate the input admittance of this circuit

	

ˆ 1 1

1ˆin
in

Y j
Z j

R j L
C

	 (11.119)

Its magnitude is

	

2
2

1

1
Ŷ j

R L
C

	 (11.120)

This magnitude is maximum at the resonant frequency

	 max

1Ŷ j
R

	 (11.121)

and goes to zero at very low and very high frequencies, as shown in Figure 11.40.
Note that the shape of the magnitude of the input admittance is of the same form as 

that of the series RLC bandpass filter voltage transfer function.
We note that, at resonance, the input impedance of the circuit is minimum while the 

input admittance is maximum.
It is very instructive to look at the current and component voltages as functions of 

frequency, especially at resonance. Let’s start with the magnitude plot of the current, 
shown in Figure 11.41.

R
ω0

|Z(jω)|

ω

Figure 11.39  Magnitude of the input impedance.
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We observe that the maximum current occurs at resonant frequency, which is con-
sistent with the input impedance plot.

Now, let’s reveal something extremely interesting. Let’s plot the voltage across the 
circuit elements; to focus on the phenomena occurring here let’s use the prototype 
circuit with all circuit element values equal to one, as shown in Figure 11.42. The circuit 
is driven by a 1 V amplitude ac source.

The magnitudes of the voltages across the circuit element are plotted in Figure 11.43.
As expected, the voltage magnitude across the resistor is maximum at the resonant 

frequency, and is equal to one.
But notice that the magnitudes of the voltages across the capacitor and inductor are 

greater than one, even though the circuit was driven with a 1 V magnitude source!

ω0

|Y(jω)|

ω

1/R

Figure 11.40  Magnitude of the input admittance.

ω0

|I(jω)|

ω

Figure 11.41  Magnitude of the current.
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Let’s look closer at both the magnitudes and the phases of the voltages across the 
capacitor and inductor, shown in Figure 11.44.

At resonant frequency ωr we have

	 ,max 0ˆ
R RV V 	 (11.122)

	 90ˆ ,L L L CV V V V 	 (11.123)

	 90ˆ ,C C L CV V V V 	 (11.124)

and

	 90 9 0ˆ 0ˆ
L C L LV V V V 	 (11.125)

We observe that the maximum magnitude of the capacitor voltage ( . ),VC max 1 15 V  is 
larger than the magnitude of the input voltage ( )Vin 1 V , and occurs at frequency C r .

The maximum magnitude of the inductor voltage ( . ),VL max 1 15 V  is larger than 
magnitude of the input voltage ( )Vin 1 V  and occurs at frequency L r.

V̂IN(jω)

V̂L(jω)+ +

–

– V̂C(jω)

V̂R(jω)

+ +–

–

1 H 1 F

1 Ω

Figure 11.42  Voltages across the circuit elements.

Inductor voltageCapacitor voltage

Resistor voltage

1.15

|V( jω)|

ωr ω

1

Figure 11.43  Magnitudes of the voltages across the circuit elements.
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Additionally we have, V VC max L max, ,  and the phase angle of the capacitor voltage 
C 55  is of the opposite polarity to that of the inductor voltage L 55 .
Recall: the quality factor of this circuit is given by Eq. (11.77), repeated here,

	
Q

R
L
C

0 1 	 (11.126)

which for the prototype circuit shown is equal to one.
For the illustration purposes, let’s change the capacitor value to C 100 F, as shown 

in Figure 11.45.
The quality factor now is

	
Q 1

1
10
100

100
6

	 (11.127)

First let’s look at the voltage across the resistor, shown in Figure 11.46.
Its maximum occurs at resonance and it is still equal to one. Now let’s look at the 

voltages across the capacitor and inductor, shown in Figure 11.47.

Inductor voltage

–90°

90°

–55°

55°Capacitor voltage

1.15

|V( jω)|
θ ( jω)

ωrωC ωL ω

1

Figure 11.44  Voltages across the capacitor and inductor.

V̂L( jω)

V̂IN ( jω)

+

1 H

1 Ω

1 μF

+

–

V̂R( jω)

+

–

– V̂C ( jω)+ –

Figure 11.45  Circuit with a new capacitor value.
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At resonance, the magnitude of the capacitor and inductor voltage is 100 V for a 1 V 
input signal!

To be more specific

	 V QVL m	 (11.128a)

	 V QVC m	 (11.128b)

where Vm is the amplitude of the input voltage.
Let’s prove it. Recall the definition of the quality factor

	
Q 0 	 (11.129)

Since

	
R
L

	 (11.130)

|V( jω)|

ωr ω

1

Figure 11.46  Voltages across the resistor Q = 100.

–90°

90°

Capacitor voltage angle

Inductor voltage angle

|V( jω)|
θ ( jω)

ωr ω

100

Figure 11.47  Voltages across the capacitor and inductor Q = 100.
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0

1
LC

	 (11.131)

we can rewrite Eq. (11.129) as

	
Q L

R
0 	 (11.132)

or

	
Q L

R
L
R

LC
L

R RC
0 0

2

0 0 0

1
1 	 (11.133)

and thus

	
0

0
ˆ m

L L m m
V LV Z I L V QV
R R

	 (11.134a)

	 0 0

1 1ˆ m
C C m m

VV Z I V QV
C R RC

	 (11.134b)

At resonance, the voltage across the capacitor and the voltage across the inductor can 
be many times larger than the input voltage.

This is especially dangerous in high Q circuits where this voltage might be destructive 
to the capacitor (inductors handle high voltages much better).

Note that at resonance

	 ,max ,max ,max90ˆ ,L L L CV V V V 	 (11.135a)

	 ,max ,max ,max90ˆ ,C C L CV V V V 	 (11.135b)

And again, the total voltage across the LC configuration is zero.

	 ,max ,max90 90ˆ 0ˆ
L C L LV V V V 	 (11.136)

11.5.2  Resonance in Parallel RLC Bandpass Filter

Let’s now consider a parallel RLC bandpass filter analyzed in Section 11.4.3, and shown 
in Figure 11.48.

Let’s apply the source transformation to the input voltage source and the resistor. The 
resulting circuit is shown in Figure 11.49 and is known as a parallel RLC circuit.

Note that the circuit to the left of the inductor, consisting of a current source in 
parallel to a resistor, is equivalent to the one in Figure 11.48, consisting of a voltage 
source in series with a resistor. This means that the results obtained for the inductor 
and capacitor currents from the circuit in Figure 11.49 also apply to the circuit in 
Figure 11.48.



Frequency‐Domain Analysis 301

The input admittance of this circuit is

	

ˆ 1 1 1 1
inY j j C j C

R j L R L
	 (11.137)

At

	
0

1
LC

	 (11.138)

the input admittance is purely real. Thus the frequency in Eq. (11.138) is the resonant 
frequency of the parallel RLC circuit. Let’s look at the magnitudes of the element 
currents, shown in Figure 11.50.

Let’s look closer at both the magnitudes and the phases of the currents through the 
capacitor and inductor, shown in Figure 11.51.

At resonant frequency ωr we have

	 ,max 0ˆ
R RI I 	 (11.139)

	 90ˆ ,L L L CI I I I 	 (11.140)

	 90ˆ ,C C L CI I I I 	 (11.141)

V̂IN (s)

+

–

V̂OUT (s)

+

–

R

sL
sC

1

Figure 11.48  Parallel RLC bandpass filter.

R sL
sC

1

ÎR( jω)

Î IN ( jω)

ÎL( jω) ÎC ( jω)

Figure 11.49  Parallel RLC circuit.
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and

	 90 9 0ˆ 0L̂ C L LI I I I 	 (11.142)

We observe that the maximum magnitude of the inductor current ( . ),IL max 1 15 A  is 
larger than magnitude of the input current ( )Iin 1 A  and occurs at frequency L r .

The maximum magnitude of the capacitor current ( . ),IC max 1 15 A  is larger than 
magnitude of the input current ( )Iin 1 A  and occurs at frequency L r .

Additionally, we have I IL max C max, ,  and the phase angle of the inductor current 
L 55  is of the opposite polarity to that of the capacitor current C 55 .
The quality factor of this circuit is given by

	
Q R C

L
0 	 (11.143)

1.15

|I( jω)|

ωr ω

1

0

Inductor current

Capacitor current

Resistor current

Figure 11.50  Magnitudes of the currents through the circuit elements.

–90°

90°

–55°

55°

1.15

|I( jω)|
θ ( jω)

ωrωL ωC ω

1

0

Inductor current

Capacitor current

Figure 11.51  Currents through the capacitor and inductor.
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which for the prototype circuit (R = 1 Ω, L = 1 H, C = 1 F) is equal to one. For the illustra-
tion purposes let’s change the resistor value to R 100 .

The quality factor now is

	
Q 100 1

1
100	 (11.144)

Now, let’s look at the capacitor and inductor currents shown in Figure 11.52
At resonance, the magnitude of the capacitor and inductor current is 100A for a 1 A 

input signal!
At resonance the current through the capacitor and the current through the inductor 

can be many times larger than the input current.
This is especially dangerous in high Q circuits where this current might be destructive 

to the inductor (capacitors handle high currents much better).
To be more specific

	 I QIL m	 (11.145a)

	 I QIC m	 (11.145b)

where Im is the amplitude of the input current. Let’s prove it. Recall

	
Q

RC
RC R

L
0 0

0
01

	 (11.146)

The impedance of the parallel combination of R and C is

	

0

0

0

1

1
ˆ

1RC

R
Rj CZ

j RCR
j C

	 (11.147)

|IL( jω)|

ωr ω

100

0

Figure 11.52  Magnitude of the capacitor and inductor currents, Q = 100.
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Using the current divider, we get the inductor current as

	

0

0 0
0

0

2
00 0 0

1
1

1

ˆ ˆ ˆ

1
ˆ ˆ ˆ

L

R
Rj RCI I I

R R j L j RCj L
j RC

R R RI I I
j LR RLC j L R RLC j L

LC

	 (11.148)

The magnitude of this current is

	
I R

L
I QIL m m

0
	 (11.149)

The capacitor current is

	

0

00

0 0
0

0 0 0
2

0 0 0
2

0 0 0 0 0

0 0 0

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

1C

Rj L
j RLR j LI I I

Rj L R j Lj RL
R j L j C j C

j RL j C RLCI I
j RL j C R j L RLC R j L

R R RI I j I jQI
R R j L j L L

	 (11.150)

The magnitude of this current is

	
I R

L
I QIC m m

0
	 (11.151)

11.5.3  Resonance in Other RLC Circuits

In series and parallel RLC circuits discussed so far, we encounter a “pure” series and 
parallel connection of L and C, as shown in Figure 11.53.

For these pure configurations, the resonant frequency was equal to

	
r

LC
0

1 	 (11.152)

In general, when L and C are not purely in series or parallel, this is not the case. Let’s 
consider the parallel LC circuit shown in Figure 11.54.

Even though this is not a pure parallel LC configuration, it is often called such. Let’s 
determine the input admittance and the resonant frequency of this circuit.

	
2 2 22 2 2

ˆ 1 1 1Y j j C
j R j L R j L
C

R j L R Lj C j C
R L R L R L

	 (11.153)
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For resonance to occur, the admittance needs to be real. This occurs when

	
r

r

r

C L
R L2 2 0	 (11.154)

or

	 r r rC R L L2 2 0	 (11.155)

Dividing by ωr and rearranging produces

	
r

L RC
L

2
2

2 	 (11.156)

and therefore the resonant frequency of the circuit is expressed as

	
r LC

R
L

1 2

2 	 (11.157)

Substituting this value into Eq. (11.153) gives the value of the input admittance at 
resonance.

L

R

R

L

C

C

(a) (b)

Figure 11.53  Pure (a) series and (b) parallel LC configurations.

L

RC

Figure 11.54  Another parallel LC configuration.
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2 22 2

2 2 22 2
2 2
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2 2

ˆ

1

r

r

r

r

R LY j j C
R L R L

R R R
RR L R L R L

LC L
R RC
L LR R
C

	 (11.158)

The input impedance at resonance is therefore

	
Z j L

RCr 	 (11.159)

Returning to Eq. (11.157) we observe that if

	
1 0 1 1

2

2

2

2

2

LC
R
L LC

R
L

CR
L

	 (11.160)

then the resonant frequency is complex and thus there is no real solution for the reso-
nant frequency; this means that the source voltage and the source current cannot be in 
phase at any frequency.

If

	
1 0 1 1

2

2

2

2

2

LC
R
L LC

R
L

CR
L

	 (11.161)

then there is a unique non‐zero resonant frequency.
For completeness, let’s consider the series LC circuit shown in Figure 11.55.
Even though this is not a pure series LC configuration, it is often called such. Let’s 

determine the input impedance and the resonant frequency of this circuit.

L

RC

Figure 11.55  Another series LC configuration.
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2

2 2 2

1

1 1

1

1 1 1

ˆ
R

Rj CZ j j L j L
j RCR

j C
R j RC R R Cj L j L

RC RC RC

	 (11.162)

For resonance to occur the impedance needs to be real. This occurs when

	
r

r

r

L R C
RC

2

21
0	 (11.163)

or

	 r r rL RC R C1 02 2 	 (11.164)

Dividing by ωr and rearranging produces

	
r

R C L
R C L LC R C

2
2

2 2 2 2
1 1 	 (11.165)

and therefore the resonant frequency of the circuit is

	
r LC R C

1 1
2 2 	 (11.166)

Substituting this value into Eq. (11.162) gives the value of the input impedance at 
resonance.

	

2

2 2
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2 2
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1 1

1 11 1

1

ˆ

1

r

r

r
R R CZ j j L
RC RC

R R
RC R C

LC R C
R L

RCR C
L

	 (11.167)

The input impedance at resonance is therefore

	
Z j L

RCr 	 (11.168)

Returning to Eq. (11.166) we observe that if

	
1 1 0 1 1 12 2 2 2 2LC R C LC R C

L
CR

	 (11.169)
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then the resonant frequency is complex and thus there is no real solution for the 
resonant frequency; this means that the source voltage and the source current can-
not be in phase at any frequency.

If

	
L

CR2 1	 (11.170)

then there is a unique non‐zero resonant frequency.

11.6  EMC Applications

11.6.1  Non‐Ideal Behavior of Capacitors and Inductors

Capacitors  The impedance of an ideal capacitor is equal to

	

1Ẑ j
j C

	 (11.171)

The magnitude of this impedance decreases linearly with frequency or at a rate of 
−20 dB/decade, as shown in Figure 11.56.

The equivalent circuit model of a physical capacitor is shown in Figure 11.57.
The impedance of this RLC circuit is

	

H j j R
j C

LC j CR
j C

L j R
C

j
L

j R
L L

1 1

1 1

2

2 2

CC
j

L LC
j R

L
j

1 2

	 (11.172)
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C

B|Z( jω)|

20
 d

B

Z( jω)

ω ω10 ω

Figure 11.56  Impedance magnitude of the ideal capacitor.
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The magnitude of this impedance is shown in Figure 11.58.
One of the most important factors that affects the behavior of a capacitor (and an 

inductor) in a practical circuit is the length of its leads. The longer the leads the larger 
the inductance. Figure 11.59 shows the impedance measurements of a 120 pF capacitor 
with the short and long connection leads, respectively.

A

C

L R

B

Z( jω)

Figure 11.57  Circuit model of 
a physical capacitor.
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Figure 11.58  Impedance magnitude of a physical capacitor.
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Figure 11.59  The effect of the connection leads on the impedance of a capacitor.
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Note that increasing the length of the connection leads moves the self‐resonant 
frequency of a capacitor to the left. This is consistent with the model we have used. 
Increasing the connection leads increases the inductance and thus the resonant 
frequency becomes smaller.

Inductors  The impedance of an ideal inductor is equal to

	 Ẑ j j L	 (11.173)

The magnitude of this impedance increases linearly with frequency or at a rate of 
20 dB/decade as shown in Figure 11.60.

Figure 11.61 shows the impedance measurements of a 56 nH inductor with short and 
long connection leads, respectively.

Again, we note that increasing the connection leads increases the inductance and 
thus the resonant frequency becomes smaller.

11.6.2  Decoupling Capacitors

One of the most interesting EMC examples of resonance involves the use of decoupling 
capacitors. Figure 11.62 shows the circuit model and the current flow for two cascaded 
CMOS inverters with the adjacent decoupling capacitors.

When a decoupling capacitor is placed adjacent to an IC to supply the transient 
switching current, an RLC circuit is created. The parasitic inductance comes from sev-
eral sources (Ott, 2009, p. 432):

●● the capacitor itself
●● the interconnecting PCB traces and vias
●● the lead frame of the IC

This inductance is shown in Figure 11.63.
Effectively, this RLC circuit will be resonant! Let’s look at this resonance for several 

different decoupling schemes.
First, let’s consider three different capacitors in series with 15 nH of parasitic induct-

ance, as shown in Figure 11.64.
Figure 11.65 shows the plot of the magnitude of the impedance of these LC networks 

vs frequency.

|Z( jω)|

ω

20 dB/decade

Figure 11.60  Impedance magnitude of the ideal inductor.
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Figure 11.61  The effect of the connection leads on the impedance of an inductor.
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Figure 11.62  Local decoupling capacitor in a CMOS circuitry (a) low‐to‐high transition, (b) high‐to‐low 
transition.



L1

.ac dec 100 1000K 1G

7.5n

L2

7.5n

I1 C1

0.01 μ
R1

AC 1

L3

7.5n

L4

7.5n

I2 C2

0.005 μ
R2

AC 1

1T 1T

L7

7.5n

L8

7.5n

I3 C4

0.0025 μ
R3
1T

AC 1

C = 0.01 μF
C = 0.005 μF
C = 0.0025 μF

Figure 11.64  Circuit model – three different capacitors in series with 15 nH of parasitic inductance.

100

Im
pe

da
nc

e 
(Ω

)

10

1

0.1

0.01
1 MHz 100 MHz

100 MHz

13 MHz
18 MHz

26 MHz

C = 0.005 μF

1 GHz

Frequency (Hz)

C = 0.0025 μF

C = 0.01 μF

10 MHz

Figure 11.65  Impedance plot – three different capacitors in series with 15 nH of parasitic inductance.

R

Decoupling
capacitor

PDN traces CMOS IC

C

2 nH

8 nH 5 nH

5 nH10 nH

Figure 11.63  Parasitic circuit 
inductance.



Frequency‐Domain Analysis 313

Note that above 100 MHz, the impedance of the decoupling network is dominated by 
the 15 nH of inductance, regardless of what value capacitor is used.

Figure 11.66 shows multiple capacitors of the same value.
The resulting impedance plots are shown in Figure 11.67.
Figure 11.68 shows a single capacitor vs multiple capacitor configurations, where the 

total capacitance in each circuit is the same.
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Figure 11.66  Circuit model – multiple capacitors of the same value.
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The resulting impedance plots are shown in Figure 11.69.
Figure 11.70 shows two capacitors one decade apart in values.
The resulting impedance plots are shown in Figure 11.71.
Figure 11.72 shows three capacitors one decade apart in values.
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Figure 11.70  Circuit model – two capacitors one decade apart.

100

Im
pe

da
nc

e 
(Ω

)

10

1

0.1

0.01
1 MHz 10 MHz 100 MHz 1 GHz

Frequency (Hz)

n = 2, C = 0.005 μF

n = 1, C = 0.01 μF

n = 4, C = 0.0025 μF

Figure 11.69  Impedance plot – multiple capacitors of the same value.

100

Im
pe

da
nc

e 
(Ω

)

10

1

0.1

0.01
1 MHz 10 MHz

13 MHz 30 MHz 41 MHz
100 MHz 1 GHz

Frequency (Hz)

Figure 11.71  Impedance plot – two capacitors one decade apart.



Foundations of Electromagnetic Compatibility316

The resulting impedance plots are shown in Figure 11.73.
Finally, it is interesting to compare the case of three capacitors decades apart vs three 

capacitors of the same value. This is shown in Figure 11.74.
The resulting impedance plots are shown in Figure 11.75.
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Figure 11.73  Impedance plot – three capacitors one decade apart.
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11.6.3  EMC Filters

In Section 11.4 we discussed the four basic types of passive filters (low‐pass, high‐pass, 
bandpass and band‐reject) and their parameters. In this section we will focus on passive 
low‐pass filters used to suppress EM noise.

EMC filters are described in terms of the insertion loss defined as (Paul, 2006, p. 386)

	
IL

V

VdB
L without filter

L with filter
20 10log

,

,
	 (11.173)

Figure 11.76 illustrates this definition.
The most basic EMC low‐pass filters are shown in Figure 11.77.
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Figure 11.75  Impedance plot – three capacitors one decade apart vs. the same value.
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A typical higher‐order EMC low‐pass filter consists of a series inductance and shunt 
capacitance. Figure 11.78 shows two different LC configurations.

The filters shown in Figure 11.78 can be cascaded to produce higher‐order filters. 
This is shown in Figures 11.79 and 11.80.

Third‐order π and T filters are shown in Figure 11.81.

C

LFigure 11.77  First‐order low‐pass filters.

(a) (b)

C C

L L

Figure 11.78  LC low‐pass filters: (a) configuration 1, (b) configuration 2.

C C

L L

Figure 11.80  Cascaded LC filters – configuration 2.

C C

L LFigure 11.79  Cascaded LC 
filters – configuration 1.
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The higher the order of the filter the sharper the transition from the pass band to 
the  rejection region. Note that for each order of the filter we have two different 
configurations. Which one will perform better? That depends on the impedance of 
the source and the load.

The general rule is that the inductor should be on the low‐impedance side and the 
capacitor should be on the high‐impedance side.

Figure 11.82 shows the appropriate configurations when both the source and the load 
impedances are low.

Figure 11.83 shows the appropriate configurations when both the source and the load 
impedances are high.

Figure 11.84 shows the appropriate configurations when the source impedance is low 
and the load impedance is high.

Finally, Figure 11.85 shows the appropriate configurations when the source impedance 
is high and the load impedance is low.
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Figure 11.82  Filter configurations when both the source and the load impedances are low.
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Figure 11.81  π and T low‐pass filters.
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ẐS

high

C C

L

+
–

V̂S
+
–

Figure 11.83  Filter configurations when both the source and the load impedances are high.
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Let’s verify the above claims by determining the insertion loss of second‐order LC 
filters. First, let’s investigate the configurations shown in Figure 11.86, where the source 
impedance is low and the load impedance is high.

Figure 11.87 shows the insertion loss of the two filter configurations in Figure 11.86.
As can be seen from Figure 11.87, the insertion loss of configuration 1 is about 25 dB 

higher than that of configuration 2.
Next, let’s investigate the configurations shown in Figure  11.88, where the source 

impedance is high and the load impedance is low.
Figure 11.89 shows the insertion loss of the two filter configurations in Figure 11.88.
As can be seen from Figure 11.89, the insertion loss of configuration 1 is again about 

25 dB higher than that of configuration 2.
Next, let’s compare the performance of the π and T filters as shown in Figure 11.83. 

First, let’s investigate the configurations shown in Figure 11.90, where both the source 
impedance and the load impedance are low.

Figure 11.91 shows the insertion loss of the two filter configurations in Figure 11.90.
As can be seen from Figure 11.91, the insertion loss of the T configuration is about 

50 dB higher than that of the π configuration (except for the low frequency region).
Next, let’s investigate the π and T filters configurations, where both the source imped-

ance and the load impedance are 100 Ω, as shown in Figure 11.92.
Figure 11.93 shows the insertion loss of the two filter configurations in Figure 11.92.
What we notice is that the performance of both filters is virtually the same. The rea-

son is that the 100 Ω impedance is neither low nor high for these configurations (and 
filter component values).
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ẐL

V̂S C

high

low

low

ẐS
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Figure 11.85  Filter configurations when the source impedance is high and the load impedance is low.
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Finally, let’s investigate the π and T filters configurations, where both the source 
impedance and the load impedance are high, as shown in Figure 11.94.

Figure 11.95 shows the insertion loss of the two filter configurations in Figure 11.94.
As can be seen from Figure 11.95, this time the insertion loss of the π configuration is 

about 25 dB higher than that of the T configuration (except for the low frequency region). 
Increasing the source and load impedances would increase the insertion loss.
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Figure 11.86  Filter configurations when the source impedance is low and the load impedance is high: 
(a) no filter, (b) inductor on the low impedance side (configuration 1), (c) inductor on the high 
impedance side (configuration 2).
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Figure 11.87  Insertion loss of the two configurations shown in Figure 11.86.
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Figure 11.89  Insertion loss of the two configurations shown in Figure 11.86.
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Figure 11.90  Filter configurations when both the source impedance and the load impedance are low: 
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Figure 11.93  Insertion loss of the two configurations shown in Figure 11.90.
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Figure 11.92  Filter configurations when both the source impedance and the load impedance are 
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12

12.1  Fourier Series and Frequency Content of Signals

12.1.1  Trigonometric Fourier Series

Any periodic function can be represented as an infinite sum of sinusoids:

	

x t a a nf t b nf t

a a n t b

n
n n

n
n

0
1

0 0

0
1

0

2 2cos sin

cos nn n t t t t Tsin ,0 1 1

	 (12.1)

An expansion of this type is known as a Fourier Series Expansion (Kreyszig, 1999, p. 530).
Note that each sinusoidal component has a frequency that is a multiple of the funda-

mental frequency, f T0 1/ , and the radian fundamental frequency is 2 20f T/ .
There are two forms of the Fourier series: trigonometric and exponential. The form in 

Eq. (12.1) is called the trigonometric form.
The multiples of the fundamental frequency, f0, are called harmonics of that funda-

mental frequency. The coefficients a0, an, bn are called the Fourier coefficients.
The Fourier coefficients are determined from the following formulas:

	
a

T
x t dt

t

t T

0
1

1

1

	 (12.2)

Note that a0 is the average value of x(t) over t t t T1 1 .

	
a

T
x t n tdtn

t

t T2

1

1

0cos 	 (12.3)

	
b

T
x t n tdtn

t

t T2

1

1

0sin 	 (12.4)
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Example 12.1  Trigonometric Fourier series – triangular wave
Determine the Fourier series for the periodic voltage waveform shown in Figure 12.1.
The expression for v(t) over one period is

	
v t V

T
tm

	
Now, we are ready to calculate the Fourier coefficients.
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That is,

	
a Vm

0 2 	
This is clearly the average value of this waveform.
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From the integral tables we find
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2 	
Thus,
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–T T t2T0
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Figure 12.1  Periodic waveform for Example 12.1.
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Thus,

	 an 0	
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From the integral tables we find
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a
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Thus,
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That is

	
b V

nn
m

	

And according to Fourier series expansion, v(t) can be expressed as
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Example 12.2  Trigonometric Fourier series – square wave
Determine the Fourier coefficients for the square wave shown in Figure 12.2.

Let the duty cycle of this square wave be 50%, that is, T / 2. An expression for a 
square wave on the interval 0 t T is

	

x t
A t T

A T t T

0
2

2 	

The Fourier coefficients can be calculated as:

	
a

T
x t dt

t

t T

0
1 0

1

1

	

	
a

T
x t n tdtn

t

t T2 0
1

1

0cos
	

	
b

T
v t n tdt A

n
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t

t T2 2 1
1

1

0sin cos
	

The term 
2 1 2A
n

ncos  if n is odd and zero if n is even. Hence, bn can be 
written as

	

b
A

n
n

n
n

4

0

odd

even	

The Fourier series of this square wave is

x t A f t f t f t4 2 1
3

2 3 1
5

2 50 0 0sin sin sin 

.

Note that this series contains only odd harmonic terms. Let’s recreate the square wave 
using Fourier expansion.

v(t)

A

Tτ t
–A

0

Figure 12.2  Periodic waveform for Example 12.2.
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For n = 1 we get

	
x t A f t4 2 0sin

	

This waveform is shown in Figure 12.3.
For n = 3 we have

	
x t A f t f t4 2 1

3
2 30 0sin sin

	

The resulting waveform is shown in Figure 12.4.
For n = 7; the waveform is shown in Figure 12.5.
Two more waveforms: for n = 19 the waveform is shown in Figure 12.6.
And finally, for n = 101 we obtain the waveform shown in Figure 12.7.

1.5
n = 1

x(t)

t = T

1

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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–1.5

Figure 12.3  Waveform for Example 12.3, n = 1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–0.5
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–1.5

Figure 12.4  Waveform for Example 12.3, n = 3.
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1.5
n = 7

x(t)

t = T

1
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–0.5
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Figure 12.5  Waveform for Example 12.3, n = 7.
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Figure 12.6  Waveform for Example 12.3, n = 19.
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Figure 12.7  Waveform for Example 12.3, n = 101.
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12.1.2  Exponential Fourier Series

The Fourier series of Eq. (12.1) can be put into a much simpler and more elegant form 
with the use of complex exponentials. According to Euler’s identity

	 e n t j n t njn t0
0 0 1 01cos sin , , , , , , 	 (12.5)

From Eq. (12.5) we obtain two useful expressions

	
cos n t

jn t jn t

0

0 0

2
e e 	 (12.6)

	
sin n t

j

jn t jn t

0

0 0

2
e e 	 (12.7)

Substituting Eq. (12.6) and Eq. (12.7) into Eq. (12.1) we obtain the complex‐exponen-
tial form of Fourier series as
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	 (12.8)

or

	
0ˆ e jn t

n
n

x t c 	 (12.9)

where

	

1

0

1

ˆ 1 e
t T

jn t
n

t

c x t dt
T

	 (12.10)

The Fourier series as expressed in Eq. (12.9) is called the two‐sided spectrum, since it 
contains both the positive and the negative frequencies.

The complex exponential form is more useful and more easily computed than the 
trigonometric form. Note that the summation in Eq. (12.10) extends from  to .

Each expansion coefficient, ĉn, will be, in general, a complex number that can be 
expressed in polar or exponential form as

	 ˆ e cnj
n n cn nc c c 	 (12.11)
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Note, that for n = 0, the expansion coefficient becomes

	
c

T
x t dt

T
x t dt

t

t T
jn t

n t

t T

0

0

1 1

1

1

0

1

1

e 	 (12.12)

which is a real number and is the average value of x(t).
Note that the complex exponential form of the Fourier series contains both the posi-

tive‐valued harmonic frequencies ω0, 2ω0, 3ω0, … and the negative‐valued harmonic 
frequencies 0 0 02 3, , , .

Thus, for each positive value of n (and harmonic frequency nω0) there is a corre-
sponding negative value of n (and harmonic frequency – nω0). The coefficients corre-
sponding to these values of n and − n are
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0e e 	 (12.13b)

Note that these coefficients are the complex conjugates of each other. That is,

	 *ˆ ˆn nc c 	 (12.14)

Thus

	 *ˆ e cnj
n nc c 	 (12.15)

Note that the complex exponential Fourier series in Eq. (12.9) can be written as
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Since

	
0 0 0
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we rewrite Eq. (12.16) as
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1 1
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Using Eq. (12.11) and Eq. (12.15) in Eq. (12.18) produces
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	 (12.19)

Since

	
e ej n t j n t

cn

cn cn

n t
0 0

2 0cos 	 (12.20)

the complex exponential Fourier series can be expressed as

	
x t c c n t

n
n cn0

1
02 cos 	 (12.21)

Note that cn and θcn in Eq. (12.21) are real values, since

	 ˆ e cnj
n n cn nc c c 	 (12.22)

The Fourier series, as expressed in Eq. (12.21), is called the one‐sided spectrum since 
it contains only the positive frequencies.

Note that in order to obtain the expansion coefficients for the one‐sided spectrum, 
the magnitudes of the expansion coefficients for the two‐sided spectrum need to be 
doubled, while the dc component c0 remains unchanged (Paul, 2006, p.97).

12.1.3  Spectrum of the Digital Clock Signals

Clock waveforms can be represented as periodic trains of trapezoid‐shaped pulses as 
shown in Figure 12.8.

Each pulse is described by the key parameters: period T (and thus the fundamental fre-
quency f T0 1/ ), amplitude A, rise time tr, fall time tf, and the on‐time or pulse width τ. We 
will investigate the effect of these pulse parameters on the spectrum of the clock waveform.

x(t)

tftr
T t

τ
A

Figure 12.8  Trapezoidal clock signal.
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To obtain the complex‐exponential Fourier series of this waveform, we will use the 
computational techniques described in Paul, 2009, Section 3.1.3.

The expansion coefficients for a periodic function x(t) are related to the expansion 
coefficients of its derivative in the following manner.

Let x(t) be represented by its Fourier series as

	
0ˆ e jn t

n
n

x t c 	 (12.23)

and let its kth derivative be represented as

	
0ˆ e

k
k jn t

nk
n

d x t
c
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	 (12.24)

Then the expansion coefficients are related by (Paul, 2009, p. 115)

	 0

1 ,ˆ ˆ 0k
n nkc c n

jn
	 (12.25)

Thus, the coefficients of the waveform that is the second derivative of the original 
waveform are related to the coefficient of the original waveform by

	

2
2

2 2
0 0

ˆˆ ˆ1 n
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cc c
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	 (12.26)

Figure 12.9(a) shows the original clock waveform and Figure 12.9(c) shows its second 
derivative.

The second derivative waveform consists of four impulses, repeating themselves 
every period T:
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where unit impulse δ(t) is defined by
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Each train of pulses has its own Fourier representation as
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	 (12.29c)
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By the property of linearity, the expansion coefficient for these four trains of pulses is 
equal to the sum of the expansion coefficients for each individual train of pulses. That is,
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The expansion coefficient for the train of pulses occurring at t = 0 (and repeating itself 
every T) is
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The expansion coefficients for a given waveform x(t) are related to the expansion 
coefficients of the shifted version of it x(t − α) as follows.

x(t)

A

(a)
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(c) 2

2
+

+

–A / tf

T t

T t

t

A / tr
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(A / tr) (A / tf)

(A / tf)

dx
dt

d2x

dt2

tr

tr– tf

tr+ tf

tr

tr

tf

tf

τ

τ

τ

Figure 12.9  Trapezoidal clock signal and its derivative waveforms.
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Let x(t) be represented by its Fourier series as
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n
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x t c 	 (12.32)

and its shifted version x(t−α) be represented by its Fourier series as

	
0eˆ jn t

n
n

x t c 	 (12.33)

Then the coefficients of the shifted version are related to the coefficients of the 
unshifted one by

	 c cn n
jne 0 	 (12.34)

Thus, the expansion coefficients for the remaining three trains of pulses are
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and
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And thus
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Now, let’s utilize the identity
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Substituting Eqs (12.41) into Eq. (12.39) leads to
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That is,
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According to Eq. (12.26), the expansion coefficient for the original trapezoidal wave-
form is related to the coefficient in Eq. (12.43) by
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Thus
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Since
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We finally obtain
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Now, if the pulse rise time equals the fall time, t tr f , we obtain a very useful result 
that leads to very important conclusions. Letting t tr f  in Eq. (12.47) gives
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or
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Since
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we rewrite Eq. (12.49) as
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or, substituting for ω0 from Eq. (12.50) as
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Thus, with the rise and fall times being equal, we obtain the one‐sided Fourier spec-
trum of the trapezoidal clock signal as
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and

	
c A

T0 	 (12.55)

The angle of the Fourier coefficient is

	 0ˆ / 2cn n rc n 	 (12.56)

The  term in Eq. (12.56) appears when the product of the two sin x/x terms in 
Eq. (12.52) is a negative real number (and thus a complex number with an angle of ).

A very interesting and useful result is obtained when we consider a 50% duty cycle 
signal. That is, when

	 T
1
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	 (12.57)

Under this condition the first sine term in Eq. (12.54) becomes
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which is zero for even n. Thus, there are no even harmonics when the duty cycle is 50%.
Figure 12.10 shows the frequency spectrum of a 1 V trapezoidal pulse, with a funda-

mental frequency of 10 MHz, and 5 ns risetime and two different duty cycles.
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49% Duty cycle

50% Duty cycle

Figure 12.10  Frequency spectrum of a clock signal with 49% and 50 % duty cycle.
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12.1.4  Spectral Bounds on Digital Clock Signals

Recall: with the rise and fall times being equal, the one‐sided Fourier spectrum of the 
trapezoidal clock signal is given by
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Where
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These coefficients (spectral components) exist only at the discrete frequencies 
f n T/ . The continuous envelope of these spectral components is obtained by replac-
ing n T f/  in Eq. (12.60).
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or in dB,
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These bounds are shown in Figure 12.11.

2 Aτ
T

0 dB/decade
–20 dB/decade

–40 dB/decade

1 1 f
πτ πτr

Figure 12.11  Bounds on the one‐sided magnitude spectrum of a trapezoidal clock signal.
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20 ns rise time

5 ns rise time

Trapezoidal pulse, 1V, 10 MHz, 50% duty cycle

Figure 12.12  Frequency spectrum of a clock signal with 20 ns vs 5 ns risetime.
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There is one extremely important observation we can make from the plots in 
Figure 12.11. Note that above the frequency f r1/  the amplitudes of the spectral 
components are attenuated at a rate of 40 dB/decade.

It seems reasonable, therefore, to postulate that somewhere beyond this frequency 
these amplitudes are negligible (compared to the magnitudes of the components at 
lower frequencies) and can be neglected in the Fourier series expansion.

A reasonable choice for that frequency is (Paul, 2009, p. 133)

	
f

r r r
max 3 1 1 1 	 (12.63)

With the above choice, the bandwidth (BW) of a trapezoidal signal is

	
BW

r

1 	 (12.64)

Returning to Figure 12.10, we make another important observation: the pulses having 
short rise/fall times have larger high‐frequency content than do pulses with long rise/
fall times.

This is illustrated in Figure 12.12.

12.2  EMC Applications

12.2.1  Effect of the Signal Amplitude, Fundamental Frequency, and Duty Cycle 
on the Frequency Content of Trapezoidal Signals

The effect of the signal amplitude on the frequency content of a trapezoidal signal is 
shown in Figure 12.13.

As can be seen, reducing the signal amplitude reduces the frequency content over the 
entire frequency range. This is verified by the measurement shown in Figure 12.14.

2 A2τ
T

2 A1τ
T

0 dB/decade
–20 dB/decade

–40 dB/decade

1 1
πτ πτr

f

Figure 12.13  Effect of the signal amplitude.
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The effect of reducing the fundamental frequency while maintaining the same duty 
cycle on the frequency content of signal is shown in Figure 12.15.

Reducing the fundamental frequency (while maintain the duty cycle) reduces the 
high‐frequency spectral content of the waveform, but does not affect the low‐frequency 
content. This is shown in Figure 12.16.

The effect of reducing the duty cycle while maintaining the fundamental frequency is 
shown in Figure 12.17.

A = 2V

A = 1V

Trapezoidal pulse, f = 10 MHz, 5ns rise time, 50% duty cycle

Figure 12.14  Effect of the amplitude reduction.
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Figure 12.15  Effect of the fundamental frequency while maintaining the duty cycle.

f0 = 10 MHz

f0 = 5 MHz

Trapezoidal pulse, 1V, 5 ns rise time, 50% duty cycle

Figure 12.16  Effect of the fundamental frequency while maintaining the duty cycle.
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Figure 12.17  Effect of the duty cycle while maintaining the fundamental frequency.

D = 50%

D = 20%

Trapezoidal pulse, 1V, 5 ns rise time, 10 MHz

Figure 12.18  Effect of the duty cycle while maintaining the fundamental frequency.
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Reducing the duty cycle (the pulsewidth) reduces the low‐frequency spectral content 
of the waveform, but does not affect the high‐frequency content. This is shown in 
Figure 12.18.
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13

Modern theory of electromagnetics is based on a set of four fundamental relations 
known as Maxwell’s equations. These equations hold in any material, at any spatial loca-
tion, and involve the time‐varying, coupled electric and magnetic fields.

When the fields are time‐invariant (static) Maxwell’s four equations separate into two 
uncoupled pairs, one for the electric field and one for the magnetic field. This allows us 
to study the electrostatics and magnetostatics separately.

13.1  Charge Distributions

The concept of electric charge is the basis for the study of electromagnetics. The elec-
tric charge can be either positive or negative, and exists in integer multiples of a charge 
of an electron (negative charge).

We often use the idealized model of an electric charge, called the point charge, where 
we assume that the charge is dimensionless (the charge is on a body whose dimensions 
are much smaller than other relevant dimensions).

In addition to a single point charge or to the discrete distribution of point charges, we 
will discuss continuous charge distributions: line, surface, and volume charge distribu-
tions. These distributions are shown in Figure 13.1.

If the charge is distributed along a line we characterize the distribution by the line 
charge density.

l
dq
dl

C
m

	 (13.1)

The total charge contained along a given length l is then obtained from

Q dl
l

l C 	 (13.2)

If the charge is distributed across a surface we characterize the distribution by the 
surface charge density,

s
dq
ds

C
m2 	 (13.3)

Static and Quasi‐Static Electric Fields
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The total charge contained in a given surface S is then obtained from

Q ds
s

s C 	 (13.4)

Finally, if the electric charge is distributed over a volume in space we define volume 
charge density,

v
dq
dv

C
m3 	 (13.5)

The total charge contained in a given volume v is then obtained from

Q dv
v

v C 	 (13.6)

13.2  Coulomb’s Law

There are two fundamental laws governing electrostatic fields:

1)	 Coulomb’s law  –  applicable in finding the electric field due to any charge 
configuration

2)	 Gauss’s law – practical to use when charge distribution is symmetrical

Coulomb’s law describes the force that a point charge exerts on another point charge. 
The magnitude of that force is given by (Sadiku, 2010, p. 108)

F Q Q
R

1
4

1 2
2 N 	 (13.7)

where Q1 and Q2 are the magnitudes of the point charges, R is the distance between 
them, and ε is the permittivity of the surrounding medium. Often the surrounding 
medium is air and we use for it the permittivity of free space

0

910
36

F
m

	 (13.8)

(a)

ρl [C/m]

ρv [C/m3]

ρs [C/m2]

(b)

(c)

Figure 13.1  Charge distributions: (a) line, (b) surface, (c) volume.
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Consider that point charges Q1 and Q2 are located at points having position vectors r1 
and r2, as shown in Figure 13.2.

The force F12 on Q2 due to Q1, is given by

F a12
0

1 2
2

1
4

Q Q
R

R	 (13.9)

where R is the vector along the line connecting the charges and pointing from charge Q1 
to charge Q2

R r r2 1	 (13.10)

and aR is its unit vector

a R
R R

	 (13.11)

The force, F21, on charge Q1 due to charge Q2 (the order of the subscripts is source‐
destination) is given by

F F21 12	 (13.12)

If we have more than two point charges, we use the principle of superposition to deter-
mine the force on a particular charge due to all the other charges.

13.3  Electric Field Intensity

Consider a positive electric point charge Q placed in space and shown in Figure 13.3.
If another positive test charge q is introduced into the vicinity of Q, then according to 

Coulomb’s law, an electric force will be exerted on it by the charge Q.
Thus we may associate an electric field around the point charge Q where electric forces 

act. This concept leads to the first of the four fundamental vectors describing electro-
magnetic fields: the electric field intensity vector E.

y

R

r1

r2

0

F21

F12

Q1

Q2

x

Figure 13.2  Forces between two point charges.
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The electric field intensity vector is defined as the force per unit test charge that is 
exerted on that charge:

E F
q

V
m

	 (13.13)

Note that the electric field intensity vector for a positive point charge is directed radi-
ally away from that charge. If the test charge is also positive, then the force acting on it 
is in the direction of vector E.

If the charge Q is located at the origin of the coordinate system and the point charge 
q at a distance R from it, then using Coulomb’s law, we obtain the electric field intensity as

E
a1

4 0
2

Qq
R

q

R

	 (13.14)

or

E a1
4 0

2
Q
R

R	 (13.15)

Note that the electric field intensity vector for a point charge decays inversely propor-
tional to the square of the distance.

For N charges Q1, Q2, …,QN located respectively at points with position vectors r1, 
r2, …, rN, the electric field intensity at point r is obtained using superposition.

13.4  Electric Field Due to Charge Distributions

We now extend the results of the previous section for the discrete charge distribution to 
the case of the continuous charge distributions shown in Figure 13.1.

The electric field intensity due to each of the charge distributions, ρl, ρS, and ρv, is 
obtained as the superposition of the fields contributed by the numerous point charges 
making up the charge distribution.

F

+q
E

E

E

E

E

E

R

+Q

Figure 13.3  Electric field around a point charge.
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Mathematically, the point charges are expressed as differential charges dQ and the 
field due to each such charge is

d dQ
R

RE a1
4 0

2
V
m

	 (13.16)

Mathematically, the superposition of the fields due to all differential charges dQ, cor-
responds to an integral of over the location where the charge is distributed.

Replacing Q in Eq. (13.15) with Q in Eqs (13.2), (13.3), and (13.4), respectively, results in 
expression for electric field intensity due to the line, surface, and volume charge density as

E a
l

l
R

dl
R4 0

2 	 (13.17)

E a
S

S
R

dS
R4 0

2 	 (13.18)

E a
v

v
R

dv
R4 0

2 	 (13.19)

When computing the electric fields due using the above integrals, we usually do not 
determine the fields anywhere in space about the charge distributions, but only at cer-
tain locations where we can utilize symmetry to simplify the calculations.

13.5  Electric Flux Density

Recall from calculus: given a vector A, the flux of A is defined as a surface integral of A:

S

dA S	 (13.20)

The vector A is then called the flux density vector. Adhering to this definition, we 
could define the electric flux as

S

dE S	 (13.21)

Since the electrostatic field intensity E is a function of ε, the permittivity of the 
medium, it follows that the flux defined by Eq. (13.21) is dependent on the medium in 
which the charge is placed. This leads to a different definition of the electric flux that is 
independent of the medium, as explained next.

Suppose, we define a new vector D in free space as
D E0 	 (13.22)

It is apparent, that all the formulas for E, derived from Coulomb’s law can be used for 
calculating D. All that needs to be done is to multiply those formulas by ε0.

In electrostatics, the electric flux is defined in terms of the vector D as

S

dD S C 	 (13.23)

The vector D is called the electric flux density and is measured in [C/m2].
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13.6  Gauss’s Law for the Electric Field

Gauss’s law gives us a very powerful tool in calculations of the electric filed intensity, or 
the electric flux density due to the various charge distributions. It not only greatly sim-
plifies the calculations, but also gives us an insight into the E and D fields surrounding 
the distributions.

According to Gauss’s law states the total electric flux Ψ through any closed surface is 
equal to the total charge Q enclosed by that surface (Rao, 2004, p. 107):

Q d
S

D S


	 (13.24)

When the enclosed charge distributed over a volume (within the closed surface S), we 
can express Gauss’s law as

D Sd dv
S v

v


	 (13.25)

where ρv is the volume charge density. Now, according to the divergence theorem 
we have

D S Dd dv
S v


	 (13.26)

Equating the right‐hand sides of Eqs (13.25) and (13.26), we obtain

v v
vdv dvD 	 (13.27)

resulting in
D v 	 (13.28)

Equation (13.28) is referred to as Gauss’s law in differential form, while Eq. (13.24) is 
referred to as Gauss’s law in integral form. Each of these equations is one of the four 
Maxwell’s equations (either in differential or integral form), which we will discuss in 
detail in Chapter 15.

13.7  Applications of Gauss’s Law

Gauss’s law is most useful when the charge distribution is symmetric. When the charge 
distribution is not symmetric, to determine E or D we resort to Coulomb’s law.

In evaluating the surface integral in Eq. (13.24) we are free to choose any closed 
surface encompassing the charge. When symmetry in charge distribution exists, 
we choose the surface that mirrors the symmetry exhibited by the charge 
distribution.

On such a surface, E and D vectors are either tangential to it or normal to it while 
constant in magnitude. Such a surface is called a Gaussian surface. Next we apply 
Gauss’s law to several symmetric charge distributions.

Example 13.1  Point charge
Consider a single point charge Q located at the origin, as shown in Figure 13.4.
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To determine D at any point, we choose a spherical surface with a center at the origin. 
Note that D is everywhere normal to this surface and constant in magnitude on it. 
That is,

D aDr r	 (13.29)

Applying Gauss’s law we have

Q d D dS D r
S

r r
S

D S
 

4 2	 (13.30)

Solving this gives

D aQ
r

r
4 2 	 (13.31)

Substituting D = εE gives the electric field intensity

E aQ
r

r
4 2 � (13.32)

�

Example 13.2  Sphere with a uniform charge
Consider a sphere centered with a uniform surface charge density ρS centered at the 
origin, as shown in Figure 13.5.

z

y

r

Gaussian
surface

dS D

+Q

x

Figure 13.4  Determination of an electric field of a single point.

a

ρs
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Gaussian
surface

dS E

z

y

x

Figure 13.5  Determination of an electric field of a sphere of charge.
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As a Gaussian surface, we choose a spherical surface with a center at the origin that 
encompasses the charge distribution. Note that D is everywhere normal to this surface 
and constant in magnitude on it. That is,

D aDr r	 (13.33)

Applying Gauss’s law we have

Q d D dS D r
S

r rD S
 

4 2	 (13.34)

or

Q D rr 4 2	 (13.35)

On the other hand the total charge Q distributed over the surface of radius a is equal to

Q dS dS a
S

S S
S

S 4 2	 (13.36)

Equating the right‐hand sides of Eqs (13.35) and (13.36) gives

D r ar S4 42 2	 (13.37)

Resulting in

D a
r

r S

2

2 	 (13.38)

or

D a

D

S r
a
r

r a

r a

2

2

0,
	 (13.39)

Substituting D = εE gives the electric field intensity

E a

E

S r
a
r

r a

r a

2

2

0

,

,
	 (13.40)

�

Example 13.3  Infinite Plane of Charge
Determine the electric field of an infinite plane of charge with a uniform surface charge 
density ρS [C/m2], shown in Figure 13.6.

Solution:  Let’s consider an infinite plane of charge lying on the z = 0 plane. Due to the 
infinite extent of the plane and the uniform charge distribution, the electric field will be 
perpendicular to its surface.

To determine D above the surface, we choose a cylindrical Gaussian surface that is cut 
symmetrically by the sheet of charge and has two of its faces parallel to the sheet, as 
shown in Figure 13.6. The electric field is perpendicular to the top and bottom surfaces, 
and is tangential to the sides of the cylinder.
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At the top surface we have

D S a ad D dS D dSz z z z 	 (13.41)

while at the bottom surface we have

D S a ad D dS D dSz z z z 	 (13.42)

Applying Gauss’s law gives

Q d d d d

D dS
S side top bottom

side
z z

D S D S D S D S

a a



top
z z z

bottom
z z z

z
top

z
top

D dS D dS

D dS D dS

a a a a

0 D A D A D AZ Z Z2

	 (13.43)

or
Q D AZ2 	 (13.44)

where A is the area of the top and bottom surfaces of the Gaussian cylinder. The total 
charge enclosed by the Gaussian surface is

Q dS AS
S

S 	 (13.45)

Combining Eqs (13.44) and (13.45) produces
2D A AZ S 	 (13.46)

and thus

DZ
S

2
	 (13.47a)

D aS
z z

2
0, 	 (13.47b)
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Figure 13.6  Determination of an electric field of plane of charge.
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Similarly, the field below the surface z = 0 is given by

D aS
z z

2
0, 	 (13.48)

Therefore, the electric field E due to the plane of charge is given by

E
a

a

S
z

S
z

z

z
2

0

2
0

,

,
	 (13.49)

�

Example 13.4  Infinite line charge
Next we determine the electric field due to the infinite line of uniform charge ρl [C/m] 
shown in Figure 13.7.

By symmetry, the electric flux density D and the electric field intensity E are directed 
radially away from the line. In order to take advantage of this symmetry, we choose a 
Gaussian surface as a cylinder of radius ρ.

Let’s consider a length l of the cylinder. Over the top and bottom surfaces of the cyl-
inder, vector dS is perpendicular to the vector D and the dot product of the two is zero.

On the side of the cylinder D is constant and pointing in the same direction as dS. 
Thus, Gauss’s law produces

Q d D dS D dS D l
S S S

D S a a
  

2 	 (13.50)

The total charge enclosed by the cylinder of length l is
Q ll 	 (13.51)

Combining Eqs (13.50) and (13.51) results in
D l lL2 	 (13.52)
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+ρl
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Figure 13.7  Determination of an electric field of an infinite line of charge.
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and thus

D L

2
	 (13.53a)

and

D aL

2
	 (13.53b)

Also

E aL

2
	 (13.54)

� ▪

Example 13.5  Infinite cylinder with surface charge density
Determine the electric outside and within an infinitely long cylinder of radius a with a 
uniform surface charge density ρS [C/m2], as shown in Figure 13.8.

Solution:  The natural choice of the Gaussian surface is a cylinder of radius ρ, as 
shown in Figure 13.8. Because of the charge symmetry, the electric field lines are 
directed radially away from the cylinder.

The electric field is normal to the side of this Gaussian surface and parallel to its ends.

D aD 	 (13.55)

Gauss’s law produces

Q d d d d

D dS
S side top bottom

side to

D S D S D S D S

a a



pp
z

bottom
z

side

D dS D dS

D dS D dS D l

a a a a

0 0 2


	 (13.56)

l

a
a

ρ

ρs

ρs

Gaussian
surface

E

E

EE

E

Figure 13.8  Determination of an electric field of a cylinder of charge.
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or
Q D l2 	 (13.57)

The total charge enclosed by the cylinder of length l is
Q alS 2 	 (13.58)

Combining Eqs (13.57) and (13.58) results in
D l alS2 2 	 (13.59)

and thus

D aS 	 (13.60a)

D aS a a, 	 (13.60b)

Also

E aS a a, 	 (13.61a)

Since there is no charge interior to the cylinder of radius a, the electric field inside the 
cylinder is zero,

E 0, a	 (13.61b)
�

Example 13.6  Coaxial transmission line
A coaxial transmission line is shown in Figure 13.9. The inner cylinder has a radius a 
and the outer cylinder has a radius b. The inner cylinder has a surface charge density of 

a

a

b

b

ρ

ρs Gaussian
surface

E

E

E

E

Figure 13.9  Determination of the electric field of coaxial transmission line.
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ρS [C/m2] distributed uniformly along its length and around its periphery. The outer 
cylinder has the same total charge as the inner cylinder distributed over its inner surface 
and of the opposite polarity.

Determine the electric field between the two cylinders.

Solution:  Because of the uniform charge distribution and the infinite length of the 
cylinders, the electric field will be radially directed away from the inner cylinder toward 
the outer cylinder.

To determine the electric field distribution we choose a cylindrical Gaussian surface 
of radius ρ, as shown in Figure 13.9. The electric field is perpendicular to the side of this 
surface and parallel to the end surfaces. The Gaussian surface is the same as in the 
previous example. Thus, in the space between the two cylinders the electric field is 
given by

E aS a a b, 	 (13.62)

Again, the electric field inside the inner cylinder is zero,
E 0, a	 (13.63)

The electric field outside the outer cylinder is also zero since the total charge enclosed 
by a cylindrical Gaussian surface surrounding both cylinders is zero.

E 0, b	 (13.64)

This is a very important observation. Since there is no E field outside the (ideal) coaxial 
cable, it is often referred to as a “shielded cable”.�

13.8  Electric Scalar Potential and Voltage

The concept of electric potential leads to the definition of voltage, and serves as a bridge 
between the field theory and circuit theory.

The electric scalar potential is defined through the work done by the electric field in 
moving a point charge. Suppose we wish to move a positive charge Q from point A to 
point B, in the presence of an electrostatic field E, as shown in Figure 13.10.

A

B
E

+Q

O

r dl

Fe

rA

rB

Figure 13.10  Determination of the work required to move a charge.
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The force exerted on Q by the field is
F EQ 	 (13.65)

and the work done by the field in moving the charge Q by a differential distance dl is

dW d Q df F l E l	 (13.66)

The force that an external agent would have to apply to move the charge at constant 
velocity (i.e. with no acceleration) would have to counteract the force exerted by the 
field, so that the total net force on the charge is zero.

F F Eext Q 	 (13.67)

The work done, or energy expended in moving the charge Q by a differential distance 
dl under the influence of an external force is

dW d Q dextF l E l	 (13.68)

The total work done (by an external force), or the potential energy required, in mov-
ing Q from A to B is

W Q d
A

B

E l	 (13.69)

Dividing both sides by Q gives

W
Q

d
A

B

E l J
C

V 	 (13.70)

This quantity is known as the voltage or the potential difference between points 
A and B

V dAB
A

B

E l J
C

V 	 (13.71)

When evaluating this integral it is assume that point A is at a lower potential than 
point B. Thus,

V dAB
lower
potential

higher
potential

E l J
C

V 	 (13.72)

Notice that the potential difference between two points does not depend on the 
charge being moved between them.

To illustrate the application of Eq. (13.71), let’s consider a positive point charge Q 
at the origin of the coordinate system. This is the charge that generates the electric 
field E:

E aQ
r

r
4 0

2 	 (13.73)
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Thus

V d Q
r

dAB
A

B

r

r

r

A

B

E l a l
4 0

2 	 (13.74)

Let’s decompose the vector differential element dl into a vector dr along the ar direc-
tion and vector dt perpendicular to it,

d d dl r t	 (13.75)

then

a l a r t a ar r r rd d d dr dr	 (13.76)

and

V Q
r

drAB
r

r

A

B

4 0
2 	 (13.77)

or

V Q
r rAB

B A4
1 1

0
	 (13.78)

This is a very important result that we will refer to often.

Absolute potential  It is often convenient to determine the potential or absolute potential, 
at a point, rather than the potential difference between two points. The potential at any 
point is defined as the potential difference between that point and a chosen point at 
which potential is zero.

Perhaps the most universal reference point in practical applications is “ground”, by 
which we mean a reference point or surface where the potential is zero. Another widely 
used reference point with zero potential is infinity. This is very convenient in theoretical 
problems.

If we choose the reference point at infinity, then the voltage between this point and 
infinity is referred to as the absolute potential, or just the potential, at a point, and is 
defined as

V d
r

E l	 (13.79)

Thus if VA = 0 as rA → ∞, the potential at any point (rB → r) due to a point charge Q 
located at the origin is

V Q
r4 0

	 (13.80)

13.9  Voltage Calculations due to Charge Distributions

In this section we will calculate the voltage between two points in space due to the vari-
ous charge distributions considered earlier in this chapter.
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Example 13.7  Voltage between two points away from a line of charge
Let an infinite line of charge have a uniform line charge density ρl [C/m]. We want to 
determine the voltage between two points at distances ρA and ρB away (ρA > ρB) from the 
line shown in Figure 13.11.

The electric field at a distance ρ away from the line was previously calculated as

E aL

2
	 (13.81)

The voltage between two points is calculated from

V d dAB
L

lower
potential

higher
potential

A

B

E l a a
2

L L
B A

L
A B

A

B d
2 2 2

ln ln ln ln

	 (13.82)

or

VAB
L A

B2
ln 	 (13.83)

Again, this is a very important result that we will encounter on several occasions.�

Example 13.8  Voltage between two points away from a plane of charge
Let an infinite plane of charge have a uniform surface charge density ρS [C/m2]. We 
want to determine the voltage between two points at zA and zB away (zA > zB) from the 
plane, shown in Figure 13.12.
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+ρl
EA

x

y

z

ρA

ρB

Figure 13.11  Two points away from a line of charge.
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The electric field was previously calculated as

E
a

a

S
z

S
z

z

z
2

0

2
0

,

,
	 (13.84)

The voltage between two points is calculated from

V d dzAB
z

z
S

z z
lower
potential

higher
potential

A

B

E l a a
2

S
B Az z

2

	 (13.85)

or

V z zAB
S

A B2
	 (13.86)

�

Example 13.9  Voltage between the inner and outer cylinders of a coaxial cable
Next, let’s determine the voltage between the inner and outer cylinders of a coaxial 
cable shown in Figure 13.13.

The inner cylinder has a surface charge density of ρS [C/m2] distributed uniformly 
along its length and around its periphery. The outer cylinder has the same total 
charge as the inner cylinder distributed over its inner surface and of the opposite 
polarity.

B

A

In�nite plane
of charge

EA
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x

y

z

zA

zB

ρs

Figure 13.12  Two points away from a plane of charge.
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The electric field was previously calculated as

E aS a a b, 	 (13.87)

The voltage between two points is calculated from

V d a dAB
b

a
S

lower
potential

higher
potential

E l a a

S

b

a
Sa d a a bln ln

	 (13.88)

or

V a b
aAB

S ln 	 (13.89)

Example 13.10  Voltage between two concentric spheres
Determine the voltage between two concentric spheres, shown in Figure 13.14.

The inner sphere of radius a has a uniformly distributed surface charge density of 
ρS [C/m2]. The outer sphere of radius b has the same total charge as the inner sphere 
distributed over its surface and of the opposite polarity.

The electric field between the spheres was previously calculated as

E aS
r

a
r

a r b
2

2 , 	 (13.90)

a

b

E

ρS

Figure 13.13  Voltage between two concentric cylinders.

a

b

E

ρS

Figure 13.14  Voltage between two concentric spheres.
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The voltage between two points is calculated from

V d a
r

drAB
b

a
S

r r
lower
potential

higher
potential

E l a a
2

2

S

b

a
S

b

aa dr
r

a
r

2

2

2 1

	 (13.91)

or

V a
a bAB

S
2 1 1 	 (13.92)

Since the surface charge density can be expressed in terms of the total charge as

S
Q

a4 2 	 (13.93)

The above result can be written as

V Q
a bAB 4
1 1 	 (13.94)

13.10  Electric Flux Lines and Equipotential Surfaces

The concept of electric flux lines was introduced by Michael Faraday as a way of visualizing 
the electric field. An electric flux line is an imaginary path or line drawn in such a way that 
its direction at any point is the same as the direction of the electric field at that point.

Thus the electric flux lines are the lines to which the electric field intensity E or the 
electric flux density D is tangential at every point. These lines do not intersect and 
always start at positive charges and terminate at negative charges (or infinity).

Let’s now define an equipotential surface (or line) as any surface (line) on which the poten-
tial is constant. Figure 13.15 shows the equipotential surfaces around a point charge.

x

z Flux line

y

E

+Q

Figure 13.15  Equipotential surfaces around a point charge.
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Since the potential is constant along the equipotential line or on the equipotential 
surface, the work done in moving a charge along such line or surface is zero,

V V dA B 0 E l	 (13.95)

Analyzing the above equation we note that vectors E and dl, in general, are not zero, 
and therefore we conclude that the flux lines are always normal to the equipotential line 
or surface.

13.11  Maxwell’s Equations for Static Electric Field

Recall from Chapter 4 that the line integral F ld
C

 is independent of the path of integra-
tion if the function F is a gradient of some scalar function f, i.e. F f . It can be shown 
that for static electric fields, the electric field intensity E is related to the scalar poten-
tial V by

E V 	 (13.96)

It follows that the integral

V V V dAB B A E l	 (13.97)

is independent of the integration path and therefore

E l E l E ld d d V V V V
C A

B

B

A

B A A B


0	 (13.98)

or

E ld
C

0


	 (13.99)

According to the Stokes theorem we have

E l E Sd d
C S


0	 (13.100)

and therefore

E 0	 (13.101)

Equations (13.99) and (13.110) are referred to as the Maxwell equations for static 
electric field.

13.12  Capacitance Calculations of Structures

13.12.1  Definition of Capacitance

When separated by an insulating (dielectric medium), any two conducting bodies, 
regardless of their shapes and sizes, form a capacitor.
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If a dc voltage source is connected to the two conductors, charge of equal and oppo-
site polarity is transferred to the conductor’s surfaces. The surface of the conductor 
connected to the positive side of the source will accumulate charge + Q, and charge –Q 
will accumulate on the surface of the other conductor, as shown in Figure 13.16.

Capacitance of a two‐conductor structure is defined as

C Q
V

	 (13.102)

where V is the voltage between the conducting surfaces and Q is the magnitude of the 
charge on either surface.

The presence of free charges on the conductors’ surfaces gives rise to an electric field 
E. The field lines (flux lines) originate on the positive charges and terminate on the 
negative charges. Since a conductor’s surface constitutes an equipotential surface, E is 
always perpendicular to the conducting surfaces.

The normal component of E at any point on the surface of either conductor is given 
by (see Section 13.7),

E an n n
SE 	 (13.103)

Charge Q distributed over the surface of either conductor is

Q dS
S

S 	 (13.104)

and according to Gauss’s law can be calculated from

Q d
s

E S


	 (13.105)

The voltage V is related to E by

V d
l

E l 	 (13.106)

where the path of integration is from the conductor at the lower potential to the con-
ductor at the higher potential.

V

E

E

E

+Q –Q

Figure 13.16  Capacitive structure.
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Substituting Eqs (13.105) and (13.106) into Eq. (13.102) produces a general formula 
for calculating capacitance:

C Q
V

d

d
S

l

E S

E l



	 (13.107)

Next we will calculate capacitance of the typical structures encountered in EMC:

●● parallel‐plate capacitor
●● two‐wire transmission line
●● coaxial cable
●● spherical capacitor

In our calculations we will follow these steps:

1)	 Assume + Q charge on one conductor and − Q charge on the other
2)	 Calculate E from Gauss’s law

Q d
s

E S


	 (13.108)

3)	 Calculate V from

V d
l

E l 	 (13.109)

4)	 Determine the capacitance from

C Q
V

Q
d

l

E l
	 (13.110)

13.12.2  Calculations of Capacitance

Parallel‐plate capacitor  Consider a parallel‐plate capacitor shown in Figure 13.17.

1)	 Let the conductive plates carry charges + Q and –Q or, equivalently, they have sur-
face charge densities as shown in Figure 13.18.

z

Z = d

Z = 0

+Q

–Q

E

Figure 13.17  Parallel‐plate capacitor.
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2)	 Determine E from Gauss’s law. We previously obtained:

E E a a a a aS
n

S
n

S
n

S
z z

Q
A2 2

	 (13.111)

	 where A is the area of each plate and ε is the dielectric constant of the medium 
between the plates.

3)	 Determine the voltage between the plates.

V d Q
A

dz

Q
A

dz Qd
A

l z

z d

z z

z

z d

E l a a
0

0

	 (13.112)

4)	 Obtain the capacitance from

C Q
V

Q
d

Q
Qd

Al

E l
	 (13.113)

	 or

C A
d

	 (13.114)

Two‐wire transmission line  A cross‐section of a two‐wire transmission line is shown in 
Figure 13.19.

Let’s model the transmission line as two infinite parallel conductors of radius a sepa-
rated by a distance s. Under the assumption of the ratio s/a > 5, we may assume that the 
conductors have a uniform surface charge distribution ρS [C/m2] distributed on the 
periphery along their length.

One of the conductors carries a positive charge distribution, while the other carries 
an equal but a negative distribution. The voltage due to a line charge distribution 
between two points at distances ρA and ρB from the line was previously calculated as

VAB
L A

B2
ln 	 (13.115)

Replacing ρA with s and ρB with a we get

V s
a

L

2
ln 	 (13.116)

E E

an

–an

ρS

–ρS

Figure 13.18  Parallel‐plate capacitor.
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The total voltage due to both lines of charge, by superposition is twice this result

V s
a

L ln 	 (13.117)

The per‐unit‐length capacitance is obtained from

c
V s

a

L L

L ln
	 (13.118)

or

c
s
a

ln
	 (13.119)

Coaxial cable  For the coaxial cable shown in Figure  13.20, the voltage between the 
inner and outer cylinders was determined as

V a b
a

S ln 	 (13.120)

The surface charge distribution is related to the per‐unit‐length charge distribution as

l S a2 	 (13.121)

thus the voltage becomes

V b
a

l

2
ln 	 (13.122)

The per‐unit –length capacitance is obtained from

c
V b

a

L L

l

2
ln

	 (13.123)
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Figure 13.19  Two‐wire transmission line.
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or

c
b
a

2

ln
	 (13.124)

Spherical capacitor  For the spherical capacitor shown in Figure  13.21, the voltage 
between the inner and outer cylinders was determined as

V Q
a bAB 4
1 1 	 (13.125)

The capacitance is obtained from

C Q
V

Q
Q

a b4
1 1

	 (13.126)

or

C

a b

4
1 1

	 (13.127)

Capacitance of an isolated sphere  Let the outer sphere extend to infinity, i.e. b . The 
capacitance of an isolated sphere of radius a then becomes

C a4 	 (13.128)

+ –

a

b

E

ρS

Figure 13.20  Coaxial capacitor.
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Figure 13.21  Spherical capacitor.
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This capacitance is often referred to as an absolute capacitance. This result is a very 
useful result in EMC, as we shall see in the application section.

13.13  Electric Boundary Conditions

If the electric field exists in a region consisting of two different media, even though it 
may be continuous in each medium, it may be discontinuous at the boundary between 
them, as illustrated in Figure 13.22.

Boundary conditions specify how the tangential and normal components of the field 
in one medium are related to the components of the field across the boundary in another 
medium.

We will derive a general set of boundary conditions, applicable at the interface 
between any two dissimilar media, be they two different dielectrics, or a conductor and 
a dielectric.

Even though these boundary conditions will be derived for electrostatic conditions, 
they will be equally valid for time‐varying electromagnetic fields.

In each medium we will decompose the electric field intensity E and electric flux 
density D into two orthogonal components:

E E Et n	 (13.129a)
D D Dt n	 (13.129b)

This is shown in Figure 13.23.
To determine the boundary conditions, we will use Maxwell’s equations for electro-

static fields:

E ld
C

0


	 (13.130)

D Sd Qenc
S


	 (13.131)

Let’s consider the closed path abcd shown in Figure 13.24.

Medium 2

Medium 1

E2

E1

D1

D2

Figure 13.22  Discontinuity at the boundary between two media.
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We will apply Eq. (13.133) along this closed path. First, we will break the closed‐loop 
integral in Eq. (13.133) into the integrals along the individual segments:

E l E l E l E l E ld d d d d
C a

b

b

c

c

d

d

a



	 (13.132)

Note that the integrals in Eq. (13.132) hold for any length of the integration path. That 
is, we can let any segment length go to zero, and the right hand‐side of Eq. (13.132) will 
still be true. If we let h 0 then the contributions to the line integral by the segments 
bc and da go to zero and we have

E l E l E ld d d
C a

b

c

d



1 2 	 (13.133)

Now, since
E E E1 1 1t n	 (13.134a)
E E E2 2 2t n	 (13.134b)

Medium 2

Medium 1

E1
E1n

E1t

E2

E2n

E2t

E2 = E2t + E2n

E1 = E1t + E1n D1 = D1t + D1n

D2 = D2t + D2n

D1n
D1

D1t

D2

D2t
D2n

Figure 13.23  Decomposition into the normal and tangential components.
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Figure 13.24  Evaluating boundary conditions.
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We rewrite Eq. (13.133) as

E l E E l E E l

E l E

d d d

d d

C a

b

t n
c

d

t n

a

b

t
a

b

n



1 1 2 2

1 1 ll E l E l
c

d

t
c

d

nd d2 2

	 (13.135)

or

E l E l E ld d d
C a

b

t
c

d

t


1 2 	 (13.136)

leading to

0 1 2 1 2E l E l E ld d d E l E l
C a

b

t
c

d

t t t


	 (13.137)

or
E Et t1 2 	 (13.138)

Thus is a very important result: the tangential component of the electric field is con-
tinuous (is the same) across the boundary between any two media.

Since

E D
t

t
1

1

1
	 (13.139a)

E D
t

t
2

2

2
	 (13.139b)

We obtain the boundary condition on the electric flux density as

D Dt t1

1

2

2
	 (13.140)

To obtain the boundary conditions on the normal components let’s consider the 
closed cylindrical surface shown in Figure 13.25.
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ε2Δh
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D1n
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D2n

Medium 1
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Figure 13.25  Evaluating boundary conditions.
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Let’s apply the second of the two Maxwell’s equations

D Sd Qenc
S


	 (13.141)

First, we will break the closed‐surface integral into three integrals as

D S D S D S D Sd d d d
S side bottom top


1 2 	 (13.142)

By letting Δh → 0, the contributions to the total flux by the side surface goes to zero.

D S D S D Sd d d
S bottom top


1 2 	 (13.143)

Now, since
D D D1 1 1t n	 (13.144a)
D D D2 2 2t n	 (13.144b)

We rewrite Eq. (13.143) as

D S D D n D D n

D

d dS dS
S bottom

t n
top

t n

bottom



1 1 2 2 2 1

1nn
top

ndS dSn D n2 2 1
	 (13.145)

or

D S D n D nd dS dS
S bottom

n
top

n


1 2 2 1	 (13.146)

Even if each of the two media happens to have volume charge densities, the only 
charge remaining in the collapsed cylinder is that distributed on the boundary. Thus,

Q dS dS dSS
boundary bottom top

D n D n1 2 2 1 	 (13.147)

or

S D n D n1 2 2 1	 (13.148)

Since
n n1 2	 (13.149)

we arrive at the boundary condition on the electric flux density as

S n nD D2 1 	 (13.150)

The corresponding condition on the electric field intensity is

S n nE E2 2 1 1 	 (13.151)

If no free charge exists on the boundary between the two media, then S 0, and the 
boundary conditions become

D Dn n1 2 	 (13.152)

1 1 2 2E En n	 (13.153)
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A very important application of the boundary conditions in EMC is when one medium 
is a dielectric and the other is a conductor. This is shown in Figure 13.26.

Inside the prefect conductor the fields are zero

E 0	 (13.154a)
D 0	 (13.154b)

Since
E 01 	 (13.155)

it follows that
E 01t 	 (13.156a)
E 01n 	 (13.156b)

Since the tangential component of E field must be continuous across the boundary it 
follows

E 02t 	 (13.157)

and since
D Et t2 2 2 	 (13.158)

we have
D 02t 	 (13.159)

The tangential components of both the E vector and D vector are zero, but these 
vectors themselves, in general, are not zero.

This means that both E and D vectors are perpendicular to the surface of the prefect 
conductor.

Now recall the boundary condition on the normal component of the electric flux 
density given by Eq. (13.151), repeated here

S n nE E2 2 1 1 	 (13.160)

Utilizing Eq. (13.166a) we obtain

S nE2 2 	 (13.161)

E

D

E = 0

D = 0

Medium 2

Dielectric

Conductor

Medium 1

Figure 13.26  Dielectric–conductor boundary.
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or

S nD2 	 (13.162)

In a vector form we have
D E n2 2 2 S	 (13.163)

Electric field points directly away from the conductor surface when ρS is positive and 
directly toward the conductor surface when ρS is negative.

13.14  EMC Applications

13.14.1  Electrostatic Discharge (ESD)

When electric charges are separated, an electric field is created. The most important 
consequence of this in EMC is electrostatic discharge (ESD). ESD can cause component 
damage, system reset, or signal integrity issues.

The separation of charge may take place when two initially neutral insulating materi-
als, shown in Figure 13.27, come in contact with each other, as shown in Figure 13.28, 
and subsequently are separated, as shown in Figure 13.29.

When the two materials are in contact, some charges may be transferred between 
them; upon separation some of these transferred charges may not return to the original 
material. Effectively, the initially uncharged materials may become charged; one posi-
tively, one negatively, as shown in Figure 13.30. Consequently, when the materials are 

Neutral
insulator

Neutral
insulator

Figure 13.27  Two initially neutral insulating materials separated from each other.

Figure 13.28  Two initially neutral insulating materials in contact with each other.
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separated, a capacitor is created with an electric field between the surfaces and a voltage 
difference between them, as shown in Figure 13.31.

Figure 13.32 shows a triboelectric list, i.e. a list of materials that have a greater ten-
dency of giving up electrons (becoming more positive) or attracting electrons (and 
becoming more negative).

The further apart on the list the materials are, the greater the resulting charge Q and 
voltage V. The charge, the voltage, and the capacitance are related by

C Q
V

Q CV 	 (13.164)

As the materials are separated, the charge remains constant but the capacitance 
decreases, causing the voltage between them to increase. When this voltage reaches a 
high enough level, an electric breakdown may occur in the air separating the materials. 
This electric breakdown manifests itself as a lightning bolt and intense current; this 
phenomenon is referred to as electrostatic discharge (ESD).

Figure 13.29  Insulators are separated after the contact.

+Q –Q

Figure 13.30  Net charge on each insulator after the contact.

+Q

+ –V

E

–Q

Figure 13.31  Creation of a capacitor.
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The ESD effect just described involved the charge transfer between two insulating 
materials. The ESD event can also occur when a charged object (insulator or conductor) 
approaches a conductor as shown in Figure 13.33.

The initially neutral conductor remains neutral as a whole; the charge, however, is 
separated. The charge with the opposite polarity to that of a charged object will be 
exposed on the surface closest to the object, creating the equal but opposite charge on 
the surface furthest from the object. This is shown in Figure 13.34.

If the conductor with the induced charge is momentarily connected to another con-
ductor (or ground), while still in the vicinity of the charged object, the negative sepa-
rated charge will be removed from it, as shown in Figure 13.35 (Ott, p. 584.).
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Gold, platinum
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Sulfur
Acetate
Celluloid
Urethane
Polyethylene
Vinyl
Silicon
Te�on

Figure 13.32  Triboelectric list.

Charged
object

Neutral
conductor

Figure 13.33  Charged object approaches a conductor.
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When the momentary contact with another conductor is removed, while in the vicin-
ity of the charge object, the initially neutral conductor will now be charged, even though 
it has never touched the charged object. This is shown in Figure 13.36.

When this charged conductor is moved close to another conductor (grounded or 
not), an electrostatic discharge can occur from one conductor to another. This is illus-
trated in Figure 13.37.

Charged
object

Neutral conductor with the
induced charge separation

Figure 13.34  Charged object in the vicinity of a neutral conductor.

Charged
object

Neutral conductor with the
induced charge separation

Another conductor or ground

+qe

Figure 13.35  Momentary contact with another conductor.

Charged
object

Charged conductor

Figure 13.36  Charged conductor.
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Example 13.11  ESD event: walking on a carpet
Walking on a carpet with leather shoe soles can generate voltages as high as 25 kV. 
Consider the scenario shown in Figure 13.38, where initially uncharged dielectrics (car-
pet and shoe) come into contact (Paul, 2006, p. 846).

When separated both the carpet and the shoe become charged, as shown in 
Figure 13.39. Subsequently, the negative shoe charge induces a positive charge on the 
sole of the foot (conductor), as shown in Figure 13.40.

Positive charge on the sole of the foot causes negative charge to move to the upper 
parts of the body (finger), as shown in Figure 13.41. As the finger approaches another 
conducting surface (door knob or electronic component) electrons will be pushed away 
from the surface closest to the finger, as shown in Figure 13.42. As the finger approaches 
the charge separation between the finger and the conductor surface creates an intense 
electrostatic field and voltage. An ESD event takes place: dielectric breakdown of the air 
occurs, an arc is created, and the discharge current flows through the conductor. This is 
shown in Figure 13.43.�

ESD
event

Charged conductor Another conductor

Figure 13.37  ESD event.

Shoe
Carpet

Figure 13.38  Initially uncharged dielectrics come into contact.



Carpet
– –

Positive charge is left on the carpet

Electrons are transferred from
the carpet to the shoes

+ +

Figure 13.39  When separated the dielectrics become charged.

Carpet

Electrons are transferred from
the carpet to the shoes

Negative shoe charge induces
a positive charge on the sole
of the foot (conductor)

Positive charge is left on the carpet
+ +

+ +
– –

Figure 13.40  Positive charge is induced on the sole of the foot.
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Positive charge on the sole of
the foot causes negative
charge to move to the upper
parts of the body (finger)

+ +

+ +
– –

Figure 13.41  Negative charge moves to the upper parts of the body.
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During the ESD arc formation the speed of approach is critical. Faster approach 
results in a physically shorter arc. Thus, for the same voltage difference, a faster approach 
results in a higher density of voltage per arc length. This results in a larger current and 
a faster current rise time.

Another condutor

–
–

–
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– –
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Figure 13.42  Charge separation in an adjacent conductor.
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Figure 13.43  ESD event.



Foundations of Electromagnetic Compatibility392

Figure 13.44 shows the typical shape of the ESD event.
Typical ESD characteristics are:

●● rise time: 20 70ps nstr
●● spike width (if spike occurs): 0 5 10. ns nstw
●● total duration: 100 2ns stt
●● peak current: 1 200A A or moreI p ( )

13.14.2  Human‐Body Model

Recall: in Section 13.12 we obtained the capacitance of an isolated sphere as

C a4 	 (13.165)

In free space

0
91

36
10 F

m
	 (13.166)

Substituting Eq. (13.166) into Eq. (13.165) we get

C a a a1
9

10 0 111 10 111 109 9 12. 	 (13.167)

or
C a111 pF	 (13.168)

where the radius a is in meters. If we model the body as a sphere of radius 1 m, its 
capacitance would equal to 111 pF.
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tr = 0.7 to 1ns

Figure 13.44  Typical shape of the ESD event.
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Equation (13.168) can be used to estimate the absolute capacitance of objects other 
than a sphere. We first determine the surface area of the object and then calculate the 
radius of a sphere with the same surface area. Then we use Eq. (13.168) (Ott, 2009, 
p. 585).

A human body has a surface area approximately equivalent to an area of a 0.5 m radius 
sphere. Therefore, the absolute capacitance of the human body is

C 111 0 5 55 5 50. . pF	 (13.169)

Using this value, we can now create the human body model which serves as the basis 
for the ESD testing in EMC.

Because of the proximity of other objects to the human body, in addition to the abso-
lute capacitance of the human body, an additional capacitance must be taken into 
account when determining the total capacitance of a human and the surroundings.

To create the human body model for ESD, we start with the absolute capacitance of 
50 pF. In addition to this capacitance we have an additional capacitance between each 
foot and ground: 50 pF per foot (total 100 pF). Because of the presence of the adjacent 
objects, an additional capacitance of 50–100 pF may also exist (Ott, 2009, p. 587). This 
is shown in Figure 13.45.

Thus, the human body capacitance can vary from about 50–250 pF. The equivalent 
circuit of the human body for ESD is shown in Figure 13.46.

The body capacitance C is first charged up to a voltage V, and then it is discharged 
through the body resistance R. This body resistance limits the discharge current i. The 
body resistance can vary from about 500 Ω to 10 kΩ. The body capacitance limits the 
discharge current rate.

Adjacent
objects

50–100 pF

50 pF 50 pF

50 pF

∞

Ground

Figure 13.45  Human body capacitance.
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The most common circuit model of human body consists of 150 pF and 330 Ω 
(Standard EN 61000‐4‐2). Typical RC combinations are

R C
R C
R C
R C

330 150
330 330
2000 150
2000 330

,
,

,
,

pF
pF
pF
pF

	 (13.170)

Figure 13.47 shows an ESD gun together with an RC cartridge.

13.14.3  Capacitive Coupling and Shielding

When two conductive bodies are in the vicinity of each other, separated by a dielectric, 
effectively a capacitive structure is created. We often model this effect as the mutual 
capacitance.

Note: In the following discussion the conducting structures are electrically short and 
modeled as lumped parameter circuits.

Consider two circuits: generator circuits (conductor 1) and the receptor circuit (con-
ductor 2) shown in Figure 13.48.

Product

R

C

+

–

V

i

Figure 13.46  Human body circuit model.

330 pF

2 kΩ

Figure 13.47  An ESD gun and a cartridge.
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CGR represents the mutual capacitance between the two circuits. This mutual capaci-
tance gives rise to a capacitive coupling between these two circuits when the source of 
the electric field, ĜV  is time‐varying. This time‐varying source, ĜV , has the potential to 
induce the near‐field noise voltage, ˆ

NEV , and the far‐field noise voltage, ˆ
FEV , in the recep-

tor circuit.
Note: Often in practical circuits, in addition to a capacitive coupling, we have an 

inductive coupling resulting in the near‐end voltage, ˆ
NEV , not being equal to the far‐end 

voltage, ˆ
FEV . Since in this section we focus on the capacitive coupling only, these two 

noise voltages will be equal and denoted simply by ˆ
NV .

The more detailed lumped‐parameter circuit model of the capacitive coupling is 
shown in Figure 13.49.

This model is described by:

ĜV  – source of interference (generator circuit)
ˆ

NV  – capacitively induced noise voltage (receptor circuit)

Conductor 1

(generator)

Conductor 2

(receptor)

RNE

+

+

+

+

–
–

–

–

RFE

RL

CGR

V̂ 
S

V̂ 
NE

V̂ 
G V̂ 

FE

RS

Figure 13.48  Model of a capacitive coupling between the circuits.

Conductor 1

(generator)

Conductor 2

(receptor)
RS

RNE
CNE

+

+

1

2
+

–
–

–

RFE
CFE

RL

C1G

C2G

CL

CGR

V̂ 
S

V̂ 
G

V̂ 
N

Figure 13.49  Model of a capacitive coupling between the circuits.
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CGR – mutual capacitance between the generator and receptor circuits
C1G – capacitance between the generator circuit and ground
CL – load capacitance in the generator circuit
C2G – capacitance between the receptor circuit and ground
CNE – near‐end load capacitance in the receptor circuit
CFE – far‐end load capacitance in the receptor circuit

This circuit model can be simplified to that shown in Figure 13.50.
In this model:

CG – total capacitance between the generator circuit and ground
CR – total capacitance between the receptor circuit and ground

The circuit shown in Figure 13.50 can be represented by that shown in Figure 13.51.
It is apparent that the capacitance CG has no effect on the noise voltage, ˆ

NV , and 
therefore the circuit in Figure 13.51 can be further simplified to that in Figure 13.52.

The parallel combination of R and CR results in an impedance of

R C
R

j C

R
j C

R
j RCR

R

R

R

1

1 1
	 (13.171)

The voltage divider produces

1ˆ ˆ ˆ
1 1

1
ˆ ˆ

1 1

R
N G G

R

GR R GR

GR GR
G G

R GR GR R

R
Rj RCV V V

R j RC R
j C j RC j C

j C R j C RV V
j RC j C R j R C C

	 (13.172)

Conductor 1

(generator)

Conductor 2

(receptor)
RS

RNE

+

+

+

–
–

–

RFE

RL

CGR

CR

CG

1

2

V̂ 
S

V̂ 
G

V̂ 
N

Figure 13.50  Simplified circuit model.
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And thus the noise voltage induced in the receptor circuit due to the capacitive cou-
pling is

ˆ ˆ
1

GR

GR R
N G

GR R

Cj
C CV V

j
R C C

	 (13.173)

The Bode plot of this voltage is shown in Figure 13.53.
Equation (13.150) can be written as

1 1
ˆ ˆ ˆ

GR
GRGR R

N G G
GR R

GR R

Cj j C RC CV V V
j R C Cj

R C C

	 (13.174)

When

j R C C
R C CGR R

GR R
1 1 	 (13.175)

Equation (13.174) simplifies to
ˆ ˆ

N GR GV j RC V 	 (13.176)

R = RNE||RFE

+

1 2

+
+

–––

CGR

CG CR
V̂ 

NV̂ 
GV̂ 

G

Figure 13.51  Circuit representation.

R = RNE||RFE

+

1 2
+

––

CGR

CR V̂ 
NV̂ 

G

Figure 13.52  Equivalent circuit.



Foundations of Electromagnetic Compatibility398

Inequality (13.175) can be written as

R
C CGR R

1 	 (13.177)

In most practical cases this is true (Ott, 2009, p. 46). On the other hand, when

j R C C
R C CGR R

GR R
1 1 	 (13.178)

Equation (13.174) simplifies to

ˆ ˆGR
N G

GR R

CV V
C C

	 (13.179)

Inequality (13.178) can be also written as

R
C CGR R

1 	 (13.180)

Let’s return to Eq. (13.176), valid for frequencies much lower than the corner 
frequency

C
GR RR C C

1 	 (13.181)

Equation (13.176) can be written as

ˆ ˆ ˆ ˆ
N GR G GR G NV j RC V R j C V RI 	 (13.182)

This equation clearly shows why (for electrically small circuits) we model the capaci-
tive coupling as a shunt current source, as shown in Figure 13.54.

1

3 dB

|V̂ 
N|dB

log ω

CGR
VGCGR + CR

VN =

VN = jωRCGRVG

ωC = R(CGR + CR)

Figure 13.53  Capacitively coupled noise voltage, N̂V .
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The mutual capacitance, CRG, and the noise voltage, ˆ
NV , can be reduced by moving 

the conductors further apart, as shown in Figure 13.55.
The mutual capacitance CRG and the noise voltage ˆ

NV  can also be reduced by shield-
ing the receptor circuit. This is shown in Figure 13.56.

Let’s investigate the effect of the shield around the receptor circuit on the noise volt-
age. Figure 13.57 shows the receptor circuit without the shield, while Figure 13.58 shows 
the receptor circuit with the shield.

Note that the shield is grounded (this makes it effective, as we shall see) and the 
receptor circuit extends beyond the shield (this corresponds to a practical 
application).

The model in Figure 13.58 is described by:

CG – total capacitance between the generator circuit and ground
CR – total capacitance between the receptor circuit and ground
CGR – mutual capacitance between the generator and receptor circuits

V̂ 
N

+

–

V̂ 
N

RFERNE

+

–

Î N = jωCGRV̂G

Figure 13.54  Capacitive coupling modeled as a current source.

75 mils separation25 mils separation

Figure 13.55  Reducing capacitive coupling by moving conductors further apart.



Guard line (shield) to reduce the capacitive coupling

Figure 13.56  Reducing capacitive coupling by shielding the receptor circuit.

V̂ 
G

+

+

–
–

V̂ 
N

V̂ 
S

+

–

RFE

RNE

RL

Conductor 1

(generator)

Conductor 2

(receptor)CGR

RS

CG

1

2

CR

Figure 13.57  Capacitive coupling without a shield around the receptor circuit.

V̂ 
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–
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RFE

RNE

RL
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CGS

CRS

CG

1

CR

VS
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Figure 13.58  Capacitive coupling with a shield around the receptor circuit.
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CGS – mutual capacitance between the generator circuit and the shield
CRS – mutual capacitance between the receptor circuit and the shield

The circuit model of the configuration without a shield was presented in Figure 13.52, 
repeated here as Figure 13.59.

Figure 13.60 shows the circuit model of the configuration shown in Figure 13.58 (with 
a shield). Note that the capacitance CGS (between the shield and ground) has no effect 
on the noise voltage, ˆ

NV , (just like the capacitance CG).
Recall the expressions for the noise voltage without the shield:

ˆ 1ˆ ,N GR G
GR R

V j RC V
R C C

	 (13.183a)

1,ˆ ˆGR
N G

GR R GR R

CV V
C C R C C

	 (13.183b)

Comparing the circuits in Figures 13.56 and 13.57 and looking at the Eqs (13.183), we 
write the expressions for the noise voltage for the case of a shield receptor as

1ˆ ˆ ,N GR G
GR R RS

V j RC V
R C C C

	 (13.184a)

ˆ 1,ˆ GR
N G

GR R RS GR R RS

CV V
C C C R C C C

	 (13.184b)

V̂ 
G

+

–

+

–

V̂ 
N

R = RNE||RFE

1 2
CGR

CR

Figure 13.59  Circuit model without a shield.

V̂ 
G

+

–

+

–

V̂ 
N

R = RNE||RFE

1 2
CGR

CR CRS

Figure 13.60  Circuit model with a shield.
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The expressions for the noise voltage in Eqs (13.183a) and (13.184a) look identical. 
The difference is that CGR with a shield is much smaller than CGR without a shield.
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14

In the study of static electric fields, we learned that static distributions of charge led to 
the definition of the two fundamental vectors:

●● electric field intensity E
●● electric flux density D

In the study of static magnetic fields, we will learn that a steady movement of charge 
(dc current) leads to the definition of the remaining two fundamental vectors:

●● magnetic field intensity H
●● magnetic flux density B

Static electric and static magnetic fields, and their corresponding vectors, can be stud-
ied independently. In the time‐varying case, the fields are no longer independent (hence 
the name electromagnetic), and all four vectors are involved in the field description.

14.1  Magnetic Flux Density

Recall that the electric field intensity E at a point in space has been defined in terms of 
the electric force Fe acting on a test charge when placed at that point:

	
E Fe

q
	 (14.1)

We could refer to Eq. (14.1) as an explicit definition of the electric field intensity. 
Equivalently, Eq. (14.1) could be written as

	 F Ee q 	 (14.2)

and we could refer to it as an implicit definition of the electric field intensity.
In a similar manner, we define the magnetic flux density B at a point in space in terms 

of the magnetic force Fm that would be exerted on a charged particle passing with a 
velocity u through that point (Sadiku, 2010, p. 332),

	 F u Bm q 	 (14.3)

Static and Quasi‐Static Magnetic Fields
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Equation (14.3) constitutes an implicit definition of the magnetic flux density. The 
unit of magnetic flux density is Wb/m2.

14.2  Magnetic Field Intensity

In the previous section we defined the magnetic flux density to denote the presence of 
a magnetic field in space. We now define the last important EM vector, the magnetic 
field intensity H as

	 B H	 (14.4)

where μ. the permeability of the medium. Relationship (14.4) is valid in a linear and 
isotropic medium.

Equivalently, Eq. (14.4) can be expressed as

	
H B A

m
	 (14.5)

Note that the relationship (14.4) between the B and H vectors is analogous the one for 
the D and E vectors in static electric field:

	 D E	 (14.6)

14.3  Biot–Savart Law

There are two fundamental laws governing magnetostatic fields:

1)	 Biot–Savart’s law
2)	 Ampere’s law

Like Coulomb’s law, the Biot–Savart law is the general law of magnetostatics. Just as 
Gauss’s law is a special case of Coulomb’s law, Ampere’s law is a special case of the Biot–
Savart law, and is easily applied in problems involving symmetrical current distributions.

Consider Figure 14.1, where a steady current flows through a thin wire. With this cur-
rent, we associate a differential current element, Idl. This current element will produce a 
differential magnetic flux density dB, at an observation point P that is distance R from it.

l
dl

dB

R

P

Figure 14.1  Magnetic field due to a current 
element.
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The Biot–Savart law states the differential magnetic field dB generated by a steady 
current I flowing through a differential length dl is given by (Rao, 2004, p. 49)

	
d I d

R
R

B
l a

0
2 24

Wb
m

T 	 (14.7)

where R is the distance from the current element and aR is the unit vector from the 
current element to the observation point. The direction of the vector dB conforms to 
the right‐hand rule (and is into the page in Figure 14.1).

The constant μ0 is the permeability of free space and is

	
0

74 10 H
m

	 (14.8)

To determine the total magnetic field B due to the current‐carrying conductor, we 
need to sum up the contributions due to all the current elements making up the con-
ductor. Hence, the Biot–Savart law becomes

	
B

l a
0

24 l

RI d

R
	 (14.9)

14.4  Current Distributions

Electric current can be distributed as a line current, a surface current, or a volume cur-
rent, as shown in Figure 14.2.

The differential source elements for all three distributions are related by

	 I d dS dvl K J Am 	 (14.10)

I

K

Kds

Jdv
J

I [A] – line current

KdS [Am] – current element

Jdv [Am] – current element

K [A/m] – surface current density

J [A/m2] – volume current density

Id l

Idl [Am] – current element

Figure 14.2  Various current distributions.



Foundations of Electromagnetic Compatibility406

In terms of the distributed current sources, the Biot–Savart law becomes

	
B K a0

24 S

R

R
dS 	 (14.11)

or

	
B J a0

24 v

R

R
dv	 (14.12)

Equivalently, the Biot–Savart law can be used to obtain the magnetic field intensity H, 
for the line, surface, or volume current distributions:

	
H

l a

l

RI d

R4 2 	 (14.13)

	
H K a

S

R

R
dS

4 2 	 (14.14)

	
H J a

v

R

R
dv

4 2 	 (14.15)

14.5  Ampere’s Law

Recall that in electrostatics we could use Coulomb’s law to obtain the field due to any 
charge distribution. The calculations were much easier using Gauss’s law when sym-
metry in the charge distribution was present.

An analogous situation exists in magnetic fields. To obtain the fields due to any cur-
rent distribution we could use the Biot–Savart’s law, but the calculations are much easier 
using Ampere’s law when there is symmetry in the current distribution.

Ampere’s law states that the line integral of H about any closed path is equal the net 
current enclosed by that path.

	
H ld Ienc

l


	 (14.16)

where the enclosed current is often expressed as

	
I denc

S

J S	 (14.17)

Figure 14.3 illustrates the Ampere’s law.
Positive current and the direction of the integration path are related by the right‐hand 

rule, as shown in Figure 14.3.
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Let’s return to Ampere’s law in Eq. (14.16). According to the Stokes theorem we have

	
H l H Sd d

Sl


	 (14.18)

Comparing the right‐hand sides of Eqs (14.17) and (14.18) we get

	 S S

d dJ S H S	 (14.19)

leading to

	 H J	 (14.20)

Equations (14.16) and (14.20) constitute another pair of the Maxwell equations.

14.6  Applications of Ampere’s Law

In evaluating the line integral in Ampere’s law we are free to choose any closed path 
enclosing the current. When symmetry in the current distribution exists, we choose the 
path that mirrors the symmetry exhibited by the current distribution.

On such a path, H and B vectors are either tangential or normal to it, while constant 
in magnitude. Such a path is called an Amperian path. This allows us to write the line 
integral as

	
H ld Hdl H dl

c cc
 

	 (14.21)

where the closed integral is simply the length of the contour.
We now apply Ampere’s law to determine H for some symmetrical current distribu-

tions as we did for Gauss’s law. We will consider an infinite line current and an infinitely 
long coaxial line.

x

z

y

dll

Figure 14.3  Illustration of the Ampere’s law.
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Example 14.1  Magnetic field of an infinite line of current
Determine the magnetic field due to an infinite line of current, as shown in Figure 14.4.

To determine H at an observation point at a distance ρ from the line, we choose an 
Amperian path as shown in Figure 14.4. According to Ampere’s law we have

	
I d H d H d H

c c c

H l a a
  

2 	 (14.22)

or

	
H I

2
	 (14.23)

Since

	 H aH 	 (14.24)

we obtain the magnetic field intensity vector as

	
H aI

2
	 (14.25)

Example 14.2  Magnetic field around an infinite coaxial line
Determine the magnetic field around an infinite coaxial line shown in Figure 14.5. The inner 
cylinder carries a current I. The outer cylinder carries the same current oppositely directed.

Ampere’s law produces

	
H ld I I Ienc

l

0


	 (14.26)

x

z

y
Hφ

l

dφ
φ

ρ

dl = ρdφ

Figure 14.4  Magnetic field due to an infinite line of current.



Static and Quasi-Static Magnetic Fields 409

Thus

	
H ld

l

0


	 (14.27)

for any closed path surrounding the coaxial line. This can only happen when

	 H 0, b	 (14.28)

Thus, no magnetic field exists outside the (ideal) coaxial cable.

14.7  Magnetic Flux

The magnetic flux through a surface is defined as

	 S

d WbB S 	 (14.29)

The magnetic flux line, or magnetic field line is the path to which B is tangential at 
every point in a magnetic field.

It is the line along which the needle of a magnetic compass will orient itself if placed 
in the magnetic field. For example, the magnetic flux lines due to a straight long wire are 
as shown in Figure 14.6.

Amperian path

a

b

a

b l

l

l

l

Figure 14.5  Coaxial line carrying a 
current I.

Current out
of the page

B

B

Figure 14.6  Magnetic field lines.
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14.8  Gauss’s Law for Magnetic Field

Recall Gauss’s law for electric field: the electric flux passing through a closed surface 
equals the total net charge enclosed by that surface.

	
D Sd Q

S


	 (14.30)

The charge Q is the source of the lines of electric flux, and these lines begin and ter-
minate on positive and negative charge, respectively.

There are no known isolated magnetic charges. For that reason, the magnetic flux 
lines always close form closed paths, and therefore the magnetic flux through a closed 
surface is zero.

This is Gauss’s law for the magnetic field:

	
B Sd

S

0


	 (14.31)

Applying the divergence theorem to Eq. (14.31) we have

	
B S Bd dv

vS

0


	 (14.32)

Equation (14.32) holds for any closed surface, and the volume defined by it. This can 
only happen when

	 B 0	 (14.33)

Equations (14.31) and (14.33) constitute another pair of Maxwell’s equations.

14.9  Maxwell’s Equations for Static Fields

Let’s summarize the four Maxwell equations for static electric and static magnetic 
fields. Each of the equations can be written in either differential or integral form.

	 E 0	 (14.34a)

	
E ld

l

0


	 (14.34b)

	 H 0	 (14.35a)

	
H l J Sd I d

Sl


	 (14.35b)

	 D v 	 (14.36a)

	
D Sd Q dv

v
v

S


	 (14.36b)
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	 B 0	 (14.37a)

	
B Sd

S

0


	 (14.37b)

14.10  Vector Magnetic Potential

The concept of a vector magnetic potential is extremely useful in studying radiation 
from antennas.

To define the vector magnetic potential we use one of the Maxwell’s equations

	 B 0	 (14.38)

and a vector identity

	 A 0	 (14.39)

The vector magnetic potential is defined (implicitly) by

	 B A	 (14.40)

Note that this definition is in agreement with (i.e. does not violate) the Maxwell equa-
tion (14.38). The following discussion illustrates the usefulness of the concept of vector 
magnetic potential.

Recall that if the current distribution is known, we can calculate the magnetic field 
intensity H from the Biot–Savart’s law as

	
H

l a

l

RI d

R4 2 	 (14.41a)

	
H K a

S

R

R
dS

4 2 	 (14.41b)

	
H J a

v

R

R
dv

4 2 	 (14.41c)

The integration involved in these calculations is, in general, very difficult because of 
the cross product and the unit vector calculations.

If the current distribution is known, we can also calculate the vector magnetic poten-
tial A from

	
A

l

l

I d

R
0

4
	 (14.42a)

	
A

K

S

dS

R
0

4
	 (14.42b)
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A

J

v

dv

R
0

4
	 (14.42c)

Then we obtain the magnetic flux density from

	 B A	 (14.43a)

or the magnetic field intensity from

	
H A1 	 (14.43b)

This two‐step process of obtaining B or H is easier than the direct process using Eqs 
(14.41) because the integrations in Eq. (14.42) are easier to perform than those in Eqs 
(14.41). The differentiation operation in Eq. (14.43) is well defined and can be easily 
performed.

14.11  Faraday’s Law

Consider an open surface that has a closed loop contour c surrounding it (think of the 
mouth of a balloon) shown in Figure 14.7. The “balloon” can be inflated or deflated to 
create different surfaces but the contour c needs to stay unchanged.

This contour can be a conducting wire or an imaginary contour of non‐conducting 
material (free space). Magnetic flux passing through the open surface bounded by this 
contour gives rise to an electric field.

Faraday’s law states that

	
E l B Sd d

dt
d

Sc


	 (14.44)

c

E

B
B

B

B

BdSdl

Figure 14.7  Open surface defined by a contour c.
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The line integral in Eq. (14.44) is often referred to as an electromotive force

	
V demf

c

E l


	 (14.45)

The surface integral in Eq. (14.44) is the magnetic flux crossing the contour

	 S

dB S	 (14.46)

Using the notation in Eqs (14.45) and (14.46) Faraday’s law in Eq. (14.44) can be alter-
natively expressed as

	
V d

dtemf 	 (14.47)

This form clearly shows that the induced voltage is directly proportional to the rates 
of change of the magnetic flux. If the loop is electrically small, this induced voltage can 
be anywhere in the loop as shown in Figure 14.8.

The magnitude of this voltage is

	
V d

dtind 	 (14.48)

The polarity of this voltage is determined from Lentz’s law explained next.
The original magnetic field B gives rise to the induced magnetic field Bind. According to 

Lentz’s law the induced magnetic field Bind opposes the change in the original magnetic 
field B.

To facilitate the understating of Lentz’s law, let’s consider several scenarios shown in 
Figure 14.9.

As shown in Figure 14.9, the original magnetic field B can be either pointing up or 
down, and can be either increasing or decreasing. Let’s investigate each case separately, 
and apply Lentz’s rule to determine the direction of the induced magnetic field.

Case 1 – The original field B is pointing up and increasing (Figure 14.10)
The induced field Bind opposes this change. Thus, the induced field Bind is pointing down.

Case 2 – The original field B is pointing up and decreasing (Figure 14.11)
The induced field Bind opposes this change. Thus, the induced field Bind is pointing up.

Case 3 – The original field B is pointing down and increasing (Figure 14.12)

B – time-varying

Vind

Figure 14.8  Induced voltage inserted in the loop.
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The induced field Bind opposes this change. Thus, the induced field Bind is pointing up.
Case 4 – The original field B is pointing up and decreasing (Figure 14.13)

The induced field Bind opposes this change. Thus, the induced field Bind is pointing down.
The knowledge of the direction of the induced field allows us to determine the direc-

tion of the induced current (using the right‐hand rule). This is shown in Figure 14.14.

B – increasing

B – increasing

B – decreasing

B – decreasing

Figure 14.9  Original magnetic field.

B – increasing 

Bind

Figure 14.10  B field pointing up and increasing.

B – decreasing

Bind

Figure 14.11  B field pointing up and decreasing.
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B – increasing 

Bind

Figure 14.12  B field pointing down and increasing.

B – decreasing

Bind

Figure 14.13  B field pointing down and decreasing.

B – increasing 

B – increasing 

Bind

Bind

Bind

Bind

Bind

Bind

Bind

Bind

B – decreasing

B – decreasing

iind

iind

iind

iind

Figure 14.14  Induced current direction.
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Since the induced current flows out of the positive terminal of the induced voltage the 
polarity of the induced voltage is easily determined, as shown in Figure 14.15.

14.12  Inductance Calculations of Structures

The self and mutual inductance was defined in Section 10.1. In this section we will cal-
culate the self inductance of two typical structures encountered in EMC problems: 
coaxial cable and two parallel wires.

Example 14.3  Inductance of a coaxial cable
Consider the coaxial cable shown in Figure 14.16.

The inner cylinder carries a current I. The outer cylinder carries the same current 
oppositely directed. Applying Ampere’s law for the Amperian path shown we have

	

I d H d

H d H

enc
ll

l

H l a a




2 	 (14.49)

and thus

	
H I a b

2
, 	 (14.50)

Vind

Vind Vind

Vind

iind

iind

iind

iind

B – increasing B – decreasing

B – decreasingB – increasing

Bind

Bind

Bind

Bind

Bind

Bind

Bind

Bind

Figure 14.15  Induced voltage polarity.



Static and Quasi-Static Magnetic Fields 417

The magnetic flux crossing the surface ΔS is

	

S a

b

z

l

a

b

d
I

d dz

I l I l

B S a a
0 2

2
1

2
ln bb

a

	 (14.51)

and the inductance of the length l of the cable is

	
L

I

l b
a

H
2

ln 	 (14.52)

while the inductance per unit length is

	
L
l

b
a

H
m2

ln 	 (14.53)

Example 14.4  Inductance of two parallel wires
Consider the two parallel wires shown in Figure 14.17.

The magnetic field generated by the current in each wire is

	
H I a s a

2
, 	 (14.54)

Amperian path

∆S
Hϕ

∆S

I
I

I
I

aa

b
b

Figure 14.16  Coaxial cable.

∆S

Hϕ
Hϕ

I I
aa

s

Figure 14.17  Two parallel wires.
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The magnetic flux due to both wires is

	

2 2
2

1
0S a

s a

z

l

a

s a

d I d dz

Il

B S a a

IIl s a
a

Il s
a

ln ln
	 (14.55)

The inductance of the section of length l is

	
L

I

l s
a

s
a

ln , 5 H 	 (14.56)

while the inductance per unit length is

	
L
l

s
a

s
a

0 5ln , H
m

	 (14.57)

14.13  Magnetic Boundary Conditions

If the magnetic field exists in a region consisting of two different media, even though it 
may be continuous in each medium, it may be discontinuous at the boundary between 
them, as illustrated in Figure 14.18.

Boundary conditions specify how the tangential and normal components of the field 
in one medium are related to the components of the field across the boundary in another 
medium.

We will derive a general set of boundary conditions, applicable at the interface 
between any two dissimilar media, be they two different dielectrics, or a conductor and 
a dielectric.

Even though these boundary conditions will be derived for electrostatic conditions, 
they will be equally valid for time‐varying electromagnetic fields.

H2

B2

H1

B1

Medium 2

Medium 1

Figure 14.18  Discontinuity at the boundary between two media.
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In each medium we will decompose the magnetic field intensity H and magnetic flux 
density B into two orthogonal components:

	 H H Ht n	 (14.58a)

	 B B Bt n	 (14.58b)

This is shown in Figure 14.19.
To determine the boundary conditions, we will use Maxwell’s equations for magneto-

static fields:

	
H ld I

L


	 (14.59)

	
B Sd

S

0


	 (14.60)

Let’s consider the closed path abcd shown in Figure 14.20. We will apply Eq. (14.59) 
along this closed path. First, we will break the closed‐loop integral in Eq. (14.59) into the 
integrals along the individual segments:

H2
H2n

H2t

B2

B2t
B2n

H1n
H1t H1 B1B1n

B1t
Medium 2

Medium 1

Figure 14.19  Decomposition into the normal and tangential components.

H2 H2n

H2t

H1n
H1t H1

K
Medium 2

Medium 1

a

d μ2

μ1

c

b ∆l

∆h

Figure 14.20  Evaluating boundary conditions.
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I d d d d d

a

b

b

c

c

d

d

a

C

H l H l H l H l H l


	 (14.61)

Note that the integrals in Eq. (14.41) hold for any length of the integration path. That 
is, we can let any segment length go to zero and the right hand‐side of Eq. (14.61) will 
still be true. If we let h 0 then the contributions to the line integral by the segments 
bc and da go to zero and we have

	
I d d d

a

b

c

d

C

H l H l H l1 2


	 (14.62)

Now, since

	 H H H1 1 1t n	 (14.63a)

	 H H H2 2 2t n	 (14.63b)

we can rewrite Eq. (14.62) as

	

I d d d
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	 (14.64)

or

	
H l H l H ld d d I

a

b

t
c

d

t
C

1 2


	 (14.65)

As Δh → 0, the surface of the loop approaches a thin line of length Δl. Hence, the total 
current I flowing through this line is

	 I K l	 (14.66)

Therefore, Eq. (14.65) becomes

	
K l d d H l H l

a

b

t
c

d

t t tH l H l1 2 1 2 	 (14.67)

or

	
H H Kt t2 1

A
m

	 (14.68)

Thus the tangential component of the magnetic field intensity is discontinuous across 
the boundary between two media.
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Since

	
H B

t
t

1
1

1
	 (14.69a)

	
H B

t
t

2
2

2
	 (14.69b)

we obtain the boundary condition on the magnetic flux density as

	
B B Kt t2

2

1

1
	 (14.70)

When K = 0, i.e. the boundary is free of current or the media are not conductors (for 
K is the free current density), we have

	 H H1 2t t 	 (14.71)

	
B B1

1

2

2

t t 	 (14.72)

This is a very important result that we will utilize when discussing the electromag-
netic wave shielding.

To obtain the boundary conditions on the normal components let’s consider the 
closed cylindrical surface shown in Figure 14.21.

Let’s apply the second of the two Maxwell’s equations

	
B Sd

S

0


	 (14.73)

B2

B2nB2t

B1n

B1t

B1

Medium 1

Medium 2
μ2

μ1

∆h

∆S ρs

n1

n2

Figure 14.21  Evaluating boundary conditions.
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First, we will break the closed surface integral into three integrals as

	
B S B S B S B Sd d d d

side bottom topS
1 2



	 (14.74)

By letting Δh → 0, the contributions to the total flux by the side surface goes to zero.

	
B S B S B Sd d d

bottom topS
1 2



	 (14.75)

Now, since

	 B B B1 1 1t n	 (14.76a)

	 B B B2 2 2t n	 (14.76b)

we rewrite Eq. (14.75) as

	

B S B B n B B n

B

d dS dS
S bottom

t n
top

t n

bottom



1 1 2 2 2 1

1nn
top

ndS dSn B n2 2 1
	 (14.77)

or

	
B S B n B nd dS dS

bottom
n

top
n

S
1 2 2 1



	 (14.78)

leading to

	 B n B n1 2 2 1 0S S 	 (14.79)

Since

	 n n1 2	 (14.80)

we arrive at the boundary condition on the magnetic flux density as

	 B B1 2n n	 (14.81)

Thus, the normal component of B is continuous across the boundary between 
two media.

The corresponding condition on the magnetic field intensity is

	 1 1 2 2H Hn n	 (14.82)

A very important application of the boundary conditions in EMC is when one medium 
is a dielectric and the other is a conductor. The boundary conditions for this case are 
summarized in Figure 14.22 (Paul, 2006, p. 905).
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14.14  EMC Applications

14.14.1  Current Probes

Figure  14.23 shows some typical current probes used in EMC measurements and 
testing.

Electric current can be measured by connecting a current probe directly to a spec-
trum analyzer, as shown in Figure  14.24, or by using a preamplifier as shown in 
Figure 14.25.

A current probe is essentially a transformer, as shown in Figure 14.26. When the probe 
is clamped around a conductor, the conductor is the primary winding and the probe’s 
windings are the secondary. The current in the conductor produces a magnetic field that 
is concentrated in, and circulates around, the core of the probe. By Faraday’s law, this 
circulating magnetic field induces Vind, which is measured by a spectrum analyzer.

The probe is calibrated so that the voltage measurement by the probe, Vind, can be 
translated into the current measurement flowing in the conductor (over the specified 
frequency range). Typically, the probe’s output voltage is specified with the probe termi-
nated in ˆ 50inZ , as shown in Figure 14.27.

During the calibration process the current of known magnitude and frequency is 
passed through the probe and the corresponding induced voltage is measured at that 
frequency.

Then, at each frequency, the ratio of that voltage to current can be calculated:

	

ˆˆ
ˆT

VZ
I

	 (14.83)

Medium 1 Medium 2
Perfect Conductorε, μ, σ
ε0, μ0, σ = ∞

E1
E2 = 0 E field is perpendicular to the

surface of the conductor.

In a perfect conductor all the fields
inside the conductor are zero.

ρs = surface charge density
on the interface

Ks = surface current density
on the interface; it is orthogonal
to the tangential
component of H1.

B field is tangential to the
surface of the conductor.

H2 = 0

B2 = 0

D2 = 0

H1

D1

B1

KS

ρs

Ht1 = Ks
A
m

Dn1 = ρs
C
m2

Figure 14.22  Dielectric‐conductor boundary.
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This quantity is referred to as the transfer impedance of the probe. The unknown 
current measured by the current probe can then calculated from

	
ˆ A

ˆ
ˆ
probe

T

V
I

Z
	 (14.84)

Figure 14.23  Current probes used in EMC.

Figure 14.24  Direct current measurement.
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Figure 14.25  Current measurement using a preamplifier.

Secondary
winding

Primary
winding

Current probe

Hϕ

Î
V̂ind

Conductor

Spectrum
analyzer

Figure 14.26  Current probe is a transformer.

Current probe

Hϕ

I Spectrum
analyzer

ZinVind

+

–

Conductor

Figure 14.27  Current probe terminated in 50 Ω.
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The transfer impedance is specified in dBΩ instead of the values in Ω.

	
20log

ˆˆ
ˆ dBT

VZ
I

	 (14.85)

Therefore,

	 dB V dB AdB
ˆ ˆ ˆ

TZ V I 	 (14.86)

This allows a direct determination of the unknown current measured by the current 
probe by a simple subtraction (instead of division):

	
ˆˆ ˆ20log 20log 20logprobe TI V Z 	 (14.87)

and

	 I V Zprobe TdB A dB V dB, , 	 (14.88)

Current probes have an associated calibration chart like the one shown in Figure 14.28.

14.14.2  Magnetic Flux and Decoupling Capacitors

Recall from Section 4.6.3 that when a CMOS gate switches, a current transient is drawn 
from the power distribution system. This current transient flows through both the 
power and ground traces. Both of these traces possess (partial) inductance, as shown in 
Figure 14.29, for a low‐to‐high transition, and in Figure 14.30 for a high‐to‐low transition.
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Figure 14.28  Current probe calibration chart.
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During such transitions, in addition to causing the signal integrity issues (power rail 
collapse and ground bounce), the transient current flows in a large loop, resulting in a 
large magnetic flux crossing that loop (and creating an efficient loop antenna). This is 
shown in Figure 14.31.
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Figure 14.29  CMOS transition from low‐to‐high.

Shorter traces
connecting the ICs

Vp Vcc
Vcc

Lp

VIC

IC2

GND GND

IC1

Vs

VG

LG

Shorter traces
connecting the ICs

+

+

+
–

+

–

––

“Long”supply traces

“Long” supply traces

Figure 14.30  CMOS transition from high‐to‐low.
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One method of reducing this current loop and lowering the flux crossing it is to pro-
vide capacitance (bulk decoupling capacitor Cb) between the power and ground con-
ductors near the switching IC. This is shown in Figure 14.32.

The smaller current loop creates a smaller area for the magnetic flux to penetrate, as 
shown in Figure 14.33.

To further reduce the current loop, we can add a local decoupling capacitor, as shown 
in Figure 14.34.

This results in the smallest current loop as shown in Figure 14.35.

14.14.3  Magnetic Coupling and Shielding

Consider the two circuits shown in Figure 14.36.
Time‐varying current iG(t) flowing in the generator circuit gives rise to the time‐vary-

ing magnetic field HG, which in turn creates the time‐varying flux ΨGR that crosses the 
adjacent receptor circuit.

According to the Faraday’s law this time‐varying flux induces a voltage in the receptor 
circuit. The magnitude of this voltage is

	
v d

dtind
GR 	 (14.89)
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Figure 14.31  Large current loop on CMOS transitions.
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Figure 14.32  Bulk decoupling capacitor effect on the current flow on CMOS transitions.
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Figure 14.33  Bulk decoupling capacitor effect on the current loop on CMOS transitions.
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The polarity of this voltage is governed by Lentz’s law. This induced voltage is shown 
in Figure 14.37.

To obtain the circuit model of this induced voltage, we introduce the concept of the 
mutual inductance between the generator and the receptor circuit, defined as

	
L

iGR
GR

G
	 (14.90)

From Eq. (14.90) we obtain

	 GR GR GL i 	 (14.91)

Substituting Eq. (14.91) into Eq. (14.89) we get

	
v d

dt
d
dt

L i L di
dtind

GR
GR G GR

G 	 (14.92)

or

	
v t L

di t
dtind GR
G 	 (14.93)
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Figure 14.34  Local decoupling capacitor effect on the current flow on CMOS transitions.
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Figure 14.35  Local decoupling capacitor effect on the current loop on CMOS transitions.
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Figure 14.36  Magnetic flux crossing the receptor circuit.
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When the source voltage driving the generator circuit is sinusoidal, the generator 
current and the induced voltage in the receptor circuit are also sinusoidal. The circuit 
analysis is then carried out in the sinusoidal steady‐state in the frequency domain, 
where the time functions are replaced by the corresponding phasors.

	

ˆ

ˆ

ˆ

ind ind

G G

G
G

v t V

i t I
di t

j I
dt

	 (14.94)

Thus, the frequency (phasor) domain induced voltage in the receptor circuit is

	
ˆ ˆ
ind GR GV j L I 	 (14.95)

This voltage is shown in Figure 14.38.
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Figure 14.37  Induced voltage in the receptor circuit.
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Figure 14.38  Frequency domain circuit model.
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This induced voltage will have the effect of creating the near‐end, ˆ
NEV , and far‐end, 

ˆ
FEV , noise voltages in the receptor circuit. Applying the voltage divider rule we get

	
ˆ ˆNE

NE GR G
NE FE

V j L I
R R

	 (14.96a)

	
ˆ ˆFE

FE GR G
NE FE

RV j L I
R R

	 (14.96b)

The mutual inductance, LRG, and the noise voltage, ˆ
NV , can be lowered by reducing 

the area of the receptor circuit. In a multilayer PCB, this can be accomplished by 
moving the ground plane (return path) closer to the signal plane. This is shown in 
Figure 14.39.

The mutual inductance, LRG, and the noise voltage, ˆ
NV , can also be reduced by shield-

ing the receptor circuit. Let’s investigate the effect of the shield around the receptor 
circuit on the noise voltage. Figure 14.40 shows the receptor circuit with a non‐mag-
netic shield placed around it.

Note that the shield is grounded at both ends (which makes it effective, as we shall see).
Since the shield is non‐magnetic, it has no effect on the magnetic properties of the 

medium between the generator and receptor circuit. Thus, the magnetic flux produced 
by the current, ÎG, in the generator wire still crosses the receptor‐ground circuit and 
induces a noise voltage in the receptor circuit. This is modeled by the mutual induct-
ance LGR.

Magnetic flux produced by the current, ÎG, in the generator wire also crosses the 
shield‐ground circuit. This flux induces a voltage in the shield circuit that produces a 
shield current ÎS. This is modeled by the mutual inductance LGS.

54.8 mils separation 12 mils separation

Figure 14.39  Reducing inductive coupling by reducing the area of the receptor circuit.
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The shield current, ÎS, in turn produces a flux that tends to cancel the flux due to the 
generator wire. This is the essence of the reduction of the magnetic or inductive coupling.

The flux generated by the shield current also crosses the shield‐receptor circuit and 
induces another noise voltage into the receptor circuit. This is modeled by the mutual 
inductance LRS.

Thus, there are two voltages induced in the receptor circuit, and they are of the oppo-
site polarities, as shown in Figure 14.41.
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Figure 14.40  Inductive coupling with a shield around the receptor circuit.
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jωLGSÎ G
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Figure 14.41  Equivalent circuit model for inductive coupling.
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With the shield present, the near‐end, ˆ
NEV , and far‐end, ˆ

FEV , noise voltages in the 
receptor circuit are

	
ˆ ˆ ˆNE

NE GR G RS S
NE FE

RV j L I L I
R R

	 (14.97a)

	
ˆ ˆ ˆFE

FE GR G RS S
NE FE

RV j L I L I
R R

	 (14.97b)

The shield is modeled by the shield resistance, RSH, and shield self inductance, LSH. 
The shield current equals

	

ˆ
ˆ GS G
S

SH SH

j L I
I

R j L
	 (14.98)

Also, the self inductance of the shield is equal to the mutual inductance between the 
receptor and the shield (Ott, 2009, p. 59)

	 L LSH RS 	 (14.99)

Also, the mutual inductance between the generator and receptor circuit is equal to 
the mutual inductance between the generator and the shield (Ott, 2009, p. 61; Paul, 226, 
p. 655)

	 L LGR GS	 (14.100)

Substituting Eq. (14.98) into Eqs (14.97) and utilizing Eqs (14.99) and (14.100) 
we obtain

	   

ˆ ˆNE SH
NE GR G

NE FE SH SH

effect of shield

R RV j L I
R R R j L



	 (14.101a)

	   

ˆ ˆFE SH
FE GR G

NE FE SH SH

effect of shield

R RV j L I
R R R j L



	 (14.101b)

For electrically short lines

	

ˆˆ S
G

S L

VI
R R

	 (14.102)

Utilizing Eq. (14.102) in Eqs (14.101) we get

	   

ˆ ˆ
NE GR SH

NE FE S L SH SHNE S

effect of shield

R L R
R R R R R j LV j V



	 (14.103a)
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ˆ ˆ
FE GR SH

NE FE S L SH SHFE S

effect of shield

R L R
R R R R R j LV j V



	 (14.103b)

The effect of the shield is reflected in the shielding factor (SF):

	
SF R

R j L
SH

SH SH
	 (14.104)

or

	

SF
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1
	 (14.105)

where
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R
L

	 (14.106)
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Figure 14.42  Effect of the shield.
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For frequencies much less than the shield break frequency, the shielding factor can be 
approximated as

	

SF j
C C

1

1 1	 (14.107a)

while for the frequencies much greater than the shield break frequency it can be 
approximated as

	

SF j j j
R

j L
C C

C SH

SH
C

1

1

1
	 (14.107b)

These results are shown in Figure 14.42.
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15

In the previous chapter we reviewed the static electric fields due to stationary charge 
distributions, and static magnetic fields due to charges moving at constant speed, i.e. dc 
currents.

With one exception, the two static fields are independent of each other, allowing us to 
study them separately. The only time the static fields are linked is in a lossy medium, 
where the current density J and the electric field intensity E are related by the conduc-
tivity of the medium as

	 J E	 (15.1)

The E field produces the current density J, which in turn creates the magnetic field.
When the charge distributions and currents vary with time the electric and magnetic 

fields will also vary with time. When the resulting fields are quasi‐static (slowly varying) 
we can study them separately. When the electric and magnetic fields vary rapidly with 
time they become coupled – the time‐varying electric fields produce the time‐varying 
magnetic fields, and conversely, the time‐varying magnetic fields produce the time‐
varying electric fields.

This field coupling is the key factor in the study of the electromagnetic waves, trans-
mission lines, and antennas, which is the subject of the next three chapters.

15.1  Eddy Currents

In this section we will discuss volume and surface induced electric currents in solid 
conducting bodies, when exposed to time‐varying magnetic field (flux).

These currents (called eddy currents) are induced in conductors by a changing 
magnetic field, due to Faraday’s law of induction. Eddy currents flow in closed loops 
within conductors, in planes perpendicular to the magnetic field that induced them.

The eddy current density, Jeddy, is related to the induced electric field intensity Eind by

	
J Eeddy ind	 (15.2)

where σ is the conductivity of the material.
Figure 15.1 shows the original induced fields and current densities on the surface of a 

conducting body.

Rapidly Varying Electromagnetic Fields
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As a consequence of eddy currents, electric power is dissipated as heat in a conduct-
ing medium due to the resistance of the medium; this is the principle of induction 
heating.

Another important consequence of eddy currents is the magnetic field that they pro-
duce. By Lentz’s law, an eddy current creates an induced magnetic field that opposes the 
change in the magnetic field that created it.

While the induced magnetic field in thin wire circuits is practically always negligible 
with respect to the original magnetic field, this often is not the case in solid volume 
conductors.

The induced eddy current density is largest on the surface of the conducting body 
and decreases exponentially due to the skin effect for harmonically varying magnetic 
fields.

As we shall see, eddy currents play an important role in magnetic field shielding.

15.2  Charge‐Current Continuity Equation

In this section we consider one of the fundamental principles of electromagnetics – the 
charge‐current continuity equation, which is the mathematical expression of the prin-
ciple of conservation of charge.

For an arbitrary surface S, the total current flowing through it can be defined as the 
flux of the volume current density vector J (in units of A/m2), through the surface S

	
I d

S

J S	 (15.3)

For a closed surface S, the outward flux of the current density becomes

	
I d

S

J S


	 (15.4)

Eind

Bind

Jeddy

B
Figure 15.1  Eddy currents on the surface of a 
conducting body.
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which represents the total outward flow of current. Now, current is also defined as the 
flow of charge. Thus, the net current I flowing across S out of v is equal to the negative 
rate of change of Q:

	
I

dQ

dt
d
dt

dv
v

v 	 (15.5)

where ρv is the volume charge density in v. Assuming the volume and the surface to be 
stationary in time, we obtain

	


v
S v

dd dv
dt

J S 	 (15.6)

By applying the divergence theorem, we can convert the surface integral of J into a 
volume integral of its divergence, which then gives

	
J S Jd dv d

dt
dv

S v v
v



	 (15.7)

For a stationary volume v, the time derivative operates on ρv only. Hence, we can 
move it inside the integral and express it as a partial derivative of ρv:

	 v v

vdv
t

dvJ 	 (15.8)

Therefore,

	
J v

t
	 (15.9)

or

	
J v

t
0	 (15.10)

which is known as the charge‐current continuity equation in differential form. Its inte-
gral form can be expressed as (Sadiku, 2010, p. 192)

	
J Sd

t
dv

S v

v


0	 (15.11)

As we shall see, the continuity equation, together with Maxwell’s equations and the 
constitutive medium relations, provide a complete set of equations needed to describe 
a general electromagnetic problem.

15.3  Displacement Current

Recall Ampere’s law from electrostatics. It states that the line integral of the static mag-
netic field H about any closed path must equal the total conduction current enclosed by 
the path. This is the total current bounded by the contour that is due to free charges.
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I d denc

C S

H l J S


	 (15.12)

Applying the Stokes theorem to Eq. (15.12), we obtain

	
I d denc

c S

H l H S


	 (15.13)

Comparing the right‐hand sides of Eqs (15.12) and (15.13) leads to

	 H J	 (15.14)

Equation (15.14) is often referred to as Ampere’s law in differential form. It is also one 
of the Maxwell equations for the static magnetic fields.

Taking the divergence of Eq. (15.14) we obtain

	 H J0 	 (15.15)

Since the divergence of the curl of any vector field is identically zero, Eq. (15.15) 
implies that

	 J 0	 (15.16)

However, the charge‐current continuity relation requires that

	
J v

t
	 (15.17)

which shows that Eq. (15.17) can only be true if

	
v

t
0	 (15.18)

This is an unrealistic limitation. To overcome this difficulty, Maxwell postulated the 
existence of displacement current density Jd which can exist even in a nonconducting 
and free space medium. After adding the displacement current to the right‐hand side of 
Eq. (15.14), Maxwell obtained

	 H J Jd	 (15.19)

where Jd is yet to be determined. Again taking the divergence of Eq. (15.19), we have

	 H J J J J0 d d	 (15.20)

or

	 0 J Jd 	 (15.21)

thus

	
J Jd

v

t
	 (15.22)

Now, recall the differential form of the Gauss’s law

	 v D	 (15.23)
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where D is the electric flux density. Substituting Eq. (15.23) into Eq. (15.22) we get

	
J D D

d
v

t t t
	 (15.24)

or

	
J D

d t
	 (15.25)

Substituting Eq. (15.25) into Eq. (15.19) results in

	
H J D

t
	 (15.26)

This is Maxwell’s equation for time‐varying fields. It shows us that a time‐varying 
electric field produces a magnetic field. If we take the surface integral of both sides Eq. 
(15.26) over an arbitrary open surface S with contour C, we have

	 S S S

d d
t

dH S J S D S	 (15.27)

Applying Stokes’s theorem to the right‐hand side of Eq. (15.27) we obtain

	
H l J S D Sd d

t
d

S S S


	 (15.28)

Equation (15.28) can be written in a more general form as

	
H l J S D Sd d d

dt
d

S S S


	 (15.29)

Equation (15.29) is known as the integral form of Maxwell’s equation (Rao, 2004, 
p. 102). The quantity H is the magnetic field intensity vector in A/m. The quantity 
J is the current density vector in A/m2. The quantity D is the electric flux density 
in C/m2.

The two terms on the right‐hand side of Eq. (15.29) are:

	
I d Ac

S

J S 	 (15.30)

the total conduction current that penetrates the surface S bounded by the contour 
C. – this current is due to free charges – and

	
I d

dt
d Ad

S

D S 	 (15.31)

the total displacement current that penetrates the surface S bounded by the contour C. 
This current is due to time‐varying electric flux.

As was the case with Faraday’s law, any surface shape is suitable so long as contour C 
bounds it. Only the J and D that pass through the opening contribute, as shown in 
Figure 15.2.
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15.4  EMC Applications

15.4.1  Grounding and Current Return Path

The term grounding in our discussion here means that the current return path is through 
the ground plane (or ground conductor), as illustrated in Figure 15.3.

The ground conductor has a non‐zero impedance:

	 Z R j LG G G	 (15.32)

At low frequency, the resistance RG is the dominant factor. At high frequency, the 
inductance LG is the dominant factor.

Consider a two‐sided PCB with a single trace on top and full copper ground plane on 
the bottom, shown in Figure 15.4. At points A and B, vias connect the top trace to the 
ground plane.

The forward current flows on the top trace as shown in Figure 15.5.
How does the return current flow back to the source? The return current has a few 

options: the direct path from A to B or an alternative path underneath the top trace, or 
a combination of both, as shown in Figure 15.6.

At low frequencies, the ground current will take the path of least resistance (which 
corresponds to the path of the lowest impedance). This is shown in Figure 15.7.

D

DD

DD

dSdl
Hc

dS

J

J

J

J

J

Figure 15.2  Illustration of the Ampere’s law – Maxwell’s equation.

Return current

Circuit

VS

RS

ZG

–
+ RL

Figure 15.3  “Ground” conductor return 
current.
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Thus the return current will take the lowest resistance, direct path from A to B, shown 
in Figure 15.8.

At high frequencies, the return current will take the path of least inductance, which is 
directly underneath the trace, because this represents the smallest loop area (smallest 
inductance). This is shown in Figures 15.9 and 15.10.

Let’s confirm the above analysis with measurement and simulation results. Figure 15.11 
shows the experimental setup used for the return current measurements.

The details of the circuit being investigated are shown in Figure 15.12.
Figure 15.13 presents a circuit diagram of the measurements setup.
The signal from the function generator travels along the center conductor of the coax 

cable and through the 50 Ω resistor. The return current has two different paths to return 

A

B

A

B

Vias

Top side

Bottom side
(solid copper)

Figure 15.4  PCB illustrating the alternative 
current return paths.

Forward current

A

B

A

B

Figure 15.5  Forward current flow.

Return path under
the top trace

Direct return path
from B to A

B

A

Figure 15.6  Return current alternative paths.
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to the source: a direct path over the copper wire or the path through the shield of the 
coax cable. A current probe is placed over the copper wire, and a sinusoidal signal is 
generated by the function generator. The frequency of this signal is varied and current 
through the copper wire is measured.

Figure 15.14 shows the measurement results.
As expected, as the frequency increases more current returns through the shield, as it 

provides the lower impedance path than the direct copper wire.

Forward current

Low-frequency
return current

A

B

A

B

Figure 15.7  Low‐frequency return current path.

High resistance path

B

B

A

Lowest resistance path A

Figure 15.8  Low‐frequency current will take the lowest resistance path.



Rapidly Varying Electromagnetic Fields 447

Figure 15.15 shows simulation results for the two‐sided PCB described and analyzed 
in this section.

At low frequencies (1–100 kHz) the majority of the return current is through the 
direct path of least resistance. As the frequency is increased to 500 k–1 MHz, the cur-
rent splits between the two paths. At high frequencies (10–100 MHz) the majority of the 
return current flows underneath the top trace through the path of least inductance.

High-frequency
return current

A

A

B

B

Forward current

Figure 15.9  High‐frequency return current path.

Lowest inductance path

High inductance path

B

A

A

B

Figure 15.10  High‐frequency current will take the lowest inductance path.
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15.4.2  Common‐Impedance Coupling

For common impedance coupling to occur, two circuits must share a current path (with 
a non‐negligible impedance). Before we discuss the common‐impedance coupling let’s 
consider a couple of scenarios when the common impedance coupling does not occur.

Consider the circuit shown in Figure 15.16. The current flows from the source to the 
load, and returns to the source through a zero‐impedance ground path.

The voltage at the load (with respect to ground is)

	 ˆ ˆ
L LV R I 	 (15.33)

Now, let’s consider the case where the return path has a non‐zero ground impedance, 
as shown in Figure 15.17.

Figure 15.11  Experimental setup for the return current measurements.

Figure 15.12  Circuit used for the return current measurements.
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Now the voltage at the load (with respect to ground is)

	 ˆˆ ˆ ˆ
L L GV R I Z I 	 (15.34)

Obviously the ground impedance, Ẑ G, affects the value of the load voltage, but no 
other circuit influences this value or is impacted by this ground impedance – there is no 
impedance coupling (since there is no other circuit to be coupled).

Now consider the situation shown in Figure 15.18 where two circuits share the ground 
return path with zero impedance.

Forward path

Low frequency
return path

High frequency
return pathReturn path

50 Ω

+

Figure 15.13  Circuit diagram of the measurement setup.

10 kHz

100 kHz

500 kHz 19

69

109

VPP
(mV )

Frequency
(kHz)

f = 100 kHz

f = 10 kHz
f = 500 kHz

Figure 15.14  Coax cable measurement results.
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The voltages at the loads are

	 1 1 1
ˆ ˆ

L LV R I 	 (15.35a)

	 2 2 2
ˆ ˆ

L LV R I 	 (15.35b)

Even though the two circuits share the return path, the load voltage of circuit 1, 1
ˆ

LV , 
is not affected by the return current of circuit 2, Î2; similarly, the load voltage of circuit 
2, 2

ˆ
LV , is not affected by the return current of circuit 1, 1̂I .

1kHz 500kHz100kHz 1MHz 10MHz 100MHz

Figure 15.15  Two‐sided PCB simulation results.

ẐG = 0

RL

+

–

RS

V̂S

Î

Î

+
–

V̂L

Figure 15.16  Current returns to the source through a zero‐impedance ground path.

+
–

ẐG

RL

+

–

RS

V̂S

Î

Î

+
–

V̂L

V̂G

Figure 15.17  Current returns to the source through non‐zero impedance ground.
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There is no impedance coupling between the circuits (since there is no common 
impedance shared by both circuits).

Finally, consider the situation shown in Figure  15.19 where two circuits share the 
ground return path with a non‐zero impedance.

The voltages at the loads are

	 1 1 1 1 2
ˆˆ ˆ ˆ ˆ

L L GV R I Z I I 	 (15.36a)

	 2 2 2 1 2
ˆˆ ˆ ˆ ˆ

L L GV R I Z I I 	 (15.36b)

Now the load voltage of circuit 1, 1
ˆ

LV , is affected by the return current of circuit 2, Î2; 
similarly, the load voltage of circuit 2, 2

ˆ
LV , is affected by the return current of circuit 1, Î1.

This type of coupling is called the common‐impedance coupling.

ẐG = 0 

RL1

RL2

Î G = Î 1 + Î 2

Î 2

+

+

–

–

Î 2

Î 1

RS2

RS1

+

+
–

–V̂S1

V̂S2

V̂L1

V̂L2

Figure 15.18  Two circuits share a zero‐impedance ground path.
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Î G = Î 1 + Î 2

Î 2
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–V̂S1 V̂G

–
+

V̂S2

V̂L1
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Figure 15.19  Common‐impedance coupling circuit
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16

Recall two of the Maxwell’s equations for source‐free media:

	
E H

t
	 (16.1)

	
H E E

t
	 (16.2)

These equations state that time variations of the magnetic and electric fields give rise 
to space variations of the electric and magnetic fields, respectively. This interdepend-
ence of the space and time variations gives rise to the electromagnetic wave 
propagation.

In general, electric and magnetic fields have three non‐zero components, each of 
them being a function of all three coordinates and time. That is,

	 E E x y z t E x y z t E x y z tx y z, , , , , , , , ,         , , 	 (16.3a)

	 H H x y z t H x y z t H x y z tx y z, , , , , , , , ,         , , 	 (16.3b)

In the following discussion we will focus on a simple and very useful type of wave: the 
uniform plane wave. Uniform plane waves not only serve as a building block in the study 
of electromagnetic waves but also support the study of wave propagation on transmis-
sion lines and wave radiation by antennas (Paul, 2006, p. 909).

16.1  Uniform Waves – Time Domain Analysis

To derive the uniform plane wave equations we will use the two Maxwell’s equations 
(16.1) and (16.2). To this end, we first need to make two assumptions: (1) we need to 
choose the direction of either the electric field intensity vector E or the magnetic field 
intensity vector H, and (2) we need to choose the plane in which these two vectors lie.

Let’s choose the direction of the electric field intensity vector as

	 E E x y z tx , , ,     , ,0 0 	 (16.4)

and let’s choose the plane in which both vector lie as the plane parallel to the xy plane 
(Paul, 2006, p. 445).

Electromagnetic Waves
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Since the wave is uniform in the plane it follows that Ex is not a function of the position 
in the plane, i.e. it is not a function of x or y,

	 E E z tx , , ,0 0 	 (16.5)

and therefore

	
E
x

x 0	 (16.6a)

	

E
y
x 0	 (16.6b)

In terms of the components, the first Maxwell’s equation (16.1) can be written as

	

E a aE
y

E
z

E
z

E
x

E
x

E
y

z y
x

x z
y

y x a

a a a

z

x
x

y
y

z
z

H
t

H
t

H
t

	 (16.7)

Utilizing Eqs (16.5) and (16.6) we get

	
0 0a a a a a ax

x
y z

x
x

y
y

z
z

E
z

H
t

H
t

H
t

	 (16.8)

Thus

	
H
t

x 0	 (16.9a)

	
E
z

H
t

x y 	 (16.9b)

	
H
t

z 0	 (16.9c)

Since magnetic field intensity is a time‐varying quantity, the only way to satisfy equations 
(16.9a) and (16.9c) is when

	 Hx 0	 (16.10a)

	 Hz 0	 (16.10b)

Therefore, the magnetic field intensity vector H has only a y component

	 H 0 0, ,  Hy 	 (16.11)

related to the electric field intensity by Eq. (16.9b). Thus, the E and H vectors are 
orthogonal, as shown in Figure 16.1.

Since the wave is uniform in the plane, it follows that Hy is not a function of x or y,

	 H 0 0, ,H z ty , 	 (16.12)
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and therefore

	
H
x

y 0	 (16.13a)

	

H
y

y 0	 (16.13b)

The second Maxwell’s equation (16.2) can be written in terms of the components as

	

H a aH
y

H
z

H
z

H
x

H
x

H
y

z y
x

x z
y

y x a

a a

z

x
x

x y
y

y z
zE E

t
E

E
t

E E
t

az

	 (16.14)

Utilizing Eqs (16.12) and (16.13) we get

	

H
z

E E
t

y
x y z x

x
x y za a a a a a0 0 0 0 	 (16.15)

and thus

	
H
z

E E
t

y
x

x 	 (16.16)

Therefore, the uniform plane wave is described by a set of coupled partial differential 
equations:

	
E z t

z
H z t

t
x y, ,  

	 (16.17a)

	
H z t

z
E z t

E z t
t

y
x

x,
,

,  
	 (16.17b)

Direction of
propagation

E

H

x

z

y

Figure 16.1  Uniform plane wave.
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This set of equations can be decoupled as follows. Differentiating Eq. (16.17a) with 
respect to time results in

	

2 2

2

E z t
z t

H z t
t

x y, ,  
	 (16.18a)

while differentiating Eq. (16.17b) with respect to z produces

	

2

2

2H z t
z

E z t
z

E z t
t z

y x x, , ,   
	 (16.18b)

Substituting Eqs (16.17a) and (16.18a) into Eq. (16.18b) gives

	

2

2

2

2

H z t
z

H z t
t

H z t
t

y y y, , ,   
	 (16.19)

or

	

2

2

2

2

H z t
z

H z t
t

H z t
t

y y y, , ,   
	 (16.20)

This is the first of the decoupled equations. To obtain the second equation, we differ-
entiate Eq. (16.17a) with respect to z and Eq. (16.17b) with respect to time. The result is

	

2

2

2E z t
z

H z t
t z

x y, ,  
	 (16.21a)

	

2 2

2

H z t
z t

E z t
t

E z t
t

y x x, , ,   
	 (16.21b)

Now, substitute Eq. (16.19b) into Eq. (16.19a) to obtain

	

2

2

2

2

E z t
z

E z t
t

E z t
t

x x x, , ,   
	 (16.22)

or

	

2

2

2

2

E z t
z

E z t
t

E z t
t

x x x, , ,   
	 (16.23)

This is the second decoupled wave equation. For source‐free and lossless medium 
(σ = 0) the wave equations in (16.23) and (16.20) simplify to

	

2

2

2

2

E z t
z

E z t
t

x x, ,  
	 (16.24a)

	

2

2

2

2

H z t
z

H z t
t

y y, ,  
	 (16.24b)

Both equations have the same mathematical form, and therefore their solutions will 
have the same mathematical form. A solution of Eq. (17.24a) is known to be (Rao, 
2004, p.174)
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E z t f t z

vx , 	 (16.25)

where

	
v 1 	 (16.26)

and f is an arbitrary twice‐differentiable function. Let’s verify it, because this verifica-
tion will reveal a very interesting fact about this solution.

Let

	
t z

v
	 (16.27)

then

	
E z t f f t z

vx , 	 (16.28)

Using the chain rule for differentiation, the partial derivatives of Ex with respect to t 
and z can be expressed as

	
E z t

t
f

t
fx , 

	 (16.29a)

and

	
E z t

z
f

z v
fx , 1 	 (16.29b)

In a similar manner, we obtain the expressions for the second derivatives

	

2

2

2

2

E z t
t t

E z t
t t

f

f

x x, ,  

tt
f2

2

	 (16.30a)

and

	

2

2

2

1

1

E z t
z z

E z t
z z v

f

v
f

x x, ,  

2 2

2

2
1

z v
f

	 (16.30b)

Now, substitute Eqs (16.30) into Eq. (16.24a) to obtain

	
1 1
2

2

2 2

2

2v
f

v
f

	 (16.31)
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Using Eq. (16.27) in Eq. (16.31) we get

	
1 1
2

2

2 2

2

2v
f

v
f

	 (16.32)

which verifies that Eq. (16.28) is a solution of Eq. (16.24a). In a similar fashion, it can be 
shown that any twice‐differentiable function of the form

	
E z t g t z

vx , 	 (16.33)

is also a solution of Eq. (16.24a). Thus, the general solution of Eq. (16.24a) is

	
E z t Af t z

v
Bg t z

vx , 	 (16.34)

Note that

	
f z t f t z

v
, 	 (16.35a)

while

	
f z z t t f t t z z

v
, 	 (16.35b)

Now, if

	 z v t	 (16.36)

then Eq. (16.35b) becomes

	

f z z t t f t t z z
v

f t t z v t
v

f t t z

, 

vv
t f t z

v

	 (16.37)

Therefore, after a time Δt, the function f retains the same value at a point that is 
Δz = vΔt away from the previous position in space (defined by z), as shown in Figure 16.2.

This means that an arbitrary function of the form f t z v/  represents a traveling 
wave with a velocity

	
v z

t
1 	 (16.38)

The wave travels in the positive z direction as the time t advances. Similarly, an arbi-
trary function of the form g t z v( )/  represents a wave with a velocity v in the negative z 
direction as the time t advances.

The corresponding solution for Hy(z, t) can be obtained as follows. We begin with 
Eq. (16.9b) repeated here:

	
E
z

H
t

x y 	 (16.39)
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thus

	

H
t

E
z

y x1 	 (16.40)

Using Eq. (16.34) in Eq. (16.40) we get

	

H
t z

Af t z
v

Bg t z
v

A
t

f t z
v

y 1

1
z

t z
v

B
t

g t z
v z

t z
vv

A
f t z

v
t v

B
g t z

v
1

1
t v

1

	

(16.41)

or

	

H
t v A

f t z
v

t
B

g t z
v

t

A
f t z

y 1

vv
t

B
g t z

v
t

A
f t z

v
t

B
g t zz

v
t

	 (16.42)

Integrating Eq. (16.42) with respect to time results in

	

H z t Af t z
v

Bg t z
vy , 1 	 (16.43)

f

z

t

z+Δz

t+ΔtΔz = v Δt

z

v

Figure 16.2  A traveling wave.
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or

	
H z t Af t z

v
Bg t z

vy , 1 	 (16.44)

where, for a lossless medium, the intrinsic impedance of the medium, η, is

	
	 (16.45)

Thus, in summary, the solutions to the wave equations for an arbitrary time‐varia-
tions of the field are

	
E z t Af t z

v
Bg t z

vx , 	 (16.46a)

	
H z t A f t z

v
B g t z

vy , 	 (16.46b)

16.2  Uniform Waves – Sinusoidal Steady‐State Analysis

In the previous section we obtained the solution to the wave equations when the fields 
were arbitrary functions of time. Of particular interest are the sinusoidal variations of 
the fields.

Recall the time domain wave equations for the arbitrary variations of the fields:

	

2

2

2

2

E z t
z

E z t
t

E z t
t

x x x, , ,   
	 (16.47a)

	

2

2

2

2

H z t
z

H z t
t

H z t
t

y y y, , ,   
	 (16.47b)

We wish to obtain the sinusoidal steady‐state phasor version of these equations. 
Recall that differentiation in the time domain corresponds to the multiplication by jω in 
the phasor domain. Thus,

	
 ˆ,x

x
E z t

j E z
t

	 (16.48a)

	
 ˆ,y

y
H z t

j H z
t

	 (16.48b)

and

	

  2
2

2

, , ˆ ˆx x
x x

E z t E z t
j j E z E z

t tt
	 (16.49a)

	
 2

2
2

, ˆy
y

H z t
H z

t
	 (16.49b)



Electromagnetic Waves 461

Also

	
 2 2

2 2

ˆ,x xE z t d E
z dz

	 (16.50a)

	
 2 2

2 2

ˆ,y yH z t d H
z dz

	 (16.50b)

Substituting Eqs (16.48)–(16.50) into Eqs (16.47) we obtain the sinusoidal steady‐state 
wave equations

	

2
2

2

ˆ ˆ ˆx
x x

d E j E z E z
dz

	 (16.51a)

	

2
2

2

ˆ
ˆ ˆy

y y
d H

j H z H z
dz

	 (16.51b)

or

	

2
2

2

ˆ ˆx
x

d E j E z
dz

	 (16.52a)

	

2
2

2

ˆ
ˆy

y
d H

j H z
dz

	 (16.52b)

Now,

	
2 2ˆj j j 	 (16.53)

where

	 ˆ j j 	 (16.54)

is the propagation constant. Using Eq. (16.63) we rewrite the wave equations (16.52) as

	

2
2

2

ˆ ˆˆx
x

d E E z
dz

	 (16.55a)

	

2
2

2

ˆ
ˆˆy

y
d H

H z
dz

	 (16.55b)

The solutions of these equations are of the form

	
ˆ ˆˆˆ ˆz z

xE Ae Be 	 (16.56a)

	
ˆ ˆ

ˆ ˆˆ
ˆ ˆ

z z
y

A BH e e 	 (16.56b)
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where

	
ˆ

ˆ
j j

j
	 (16.57)

is the complex intrinsic impedance of the medium.
Let’s verify that the equations (16.56) are indeed the solutions to Eqs (16.55). 

Differentiating Eqs (16.55) we get

	
ˆ ˆˆ ˆe eˆˆ ˆx z zdE A B

dz
	 (16.58a)

	
ˆ ˆe

ˆ ˆ ˆˆ ˆ
ˆ

e
ˆ

y z zdH
A B

dz
	 (16.58b)

Differentiating Eqs (16.58) again results in

	

ˆ
2

2 2
2

2

ˆ

ˆ ˆ 2

ˆ ˆˆ
ˆ ˆ

ˆ

e e

e eˆ ˆˆ ˆ

x z z

z z
x

d E A B
dz

A B E
	 (16.59a)

	

2 2

2

2

2
ˆ

2

ˆ

ˆ ˆ

ˆ ˆ ˆˆ ˆ
ˆ ˆ

ˆ ˆ ˆˆ ˆ
ˆ

e e

e
ˆ

e

y z z

z z
y

d H
A B

dz
A B H

	 (16.59b)

which confirms that the Eqs (16.56) is the solution of Eqs (16.55).
The solution in Eqs (16.56) is consistent with that presented by Paul (2006, p. 912). 

We simply make the notation change from

	
ˆ ˆ

mA E 	 (16.60a)

	
ˆ ˆ

mB E 	 (16.60b)

to obtain

	
ˆ ˆˆ e eˆ ˆz z

x m mE E E 	 (16.61a)

	
ˆ ˆˆ ˆˆ

ˆ ˆ
e em mz z

y
E EH 	 (16.61b)

Expressing the propagation constant in terms of its real and imaginary parts

	 ˆ j 	 (16.62)

and the complex intrinsic impedance as

	 ˆ e j 	 (16.63)

(α is the attenuation constant in Np/m and β is the phase constant in rad/m) we can 
write the solution in Eqs (16.61) as
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	 e e eˆ ˆ eˆz j z z j z
x m mE E E 	 (16.64a)

	
e eˆ e e e

ˆ ˆ
em j m jz j z z j z

y
E EH 	 (16.64b)

Finally, expressing the complex constant in the exponential form

	 ˆ e j
m m mE E E 	 (16.65a)

	 ˆ e j
m m mE E E 	 (16.65b)

we obtain the solution in phasor domain as

	 ˆ e e e e e ez j z j z j z j
x m mE E E 	 (16.66a)

	
e e e e e eˆ e em j m jz j z j z j z j

y
E EH 	 (16.66b)

which is the form presented by Paul, (2006, Eq. B.65, p. 912).
Examining the equations (16.66), we can immediately write the time domain solution 

by extracting the magnitudes and phases of the complex expressions and inserting them 
into the corresponding time domain sinusoids.

	

e cos

e cos

z
x m

z
m

E E t z

E t z
	 (16.67a)

	

H E t z

E t z

y
m z

m z

e

e

cos

cos
	 (16.67b)

In a lossless medium

	 0	 (16.68a)

	 ˆ 0	 (16.68b)

and with the undetermined constants being real

	 0ˆ
m mE E 	 (16.69a)

	 0ˆ
m mE E 	 (16.69b)

Equations (16.67) become

	 E E t z E t zx m mcos cos 	 (16.70a)

	
H E t z E t zy

m mcos cos 	 (16.70b)
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Note that we could obtain the solution in Eqs (16.70) by directly employing the time 
domain solution obtained in the previous section

	
E z t Af t z

v
Bg t z

vx , 	 (16.71a)

	
H z t A f t z

v
B g t z

vy , 	 (16.71b)

Since

	
f t z

v
t z

v
cos 	 (16.72a)

	
g t z

v
t z

v
cos 	 (16.72b)

	
f t z

v
t z

v
cos 	 (16.72c)

	
g t z

v
t z

v
cos 	 (16.72d)

the solution in Eqs (16.71) becomes

	
E z t A t z

v
B t z

vx , cos cos 	 (16.73a)

	
H z t A t z

v
B t z

vy , cos cos 	 (16.73b)

Expressing the velocity of propagation as

	
v 	 (16.74)

and utilizing the substitutions in Eq. (16.60), we can express Eqs (16.73) as

	 E E t z E t zx m mcos cos 	 (16.75a)

	
H E t z E t zy

m mcos cos 	 (16.75b)

which, of course, agree with Eqs (16.70).

16.3  Reflection and Transmission of Uniform Waves at 
Boundaries

In the next section we will discuss electromagnetic wave shielding. In order to derive 
the equations describing this phenomenon we need to understand the reflection and 
transmission of electromagnetic waves at the boundaries of two media.
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We will consider a normal incidence of a uniform plane wave on the boundary 
between two media, as shown in Figure 16.3.

When the wave encounters the boundary between two media, reflected and transmit-
ted waves are created (Paul, 2006, p. 472).

The incident wave is described by

	 1 1 1ˆˆ ˆ ˆe e ez z j z
i i x i xE EE a a 	 (16.76a)

	
11 1 1

1 1

ˆe e e
ˆ ˆˆ
ˆ

ei i jz z j z
i y y

E EH a a 	 (16.76b)

while the reflected wave is expressed as

	 1 1 1ˆe e eˆ ˆ ˆz z j z
r r x r xE EE a a 	 (16.77a)

	
11 1 1

1

ˆ

1
e e e e

ˆ ˆˆ
ˆ

r r jz z j z
r y y

E EH a a 	 (16.77b)

where the propagation constant and the intrinsic impedance in medium 1 are given by

	 1 1 1 11 1ˆ j jj 	 (16.78a)

	
1

1 1 1
1 1

ˆ j
j

	 (16.78b)

The transmitted wave is represented as

	 2 2 2ˆˆ ˆ ˆe e ez z j z
t t x t xE EE a a 	 (16.79a)

	
22 2 2

2 2

ˆe e e
ˆ ˆˆ
ˆ

et t jz z j z
t y y

E EH a a 	 (16.79b)

Medium 2
μ2, ε2, σ2

Medium 1
μ1, ε1, σ1

x

y
z

Êt

Êr

Ĥt

Ĥr

Êi

Ĥi

Figure 16.3  Reflection and transmission of a uniform wave at the boundary.
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where the propagation constant and the intrinsic impedance in medium 2 are given by

	 2 2 2 2 2 2ˆ j j j 	 (16.80a)

	
2

2 2 2
2 2

ˆ j
j

	 (16.80b)

Recall Eq. (13.138), which states that at the boundary of two media, the tangential 
component of the electric filed intensity is continuous. Thus,

	
ˆ ˆ ˆ 0i r t zE E E 	 (16.81)

or

	
1 1 2ˆ ˆ ˆˆ ˆ ˆe e e 0z z z

i r tE E E z 	 (16.82)

leading to

	 ˆ ˆ ˆ
i r tE E E 	 (16.83)

The boundary condition imposed on the magnetic field, requires that the tangential 
component of the magnetic field intensity must be continuous. Thus,

	
ˆ ˆ ˆ 0i r t zH H H 	 (16.84)

or

	
1 1 2ˆ ˆ

1 1 2

ˆˆ ˆ ˆ
ˆ ˆ ˆ

e e e 0i r tz z zE E E z 	 (16.85)

leading to

	 1 1 2

ˆ ˆ ˆ
ˆ ˆ ˆ

i r tE E E 	 (16.86)

Substituting Eq. (16.83) into Eq. (16.86) results in

	 1 1 2

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

i r i rE E E E 	 (16.87)

or

	

1 1 2 2

1 2 1 2

1 2 1 2

2 1 2 1

1 2 1 2

ˆ ˆ ˆ

1

ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ

1 1

ˆ ˆ

1

ˆ

i r i r

i i r r

i r

i r

E E E E

E E E E

E E

E E

	 (16.88)
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leading to the definition of the reflection coefficient at the boundary as

	
2 1

2 1

ˆ ˆ ˆˆ
ˆ ˆ ˆ

r

i

E
E

	 (16.89)

Thus the reflected wave is related to the incident wave by

	 ˆ ˆ ˆ
r iE E 	 (16.90)

From Eq. (16.83) we get

	 ˆ ˆ ˆ
r t iE E E 	 (16.91)

Substituting Eq. (16.91) into Eq. (16.87) results in

	 1 1 2

ˆ ˆˆ ˆ
ˆ ˆ ˆ

t ii t
E EE E 	 (16.92)

or

	

1 1 1 2

1 1 2 1

1 1 2 1

1 2

1 1 2

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ

1 1 1

ˆ
ˆ ˆ

1

ˆ
2 ˆˆ

i t i t

i i t t

i t

i t

E E E E

E E E E

E E

E E

	 (16.93)

Leading to the definition of the transmission coefficient at the boundary as

	
2

2 1

ˆ ˆˆ
ˆ ˆ ˆ

2t
T

i

ET T
E

	 (16.93)

Thus the transmitted wave is related to the incident wave by

	 ˆˆ ˆ
r iE TE 	 (16.94)

16.4  EMC Applications

16.4.1  Electromagnetic Wave Shielding

Metallic shields are often employed in electronic products in order to decrease the radiated 
emissions or to increase the radiated immunity. This is shown in Figures 16.4 and 16.5, 
respectively.

The shielding effect can be described using the theory of electromagnetic wave 
propagation.

Consider a metallic shield of thickness t surrounded on both sides by air (free space), 
as shown in Figure 16.6.
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Incident on the left surface of this shield is the uniform plane wave. The incident 
wave, ˆ ˆ, i iE H , will be partially reflected, ˆ ˆ, E Hr r , and partially transmitted, 1 1

ˆ ˆ, E H , 
through the shield. The transmitted wave, 1 1

ˆ ˆ, E H , upon arrival at the rightmost 
boundary will be partially reflected, 2 2

ˆ ˆ, E H , and partially transmitted, ˆ ˆ, ttE H  
through the shield.

The incident wave is described by

	 0eˆ ˆ j z
i i xEE a 	 (16.95a)

	
0

0

ˆ
eˆ i j z

i y
EH a 	 (16.95b)

Shield

Electronic device
(source of radiation)

Radiated
emissions

measurement
antenna

Figure 16.4  Shielding to decrease the radiated emissions.

Shield

Electronic device
(tested for radiated
immunity)

External source of radiation

Figure 16.5  Shielding to increase the radiated immunity.
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where

	 0 0 0 	 (16.96a)

	
0

0

0
	 (16.96b)

The reflected wave is described by

	 0eˆ ˆ j z
r r xEE a 	 (16.97a)

	
0

0
e

ˆˆ r j z
r y

EH a 	 (16.97b)

The wave transmitted through the left interface is described by

	 1 1
ˆeˆ ˆ z

xEE a 	 (16.98a)

	
1

ˆ1 e
ˆˆ
ˆ

z
y

EH a 	 (16.98b)

where

	 ˆ j j j 	 (16.99a)

	
ˆ j

j
	 (16.99b)
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Ĥt

Ĥ1
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Figure 16.6  Electromagnetic wave shielding.
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The wave reflected at the right interface is described by

	 2 2
ˆˆ ˆ e z

xEE a 	 (16.100a)

	
2

2
ˆˆˆ

ˆ
e z

y
EH a 	 (16.100b)

Finally, the wave transmitted through the right interface is described by

	 0eˆ ˆ j z
t t xEE a 	 (16.101a)

	
0

0

ˆ
eˆ t j z

t y
EH a 	 (16.101b)

The shielding effectiveness, SE, can be determined by evaluating the ratio of the 
transmitted field magnitude to the incident field magnitude (Ott, 2009, p. 244),

	

ˆ

ˆ
t

E
i

E
SE

E
	 (16.102a)

	

ˆ

ˆ
t

H
i

H
SE

H
	 (16.102b)

Usually, these are expressed in dB, as

	
, 1020lo

ˆ
g ˆ

t
E dB

i

E
SE

E
	 (16.103a)

	
, 1020lo

ˆ
g ˆ

t
H dB

i

H
SE

H
	 (16.103b)

The relative effectiveness of various shield can be determined by the direct field 
measurements. The experimental setup for H field measurements is shown in 
Figures 16.7 and 16.8.

Figure 16.7 shows the unshielded switched‐mode power supply (SMPS) and the 
H‐field probe for the field measurements. Figure 16.8 shows a SMPS with a shield.

The following shields were evaluated:

●● phosphorus‐bronze 8 mils
●● phosphorus‐bronze 15 mils
●● nickel‐silver 8 mils
●● cold‐rolled‐steel 15 mils
●● copper tape 3 mils
●● cold‐rolled‐steel w/holes 15 mils

The results are shown in Figures 16.9–16.13.



Figure 16.7  SMPS with no shield.

Figure 16.8  SMPS with a shield.

Figure 16.9  1 – no shield; 2 – phosphorus‐bronze 8 mils; 3 – phosphorus‐bronze 15 mils.



Figure 16.10  1 – nickel‐silver 8 mils; 2 – phosphorus‐bronze 8 mils.

Figure 16.11  1 – phosphorus‐bronze 15 mils; 2 – cold‐rolled‐steel 15 mils.



Figure 16.12  1 – no shield; 2 – copper tape 3 mils.

Figure 16.13  1 – cold‐rolled‐steel w/holes 15 mils; 2 – cold‐rolled‐steel solid 15 mils.
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17

17.1  Transient Analysis

In the previous chapter we reviewed static electric fields due to stationary charge 
distributions, and static magnetic fields, due to the charges moving at constant speed, 
i.e. dc currents.

A transmission line can be modeled as a distributed parameter circuit consisting a 
series of small segments of length Δz, as shown in Figure 17.1

The distributed parameters describing the transmission line are:

r – resistance per‐unit‐length (Ω/m)
l – inductance per‐unit‐length (H/m)
g – conductance per‐unit‐length (S/m)
c – capacitance per‐unit‐length (F/m)

The transmission line model in Figure 17.1 describes a lossy transmission line. To gain 
an insight into transmission line theory it is very helpful to consider a lossless transmis-
sion line first. Such a transmission line is shown in Figure 17.2.

To obtain the transmission line equations let’s consider a single segment of a lossless 
transmission line shown in Figure 17.3.

Writing Kirchhoff ’s voltage law around the outside loop results in

	
V z t l z

I z t
t

V z z t,
,

, 0	 (17.1)

or

	
V z z t V z t l z

I z t
t

, ,
, 	 (17.2)

Dividing both sides by Δz and taking the limit gives

	
lim

, , ,
z

V z z t V z t
z

l
I z t

t0
	 (17.3)

Transmission Lines
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rΔz lΔz

gΔz cΔz

Δz

Figure 17.1  Circuit model of a transmission line.

lΔz

CΔz CΔz

Δz Δz Δz

CΔz

lΔz lΔz

Figure 17.2  Circuit model of a lossless transmission line.

lΔZ

CΔz

Δz

+ +

– –

z + Δzz

I (z, t) I (z + Δz, t)

V (z + Δz, t)
V (Z, t)

Figure 17.3  Single segment of a lossless transmission line.
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or

	
V z t

z
l

I z t
t

, ,
	 (17.4)

Writing Kirchhoff ’s current law at the upper node of the capacitor results in

	
I z t I z z t c z

V z z t
t

, ,
, 	 (17.5)

or

	
I z z t I z t c z

V z z t
t

, ,
, 	 (17.6)

Dividing both sides by Δz and taking the limit gives

	
lim

, ,
lim

,
z z

I z z t I z t
z

c
V z z t

t0 0
	 (17.7)

or

	
I z t

z
c

V z t
t

, ,
	 (17.8)

Equations (17.4) and (17.5) constitute a set of first‐order coupled transmission line 
equations. These equations can be decoupled as flows.

Differentiating Eq. (17.4) with respect to z gives

	

2

2

2V z t
z

l
I z t
t z

, ,
	 (17.9)

while differentiating Eq. (17.8) with respect to t gives

	

2 2

2
I z t
z t

c
V z t

t
, ,

	 (17.10)

Using Eq. (17.10) in eq. (17.9) produces

	

2

2

2

2
V z t

z
lc

V z t
t

, ,
	 (17.11a)

In a similar manner, we can obtain the second transmission line equation as

	

2

2

2

2
I z t

z
lc

I z t
t

, ,
	 (17.11b)

The general solutions to these transmission‐line equations are (Rao, 2004. Pg. 372)

	
V z t V t z

v
V t z

v
, 	 (17.12a)

	
I z t I t z

v
I t z

v
, 	 (17.12b)
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where

	
I t z

v Z
V t z

vC

1 	 (17.13a)

	
I t z

v Z
V t z

vC

1 	 (17.13b)

ZC is the characteristic impedance of the line

	
Z l

cC 	 (17.14)

The function V t z v/  represents a forward‐traveling voltage wave traveling in 
the +z direction, while the function V t z v/  represents a backward‐traveling voltage 
wave traveling in the −z direction (see Chapter 16 for the detailed explanation).

Similar statements are valid for the current waves. The total solution consists of the 
sum of forward‐traveling and backward‐traveling waves.

The velocity of the wave propagation along the line is given by

	
v

lc
1 	 (17.15)

17.1.1  Reflections on Transmission Lines

To simplify the notation in the following discussion, let’s rewrite the solution in Eqs 
(17.12) in a concise form (Rao, 2004, p. 372)

	 V V V 	 (17.16a)

	 I I I 	 (17.16b)

From Eqs (17.13) we observe that

	
I V

ZC
	 (17.17a)

	
I V

ZC
	 (17.17b)

From Eq. (17.17a) we also note that

	
Z V

IC 	 (17.18)

Consider a transmission line of length L driven by a constant voltage source VS with a 
source resistance RS, and terminated by a resistive load RL, as shown in Figure 17.4.

We assume that no voltage and current exists on the line prior to the switch closing. 
When the switch closes at t = 0, forward voltage and current waves originate at z = 0 and 
travel toward the load.
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Let’s denote these waves as V+ and I+, as shown in Figure 17.5.
Writing a KVL for the circuit in Figure 17.5 we get

	 V R I VS S 0	 (17.19)

Utilizing Eq. (17.18) we obtain

	
V R V

Z
VS S

C
0	 (17.20)

or

	

V V
Z

R V

V R
Z

V

V R Z
Z

V

C
S S

S

C
S

S C

C
S

1 	 (17.21)

and thus

	
V Z

R Z
VC

S C
S 	 (17.22a)

RS

VS
RL

ZC, V

t = 0

z = Lz = 0

Figure 17.4  Transmission line driven by a constant source and terminated by a resistive load.

RS I +

VS V +

+

–

Z = 0

Figure 17.5  Voltage and current forward waves originate at the source.
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I V

Z
V

R ZC

S

S C
	 (17.22b)

Equations (17.22) specify the initial voltage and current values (at location z = 0) that 
will propagate towards the load.

Now, consider the circuit shown in Figure 17.6 and look back at Eqs (17.22).
We quickly realize that Eqs (17.22) apply to this circuit. Thus, the circuits shown in 

Figures 17.6 and 17.5 are equivalent! We may, therefore, say that the source “sees” the 
transmission line as a resistance equal to the characteristic impedance of the line con-
nected across z = 0.

Note that the voltage value that propagates towards the load is not equal to the 
dc  voltage of the source, VS, but is obtained from it using the voltage divider in 
Eq. (17.22a).

The voltage (and current) wave that originated at the source now travels towards the 
load, as shown in Figure 17.7.

As this wave travels along the transmission line, the voltage along the line changes 
from 0 to V+ and remains at that value (for now).

At the time

	
T L

v
	 (17.23)

the voltage and current waves reach the load, as shown in Figure 17.8(a).
Applying Ohm’s law to the circuit shown in Figure 17.8(a) we get

	
V
I

RL	 (17.23)

We know, however, that the ratio of the forward voltage wave to the forward current 
wave must be equal to the characteristic impedance of the line

	
V
I

ZC 	 (17.24)

This contradiction can only be resolved by postulating the creation of reflected waves 
at the load, as shown in Figure 17.8(b). We denote these reflected waves as V− and I−, 
respectively.

VS ZC

RS

z = 0

I +

V +

+

–

Figure 17.6  Equivalent circuit at t = 0.
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The total voltage across the load and total current through the load are

	 V V V 	 (17.25a)

	 I I I 	 (17.25b)

Ohm’s law for the circuit in Figure 17.8(b) produces

	 V V R I IL 	 (17.26)

We refer to the Eq. (17.26) as the boundary condition at the load. Utilizing Eqs (17.17), 
repeated here

	
I V

ZC
	 (17.27a)

	
I V

ZC
	 (17.27b)

we rewrite Eq. (17.26) as

	
V V R V

Z
V
ZL

C C
	 (17.28)

z = 0 z = L

V

V +
V +

Figure 17.7  Voltage wave travels towards the load.

RL RL

z = L z = L

(a) (b)
I + + I –

++

– –

V + V ++ V –

I +

Figure 17.8  Voltage and current waves arrive at the load.
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or

	

V V R V
Z

R V
Z

V R V
Z

R V
Z

V

V R
Z

V R
Z

L
C

L
C

L
C

L
C

L

C

L1
CC

L C

C

L C

C
V R Z

Z
V R Z

Z

1
	 (17.29)

and thus the reflected voltage is related to the incident voltage by

	
V V R Z

R Z
L C

L C
	 (17.30)

The ratio of the reflected (backward‐traveling) wave to the incident (forward‐traveling) 
wave is defined as the voltage reflection coefficient at the load:

	
L

L C

L C

V
V

R Z
R Z

	 (17.31)

Therefore the reflected voltage waveform at the load can be found from the incident 
wave using the reflection coefficient as

	 V VL 	 (17.32)

The current reflection coefficient at the load is

	

I
I

V
Z

V
Z

V
V

C

C

L	 (17.33)

Therefore the reflected current waveform at the load can be found from the incident 
wave using the reflection coefficient as

	 I IL 	 (17.34)

The reflected waves now travel back to the source, as shown in Figure 17.9.
This wave reaches the source at the time

	
T L

v
2 	 (17.35)

The reflected voltage and current waves reach the load, as shown in Figure 17.10(a).
Applying KVL to the circuit shown in Figure 17.10(a) produces

	 V R I I V VS S 0	 (17.36)
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This equation leads to the contradictory conclusions shown next. Utilizing 
Eqs (17.27), repeated here

	
I V

ZC
	 (17.37a)

	
I V

ZC
	 (17.37b)

we rewrite Eq. (17.36) as

	
V R V

Z
V
Z

V VS S
C C

0	 (17.38)

or

	
R
Z

V V V V VS

C
S 	 (17.39)

Now, using Eq. (17.32), repeated here

	 V VL 	 (17.40)

z = 0 z = L

V + + V –
Total voltage

V +
V +

V 

V –

Figure 17.9  Reflected wave travels towards the source.

RS I + + I –

VS V + + V –

+

–

z = 0

RS

(a) (b)

VS
V + + V – + V – +

I + + I – + I – +

+

–

z = 0

Figure 17.10  Reflected voltage and current waves arrive at the source.
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we rewrite Eq. (17.39) as

	

R
Z

V V V V V

V R
Z

R
Z

V

S

C
S

S

C

S

C
S1

	 (17.41)

Using Eq. (17.31) repeated here

	
L

L C

L C

R Z
R Z

	 (17.42)

we get

	
V R

Z
R Z
R Z

R
Z

R Z
R Z

VS

C

L C

L C

S

C

L C

L C
S1 	 (17.43)

or

	
V

R R Z R Z R Z R Z Z R Z
Z R Z

VS L C L C S C L C C L C

C L C
SS	 (17.44)

which reduces to

	
V

R R
R Z

VS L

L C
S

2 	 (17.45)

from which

	
V R Z

R R
VL C

S L
S2
	 (17.46)

But from Eq. (17.22a), repeated here, we have

	
V Z

R Z
VC

S C
S 	 (17.47)

The only way this inconsistency can be resolved is by postulating the creation of the 
(re)reflected waves at the source. These reflected waves are denoted as V−+ and I−+, 
respectively, and shown in Figure 17.11(b).

The total voltage and current at the source are

	 V V V V 	 (17.48a)

	 I I I I 	 (17.48b)

The re‐reflected waves now travel back to the load, as shown in Figure 17.11.
KVL applied to the circuit shown in Figure 17.10(b) produces

	 V R I I I V V VS S 0	 (17.49)
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Utilizing

	
I V

ZC
	 (17.50a)

	
I V

ZC
	 (17.50b)

	
I V

ZC
	 (17.50c)

in Eq. (17.49) we obtain

	
V V V V R

Z
V V VS

S

C
	 (17.51)

Substituting

	
V V Z

R ZS
C

S C
	 (17.52)

in Eq. (17.51) results in

	

V Z
R Z

V V V R
Z

V Z
R Z

V V

V Z
R Z

V

S
C

S C
S

S

C
S

C

S C

S
C

S C
V V V R

R Z
R
Z

V R
Z

V

V Z
R Z

V V R
R Z

S S
S

S C

S

C

S

C

S
C

S C
S S

S

S C
V V R

Z
V R

Z
V

V Z
R Z

R
R Z

V V

S

C

S

C

S
C

S C

S

S C
1 R

Z
V R

Z
VS

C

S

C

	 (17.53)

Now, the left‐hand‐side of Eq. (17.53) simplifies to

	
V Z

R Z
R

R Z
V Z R R Z

R ZS
C

S C

S

S C
S

C S S C

S C
1 0	 (17.54)

z = 0 z = L

V + + V –+ V –+Total voltage

V +V +

V –

V 

V –

 V –+

Figure 17.11  Re‐reflected wave travels towards the load.
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thus

	

0

1

V V R
Z

V R
Z

V

V R
Z

V R
Z

V V

V R
Z

S

C

S

C

S

C

S

C

S

C

R
Z

V

V R Z
Z

R Z
Z

V

S

C

S C

C

S C

C

1
	 (17.55)

or

	
V V R Z

R Z
S C

S C
	 (17.56)

The ratio of the re‐reflected (forward‐traveling) wave to the incident (backward‐
traveling) wave is defined as the voltage reflection coefficient at the source:

	
S

S C

S C

R Z
R Z

	 (17.57)

Thus,

	 V VS 	 (17.58)

Next, we will discuss some special cases of the reflection coefficient.

Short‐circuited line RL = 0  In this case the reflection coefficient is

	
R Z
R Z

Z
Z

L C

L C

C

C

0
0

1	 (17.59)

The reflected voltage is

	 V V VL 	 (17.60)

The total voltage at the load is

	 V V V V Vtotal 0	 (17.61)

The reflected voltage is the negative of the incident voltage, and the total voltage 
across the load is zero. This is consistent with what we would expect across a short 
circuit.

Open‐circuited line RL = ∞  In this case the reflection coefficient is

	

R Z
R Z

Z
R
Z
R

L C

L C

C

L

C

L RL

1

1
1	 (17.62)
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The reflected voltage is

	 V V VL 	 (17.63)

The total voltage at the load is

	 V V V Vtotal 2 	 (17.64)

The reflected voltage wave is equal to the incident wave and the two add up to give the 
total voltage of double the incident value at the load.

Matched line RL = ZC  In this case the reflection coefficient is

	
Z Z
Z Z

C C

C C
0	 (17.65)

The reflected voltage is

	 V VL 0	 (17.66)

The total voltage at the load is

	 V V Vtotal 0 	 (17.67)

There is no reflection at the load; the total voltage at the load is equal to the incident 
voltage only.

Example 17.1  Transmission line reflections
Consider the circuit shown in Figure 17.12.

The experimental setup reflecting this circuit is shown in Figures 17.13. and 17.14.
A 2 Vpp (open‐circuit voltage) pulse signal was sent from the function generator 

along the coaxial cable to the resistive load. The voltages at the source (VS) and 
at  the load (VL) were measured using oscilloscope probes. The source was 
matched  to the transmission line and the load resistance was varied as shown in 
Table 17.1.

Function
generator

RG = 50 Ω t = 0

ZC = 50 ΩVSVG = 2V VL

+

–

z = 12 ft

+

–

z = 0

Load
resistorRL

RG58 coaxial cable

Figure 17.12  Circuit for the load reflection measurements.



Foundations of Electromagnetic Compatibility488

Table 17.1  Resistive load values.

Case 1 RL =   (open circuit)
Case 2 RL = 22 Ω
Case 3 RL = 47 Ω
Case 4 RL = 216 Ω

Figure 17.13  Experimental setup for the load reflection measurements.

Figure 17.14  Experimental setup – load resistance.
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Case 1 RL = ∞   First, the load was terminated in an open circuit. When the switch closes, 
the initial voltage wave is created at location z = 0. The value of this voltage is

	
V V z V Z

R Z
VS G

C

S C
0 2 50

50 50
1

	

and is shown in Figure  17.15. After t = 18 ns (one‐way travel time, T) this waveform 
arrives at the load. The load reflection coefficient is

	
L

L C

L C

R Z
R Z

1
	

The reflected voltage at the load is

	 V VL 1 1 1 V	
The total voltage at the load is

	 V V VL 1 1 2 V	
as shown in Figure 17.15. The voltage reflected at the load ( )V 1 V  travels back to the 
source and reaches it at t = 2 T. The total voltage at the source at t = 2 T is

	 V V VS 1 1 2 V	
Since the source is matched, there is no reflection and the voltage stays at the value of 

2 V, as shown in Figure 17.15.

RL= ∞

2V

1V

36ns

18ns

VS (z= 0)

VL (z=12 ft)

Figure 17.15  Source and load voltages for RL = ∞.
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Case 2 RL = 22 Ω  The initial voltage at location z = 0 is

	 V V zS 0 1 V	
After t = T this waveform arrives at the load. The load reflection coefficient is

	
L

L C

L C

R Z
R Z

22 50
22 50

0 39.
	

The reflected voltage at the load is

	 V VL 0 39 1. 0.39 V	
The total voltage at the load is

	 V V V VL 1 0 39 0 61. . 	
The voltage reflected at the load ( )V 0.39 V  travels back to the source and reaches 

it at t = 2 T. The total voltage at the source at t = 2 T is

	 V V VS 1 0 39. 0.61 V	
Since the source is matched, there is no reflection and the voltage stays at the value of 

0.61 V. These results are shown in Figure 17.16.

RL= 22 Ω

1V
0.61V

VS (z= 0)
VL (z=12 ft)

Figure 17.16  Measurement result for RL = 22 Ω.
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Case 3 RL = 47 Ω  The initial voltage at location z = 0 is

	 V V zS 0 1 V	
After t = T this waveform arrives at the load. The load reflection coefficient is

	
L

L C

L C

R Z
R Z

47 50
47 50

0 03.
	

The reflected voltage at the load is

	 V VL 0 03 1. 0.03 V	
The total voltage at the load is

	 V V VL 1 0 03. 0.97 V	
The voltage reflected at the load ( )V 0.03 V  travels back to the source and reaches 

it at t = 2 T. The total voltage at the source at t = 2 T is

	 V V VS 1 0 03. 0.97 V	
Since the source is matched, there is no reflection and the voltage stays at the value of 

0.97 V. These results are shown in Figure 17.17.

RL= 47 Ω

0.99V

VS (z= 0)

VL (z=12 ft)

Figure 17.17  Measurement result for RL = 47 Ω.
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Case 4 RL = 216 Ω  The initial voltage at location z = 0 is

	 V V zS 0 1 V	

After t = T this waveform arrives at the load. The load reflection coefficient is

	
R Z
R Z

L C

L C

216 50
216 50

0 624.
	

The reflected voltage at the load is

	 V VL 0 624 1. 0.624 V	

The total voltage at the load is

	 V V VL 1 0 624. 1.624 V	

The voltage reflected at the load ( )V 0.624 V  travels back to the source and reaches 
it at t = 2 T. The total voltage at the source at t = 2 T is

	 V V VS 1 0 624 1. .624 V	

Since the source is matched, there is no reflection and the voltage stays at the value of 
1.624 V. These results are shown in Figure 17.18.

Tek Run Trig’d

RL = 216 Ω

1.64 V

VS (z = 0)

VL (z = 12 ft)

–3.30 ns

500 mV

Coupling Impedance Invert Bandwidth Label
More

1

2

a

a

b

b

1

1

On Off 250 MHzAC 50ΩDC 1MΩ1

BW 500 mV 540 mV

28 Jun 2016
05:27:15

5.00 GS/s10.0 ns
16.5000 ns 10k points

BW

00.0 V
–20.8 ns 1.64V

Δ17.5 ns Δ1.64 V

2

T

T
1

Figure 17.18  Measurement result for RL = 216 Ω.
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17.1.2  Bounce Diagram

Consider the circuit shown in Figure 17.19.
When the switch closes, the forward voltage wave travels towards the load and reaches 

it at t = T (T = one‐way travel time). Since the line and the load are mismatched, a reflection 
is created and travels back to the source, reaching it at t = 2 T (assuming zero‐rise time). 
Since the line and the source are mismatched, another reflection is created, which travels 
forward to the load, reaching it at t = 3 T.

This process theoretically continues indefinitely; practically, it continues until the steady‐
state voltages are reached at the source and at the load. A bounce diagram is a plot of the 
voltage (or current) at the source or the load (or any other location) after each reflection.

Let’s create a plot of the voltages at the source and the load for the circuit shown in 
Figure 17.19.

The initial voltage at the location z = 0 is

	
V V Z

R ZG
C

S C
10 75

50 75
6 V

	
This is shown in Figure 17.20.
The reflection coefficient at the load is

	
L

L C

L C

R Z
R Z

216 75
216 75

0 4845.
	

The initial voltage wave of 6 V travels to the load and reaches it at t = T creating a 
reflection

	 V VL 0 4845 6. 2.907 V	
The total voltage at the load (at t T ) is

	 V V VL 6 2 907. 8.907 V	
This is shown in Figure 17.21.
Voltage reflected at the load ( )V 2.907 V  travels back to the source. The reflection 

coefficient at the source is

	
S

S C

S C

R Z
R Z

50 75
50 75

0 2.
	

RS = 50 Ω t = 0

ZC = 75 ΩVG = 10 V VL

z = 6 ft

+

–

z = 0

RL = 216 Ω

RG59 Coaxial cable

Figure 17.19  Circuit used to create bounce diagram.
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VS (z= 0)

6.04V t= 0 (z= 0)

RL= 216 Ω

RS= 50 Ω
ZC= 75 Ω

Figure 17.20  Initial voltage wave at z = 0.

VL (z = 6 ft)

8.96 V

t = T (z = L)

RL = 216 Ω

RS = 50 Ω
ZC = 75 Ω

Figure 17.21  Voltage at the load at t = T.
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The re‐reflected voltage at the source is

	 V VS 0 2 2 907. . 0.5814 V	

The total voltage at the source at t = 2 T is

	 V V V VS 6 2 907 0 5814. . 8.3256 V	

This is shown in Figure 17.22.
The voltage reflected at the source ( )V 0.5814 V  travels towards the load where 

it will create another reflection which will travel towards the source. This process will 
continue until the steady‐state is reached.

The bounce diagram showing the voltages at the source and the load after each reflec-
tion is shown in Figure 17.23.

Figure 17.24 shows the voltages at the source (z = 0), while Figure 17.25 shows the 
voltage at the load (z = L) during the period 0 8t T .

It is apparent that the source and load voltages eventually reach the steady state. 
Recall that a transmission line can be modeled as a sequence of in‐line inductors and 
shunt capacitors. Under dc conditions (steady‐state when driven by a dc source) induc-
tors act as short circuits and capacitors act as open circuits.

Thus in steady state, the circuit in Figure  17.19 is equivalent to the circuit in 
Figure 17.26, where the transmission line is modeled as an ideal conductor.

VS (z= 0)

8.32V
t= 2T (z= 0)

RL= 216 Ω

RS= 50 Ω
ZC= 75 Ω

Figure 17.22  Voltage at the source at t = 2 T.
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The steady state value of the voltage at z = 0 is the same as the value at z = L and can be 
obtained from the voltage divider as

	
VSS

216
50 216

10 8.1203 V
	

17.1.3  Reflections at an Inductive Load

Consider the circuit shown in Figure 17.27 where the transmission line of length d is 
terminated by an inductor L.

VZ = 0 VZ = L
(V)

6
0

6 + 2.907
– 0.5814 =8.3256

– 0.0054 * 0.4845 = – 0.0026

0.0564 * 0.4845 = – 0.027

– 0.5814 * 0.4845 = – 0.282

6 * 0.4845 = 2.907

0.027 * (– 0.2) = – 0.0054

(– 0.282) * (– 0.2) = 0.0564

2.907 * (– 0.2) = – 0.5814

6

6 + 2.907
= 8.907

8.3256 – 0.282
+ 0.0564 = 8.1

8.907 – 0.5814
– 0.282 = 8.044

8.044 + 0.0564
+ 0.027 = 8.127

8.127 – 0.0054
– 0.0026 = 8.119

8.1 + 0.027
– 0.0054 = 8.1216

ΓS = – 0.2

t

(V)

t

0

T

2T

3T

4T

5T

6T

7T

0

T

2T

3T

4T

5T

6T

7T

8T

ΓL= 0.4845

Figure 17.23  Bounce diagram: voltages at the source and the load.

VZ=0
(V)

8.3256

8.1
8.1216

6

t0 T 2T 3T 4T 5T 6T 7T 8T

Figure 17.24  Voltage at the source during 0 8t T .



Transmission Lines 497

The source resistance is matched to the characteristic impedance of the line; it is also 
assumed that the initial current in the inductor is zero

	 iL 0 0	 (17.68)

When the switch closes at t = 0, a wave originates at z = 0, with

	
v V

i
S

2
	 (17.69a)

VZ=L
(V)

8.907

8.044

8.127
8.119

0

t0 T 2T 3T 4T 5T 6T 7T 8T

Figure 17.25  Voltage at the load during 0 8t T .

VL RL=216 Ω

+

–

RS= 50 Ω

VG= 10V

Z= 0 Z=L

Figure 17.26  Equivalent circuit in steady state.

VL L

+

–

VS

ZC t=0

ZC,V vi , ii

iL

vr , ir

Z= 0 Z=d

Figure 17.27  Inductive termination of a transmission line.
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i V

Zi
S

C2
	 (17.69b)

and travels towards the load. When this wave arrives at the load (after the time T), the 
inductor current cannot change instantaneously from zero to the value in (17.69b), KCL 
is violated at z = d, and thus the reflected wave, vr and ir is created (Rao, 2004, p. 394) 
This is shown in Figure 17.28.

The reflected current wave is related to the reflected voltage wave by

	
i v

Zr
r

C
	 (17.70)

The voltage–current relationship for an inductor produces

	
v v L d

dt
i ii r i r 	 (17.71)

or, using Eqs (17.69) and (17.70),

	

V v L d
dt

V
Z

v
Z

S
r

S

C

r

C2 2
	 (17.72)

Since VS and ZC are constant, Eq. (17.72) reduces to

	
V v L

Z
dv
dt

S
r

C

r

2
	 (17.73)

or

	
L

Z
dv
dt

v V v V t T
C

r
r

S
r

S

2
0

2
, , 	 (17.74)

This differential equation in vr was solved in Section  5.4.1. with the result (see 
Eq. 5.111):

	
v d t V V t Tr

S
S

Z L t TC, ,
2

e 	 (17.75)

L

+

–

vi , ii

vi + vr

ii + ir

vr , ir

z = d

Figure 17.28  Creation of a reflected wave at an 
inductive load.
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The corresponding solution for the reflected current wave is

	
i d t

v d t
Z

V
Z

V
Z

t Tr
r

C

S

C

S

C

Z L t TC,
,

, 
 

e
2

	 (17.76)

This reflected voltage wave and reflected current wave travel back to the source; since 
the source is matched to the line, there is no reflection at the source. The total voltage 
across the inductor is

	

v d t v d t v d t
t T

V t T

i r

S
Z L t TC

, , ,
,

,

   

e

0 	 (17.77)

The total current through the inductor is

	

i d t i d t i d t
t T

V
Z

t T

i r

S

C

Z L t TC

, , , 

e

0

1

,

,/
	 (17.78)

Figure 17.29 shows the circuit schematic of a transmission line driven by a 5 V CMOS 
and terminated in an inductive load.

The driver voltage and the voltage across the inductor are displayed in Figure 17.30.

17.1.4  Reflections at a Capacitive Load

Consider the circuit shown in Figure 17.31.
A line of length d is terminated by a capacitor C with zero initial voltage.

	 vC 0 0	 (17.79)

U1.21
R1 TL1

L1

100.0 nH

50.0 ohms
500.000 ps
Simple
Net001

50.0 ohms

MODvsEZIBIS
CMOS, 5 V, ULTRA, IO
Net003

Figure 17.29  HyperLynx circuit model of a transmission line terminated by an inductive load.
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A constant voltage source with internal resistance equal to the characteristic imped-
ance ZC of the line is connected to the line at t 0. When the switch closes at t = 0, a 
wave originates at z = 0, with

	
v V

i
S

2
	 (17.80a)

	
i V

Zi
S

C2
	 (17.80b)

This wave travels down the line to reach the load end at time T. Upon arriving at the 
load the reflected voltage and current waves (vr and ir) are created. The reflected cur-
rent wave is related to the reflected voltage wave by

	
i v

Zr
r

C
	 (17.81)
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Figure 17.30  Driver voltage and the voltage across the inductor.
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Figure 17.31  Transmission line terminated by a capacitive load.
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The voltage–current relationship for a capacitor produces

	
i i C d

dt
v vi r i r 	 (17.82)

or, using Eqs (17.80) and (17.81),

	
V
Z

v
Z

C d
dt

V vS

C

r

C

S
r2 2

	 (17.83)

Since VS is constant Eq. (17.83) reduces to

	
V v CZ dv

dt
S

r C
r

2
	 (17.84)

or

	
CZ dv

dt
v V v V t TC

r
r

S
r

S

2
0

2
, , 	 (17.85)

Equation (17.85) has the same mathematical form as Eq. (17.73). Thus, the solution of 
Eq. (17.85) will have the same mathematical form as the solution of Eq. (17.73).

Figure 17.32 shows the circuit schematic of a transmission line driven by a 5 V CMOS 
and terminated in a capacitive load.

The driver voltage and the voltage across the capacitor are displayed in Figure 17.33.

17.1.5  Transmission Line Discontinuity

In this section we will consider the effects of the discontinuity along the transmission 
line; the discontinuity occurs when the transmission line characteristic impedance 
changes, as shown in Figure 17.34.

U1.20
R1 TL1

C1

5.0 pF

50.0 ohms
200.000 ps
Simple
Net001

50.0 ohms

MODvsEZIBIS
CMOS, 5 V, ULTRA, ...
Net003

Figure 17.32  HyperLynx circuit model of a transmission line terminated by a capacitive load.
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Let’s consider voltage and current waves vi1 and ii1 traveling on transmission line 1 
incident to the junction. Upon their arrival at the junction, the reflected waves vr1 and 
ir1, and the transmitted waves vt2 and it2 are created (Paul, 2006, p. 248).

KVL at the junction produces

	 v v vi r t1 1 2	 (17.86)

while the KCL gives

	 i i ii r t1 1 2	 (17.87)

We know that

	
i v

Zi
i

C
1

1

1
	 (17.88a)

	
i v

Zr
r

C
1

1

1
	 (17.88b)
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Figure 17.33  Driver voltage and the voltage across the capacitor.
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Figure 17.34  Discontinuity along a transmission line.
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i v

Zt
t

C
2

2

2
	 (17.88c)

Substituting Eq. (17.88) into Eq. (17.87) produces

	
v
Z

v
Z

v
Z

i

C

r

C

t

C

1

1

1

1

2

2
	 (17.89)

thus

	
v Z

Z
v vt

C

C
i r2

2

1
1 1 	 (17.90)

Using Eq. (17.90) in (17.86) results in

	
v v Z

Z
v vi r

C

C
i r1 1

2

1
1 1 	 (17.91)

or

	

v v Z
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v Z
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v Z
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v Z
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r
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Z
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1Z
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	 (17.92)

and thus

	
v
v

Z Z
Z Z

r

i

C C

C C

1

1

2 1

2 1
12	 (17.93)

where Γ12 is the voltage reflection coefficient for the wave incident from the left onto 
the boundary. In terms of the reflection coefficient, the reflected voltage can be 
expressed as

	 v vr i1 12 1	 (17.94)

Thus, to the incident wave, the transmission line to the right looks like its characteristic 
impedance ZC2, as shown in Figure 17.35.

We also define the voltage transmission coefficient as the ratio of the transmitted 
voltage vt2 to the incident voltage vi1

	
T v

v
t

i
12

2

1
	 (17.95)

Since

	 v v vi r t1 1 2	 (17.96)
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we have

	
T v

v
v v

v
v
v

t

i

i r

i

r

i
12

2

1

1 1

1

1

1
1 	 (17.97)

or

	 T12 121 	 (17.98)

Utilizing Eq. (17.93) in Eq. (17.98) results in

	
T Z Z

Z Z
Z Z Z Z

Z Z
C C

C C

C C C C

C C
12

2 1

2 1

2 1 2 1

2 1
1 	 (17.99)

or

	
T Z

Z Z
C

C C
12

2

2 1

2 	 (17.100)

A similar derivation can be performed for the wave incident on the boundary from 
the right, as shown in Figure 17.36.

In this case the voltage reflection coefficient is given by

	
21

1

1

2 1

2 1

v
v

Z Z
Z Z

r

i

C C

C C
	 (17.101)

Again, to the incident wave, the transmission line to the left looks like its characteristic 
impedance ZC1, as shown in Figure 17.37.

ZC2
ZC1

Figure 17.35  Incoming wave sees a termination 
impedance ZC2.

ZC2ZC1
vi2 , ii2

vr2 , ir2

vt1 , it1

Figure 17.36  Wave incident from 
the right.

ZC2ZC1

Figure 17.37  Incoming wave sees a termination 
impedance ZC1.
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The voltage transmission coefficient for the wave incident from the right is

	
T Z

Z Z
C

C C
21

1

1 2

2 	 (17.102)

and the reflection and transmission coefficient for the wave incident from the right are 
related by

	 T21 211 	 (17.103)

Example 17.2  Transmission line discontinuity
Consider the circuit shown in Figure 17.38.

The experimental setup reflecting this circuit is shown in Figure 17.39.
A 10 Vpp (open‐circuit voltage) pulse signal was sent from the function generator 

along the 6 ft long RG58 coaxial cable (ZC = 50 Ω) connected to the 6 ft long RG59 coaxial 
cable (ZC = 75 Ω) and terminated with an open circuit. The rise time of the waveform is 
tr = 2.5 ns.

z = 0 z = 6 ft z = 12 ft

RS = 50 Ω

ZC1 = 50 Ω ZC2 = 75 Ω
RG58 RG59

VG = 10 V

t = 0

+

–

VS

+

–

VD

+

–

VL

Figure 17.38  Circuit for the reflection measurements.

VS VL

VD

Figure 17.39  Experimental setup for the reflection measurements.
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The voltages at the source (VS), the discontinuity (VD), and at the load (VL) were 
measured using the oscilloscope probes. When the switch closes, the initial voltage 
wave is created at location z = 0. The value of this voltage is

	
v V z V Z

R Zi S G
C

S C
1 0 10 50

50 50
5 V

	

After about t = T = 9 ns (one‐way travel time along RG 58), this waveform arrives at the 
discontinuity, where it gets reflected and transmitted. The reflection coefficient (from 
the left) at the discontinuity is

	
12

2 1

2 1

75 50
75 50

0 2Z Z
Z Z

C C

C C
.

	

The reflected voltage at the discontinuity is

	 v vr i1 12 1 0 2 5. 1 V	
The total voltage at the discontinuity at t = T is thus

	 V v vD i r1 1 5 1 6 V	
The reflected voltage wave propagates back towards the source and arrives there 

about at t = 2 T later. The total voltage at the source becomes (after t = 2 T + 2tr).

	 V v vS i r1 1 5 1 6 V	
The incident wave that arrived at the discontinuity at t = T is also transmitted. The 

voltage transmission coefficient for the wave incident from the left is

	
T Z

Z Z
C

C C
12

2

2 1

2 2 75
75 50

1 2.
	

The transmitted voltage at z = 6 ft is

	 V v T vD t i2 12 1 1 2 5. 6 V	
which, of course, is the same as the voltage VD at t = 0. These voltages are shown in 
Figure 17.40.

The transmitted voltage wave travels towards the load where it gets reflected with a 
load reflection coefficient equal to one (open load). The total voltage at the load is, 
therefore, at t = 2 T is (shown in Figure 17.41):

	 VL 6 6 12 V	
The reflected voltage at the load (6 V) travels back towards the discontinuity, where it 

gets reflected and transmitted. Let’s look at the reflected voltage first. The reflection 
coefficient (from the right) at the discontinuity is

	
21

1 2

1 2

50 75
50 75

0 2Z Z
Z Z

C C

C C
.
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VD(z = 6 ft, t = T)

5V
6.04 V

VS (z = 0 , t = 2T)
VS (z = 0 , t = T)

Figure 17.40  Voltages at the source and at the discontinuity at t = T and t = 2 T.

VL(z = 12 ft, t = 2 T)

12.3 V

Figure 17.41  Voltage at the load at t = 2 T.
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The reflected voltage at the discontinuity is

	 v vr i2 21 2 0 2 6. 1.2 V	

This reflected voltage wave propagates towards the load where it gets reflected. The 
total voltage at the load, at t = 4 T,

	 VL 12 1 2 1 2. . 9.6 V	
This is shown in Figure 17.42.

The incident wave that arrived at the discontinuity (from the right) at t = 3 T is also 
transmitted. The voltage transmission coefficient for the wave incident from the right is

	
T Z

Z Z
C

C C
21

1

2 1

2 2 50
75 50

0 8.
	

The transmitted voltage (from right to left) at z = 6 ft is

	 v T vt i1 21 2 0 8 6. 4.8 V	
Resulting in a total voltage at the discontinuity of

	 VD 6 4 8. 10.8 V	
This is shown in Figure 17.43.
Finally, the transmitted voltage of 4.8 V arrives at the source at t = 4 T, resulting in the 

source voltage rising to (Figure 17.43).

	 VS 6 4 8. 10.8 V	
This process continues until the steady state value (of 10 V at all locations) is reached.

9.56 V

VL(z = 12 ft, t = 4 T)

Figure 17.42  Voltage at the load at t = 4 T.
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17.2  Steady‐State Analysis

17.2.1  Lossy Transmission Lines

In our discussion so far, we have assumed that the transmission line is lossless. We will 
now consider the effects of losses. Losses come from two mechanisms: the per‐unit‐
length resistance of the line conductors, r in Ω/m, and the per‐unit‐length conductance 
of the surrounding medium, g in S/m.

The per‐unit‐length equivalent circuit model for a Δz section of the line is shown in 
Figure 17.44 (Sadiku, 2010, p. 523).

Applying KVL to the outer loop of the circuit in Figure 17.44 results in

	
V z t r zI z t l z

I z t
t

V z z t, ,
,

, 	 (17.104)

or

	
V z z t V z t

z
rI z t l

I z t
t

, ,
,

,
	 (17.105)

Taking the limit as z 0 we get

	
V z t

t
rI z t l

I z t
t

,
,

, 	 (17.106)

Applying KCL to the upper node in Figure 17.44 gives

	 I z t I z z t I, , 	 (17.107)

VD(z = 6 ft, t = 3 T)

VS (z = 0 , t = 4 T)

10.8 V

Figure 17.43  Voltage at the discontinuity at t = 3 T and the source at t = 4 T.
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Now, ΔI can be expressed as

	
I I I g zV z z t c z

V z z t

tG C ,
,

	 (17.108)

Substituting Eq. (17.108) into Eq. (17.107) results in

	
I z t I z z t g zV z z t c z

V z z t

t
, , ,

,
	 (17.109)

or

	
I z z t I z t

z
gV z t c

V z z t
t

, ,
,

,
	 (17.110)

Taking the limit as z 0, we get

	
I z t

z
gV z t c

V z t
t

,
,

,
	 (17.111)

Equations (17.106) and (17.111) are the coupled transmission line equations. We can 
decouple them as follows. Differentiating Eq. (17.106) with respect to z gives

	

2

2

2V z t
z

r
I z t

z
l

I z t
t z

, , ,
	 (17.112)

and differentiating Eq. (17.111) with respect to time results in

	

2 2

2
I z t
z t

g
V z t

t
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V z t
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, , ,
	 (17.113)
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–

+

–

+ΔI

I
CI
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Figure 17.44  The per‐unit‐length model of a lossy transmission line.
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Substituting Eq. (17.111) and Eq. (17.113) into Eq. (17.112) gives

	

2

2

2

2
V z t

z
lc

V z t
t

lg rc
V z t

t
rgV z t

, , ,
,

   
 	 (17.114)

and a similar derivation leads to

	

2

2

2

2
I z t

z
lc

I z t
t

lg rc
I z t

t
rgI z t

, , ,
,

   
 	 (17.115)

Equations (17.114) and (17.115) are the general transmission line equations. Under 
sinusoidal excitation, we can rewrite them in a phasor form as

	

2
2

2

ˆ
ˆ ˆ ˆd V z

lcV z j lg rc V z rgV z
dz

	 (17.116a)

	

2
2

2

ˆ
ˆ ˆ ˆd I z

lcI z j lg rc I z rgI z
dz

	 (17.116b)

or

	

2

2

ˆ
ˆd V z

r j l g j c V z
dz

	 (17.117a)

	

2

2

ˆ
ˆd I z

r j l g j c I z
dz

	 (17.117b)

or

	

2

2

ˆ
ˆˆˆd V z

zyV z
dz

	 (17.118a)

	

2

2

ˆ
ˆˆˆd I z

zyI z
dz

	 (17.118b)

where

	 ẑ r j l	 (17.119a)

	 ŷ g j c 	 (17.119b)

are respectively the per‐unit‐length series impedance and shunt admittance of the 
transmission line.

Equations (17.118) are often written in the form

	

2
2

2

ˆ
ˆˆ 0

d V z
V z

dz
	 (17.120a)

	

2
2

2

ˆ
ˆˆ 0

d I z
I z

dz
	 (17.120b)
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where ˆ is the propagation constant of the line, defined by

	
ˆ ˆˆzy r j l g j c j 	 (17.121)

and α is the attenuation constant and β is the phase constant. The general solution of 
Eqs (17.120) is of the form

	
ˆ ˆˆ ˆ ˆ ˆe e e e eˆ ez z z j z z j zV z V V V V 	 (17.122a)

	

ˆ ˆˆ ˆ ˆ ˆˆ
ˆ ˆ eˆe e ˆ e e ez z z j z z j z

C C C C

V V V VI z
Z Z Z Z

	 (17.122b)

where the complex characteristic impedance is given by

	

ˆˆ
ˆ CC C Z

r j lzZ Z
y g j c

	 (17.123)

The solution in Eqs (17.122) consists of the forward and backward traveling waves

	
ˆ ˆ ˆ

f bV z V z V z 	 (17.124a)

	
ˆ ˆ ˆ

f bI z I z I z 	 (17.124b)

where

	 e eˆ ˆ z j z
f z VV 	 (17.125a)

	 eˆ eˆ z j z
bV z V 	 (17.125b)

	

ˆˆ
ˆ e ez j z

f
C

VI z
Z

	 (17.125c)

	

ˆˆ
ˆ e ez j z

b
C

VI z
Z

	 (17.125d)

When the line is lossless ( )0  the solution in Eq, (17.122) reduces to

	 eˆ ˆ eˆ j z j zV z V V 	 (17.126a)

	

ˆ ˆˆ
ˆ ˆe ej z j z

C C

V VI z
Z Z

	 (17.126b)

17.2.2  Standing Waves

Consider the transmission line circuit shown in Figure 17.45.
At any location z, the voltage ˆ( )V z  is the sum of the forward and backward traveling 

waves ˆ
fV  and b̂V

	 eˆ ˆ j z
fV V 	 (17.127a)

	 ˆ ˆ e j z
bV V 	 (17.127b)
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At any location z, we define a complex voltage reflection coefficient as the ratio of the 
phasor voltages of the backward and forward traveling waves.

	

2
ˆ ˆˆ e

eˆ ˆ
e j z

j z
j z

V Vz
V V

	 (17.128)

From Eq. (17.128) we obtain

	
2ˆ ˆ ˆ e j zV z V 	 (17.129)

Substituting Eq. (17.129) into Eqs (17.126) gives
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e eˆ ˆ
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j z j zj z
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	 (17.130)

and
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V z
Z

	 (17.131)

Thus, the voltage and current at any location z can be expressed in terms of the voltage 
reflection coefficient at any location z as

	
ˆ ˆ e 1 ˆj zV z V z 	 (17.132a)

	
e

ˆˆ ˆ
ˆ 1j z

C

VI z z
Z

	 (17.132b)

Evaluating the voltage reflection coefficient in Eq. (17.128) at the load results in

	
2ˆˆ ˆ eˆ

j L
L

Vz L
V

	 (17.133)

ẐS Î(z)

z = Lz = 0

ZC

V̂ (z) RLV̂s

+

–

Figure 17.45  Transmission line circuit.
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Returning to Eq. (17.128) we may express the voltage reflection coefficient at any 
location z as

	

2 2

2 2 2

e e

e

ˆ ˆˆ
ˆ ˆ
ˆ ˆ
ˆ e e

j z j z L L

j L j z L j z L
L

V Vz
V V
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V

	 (17.134)

Thus, the voltage reflection coefficient at any location z can be expressed in terms of 
the load reflection coefficient as

	
2eˆ ˆ j z L

Lz 	 (17.135)

Substituting Eq. (17.135) into Eqs (17.132) gives the expressions for the voltage and 
current at any location z as

	
2ˆ ˆ ˆe 1 ej z j z L

LV z V 	 (17.136a)

	
2e 1 e
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	 (17.136b)

The magnitudes of the voltage and current along the line at any distance z away from 
the source are
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	 (17.137b)

Thus

	
2ˆ ˆ ˆ1 e j z L

LV z V 	 (17.138a)

	

2ˆ ˆ1 e
ˆ j z L

L
C

VI z
Z

	 (17.138b)

Now, consider the same transmission line but with the distance measured from the 
load to the source, as shown in Figure 17.46.
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The two distance variables are related by

	 d L z 	 (17.137a)

	 z L d 	 (17.137b)

In terms of the distance d away from the load, the magnitudes of the voltage and 
current can be expressed as

	
21 eˆ ˆ ˆ j L d L

LV d V 	 (17.138a)

	

21 e
ˆˆ ˆ j L d L

L
C

VI d
Z

	 (17.138b)

or

	
21 eˆ ˆ ˆ j d

LV d V 	 (17.139a)

	

2ˆˆ 1 eˆ j d
L

C

VI d
Z

	 (17.139b)

There are four important cases of special interest that we will investigate:

1)	 The load is a short circuit ˆ 0LZ .
2)	 The load is an open circuit ˆ

LZ .
3)	 The load is matched to the transmission line ˆ

L CZ Z .
4)	 Arbitrary resistive load R.

Case 1 – Short‐circuited load ˆ
LZ 0  The load reflection coefficient in the case is

	 ˆ 1L 	 (17.140)

Using Eq. (17.140) in Eqs (13.139) gives

	

21 e

e e e e 2sin

e 2s

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆin 2 sin

j d
L

j d j d j d j d

j d

V d V

V V j d

V d V d

	 (17.141a)
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–
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ZC

RL

z = 0

d = L

z = L

d = 0

Figure 17.46  Transmission line circuit, distance measured from the load to the source.
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and
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ˆ
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1 e

e e e e 2cos

e 2cos 2 cos
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j d j d j d j d
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d d
Z Z

	 (17.141b)

or

	
ˆ ˆ2 sinV d V d 	 (17.142a)

	

ˆ
ˆ 2 cos

C

V
I d d

Z
	 (17.142b)

The phase constant β can be expressed in terms of the wavelength λ as

	 v
f
f

2 2 	 (17.143)

and thus the sine and cosine argument in Eqs (17.142) can be written as

	
d d2 	 (17.144)

Using Eq. (17.144) in Eqs (17.142) produces

	
2 sinˆ 2ˆ dV d V 	 (17.144a)

	
2 cos 2

ˆ
ˆ

C

V dI d
Z

	 (17.144b)

The magnitudes of the voltage and current waves for a short‐circuited load are shown 
in Figure 17.47.

d d = 0

ẐL = 0

|V̂(d)|

|Î (d)|

3λ
2

5λ λ
4

3λ
4

λ
2

λ
2

λ
4

Figure 17.47  Magnitudes of the voltage and current for a short‐circuited load.
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We observe the following:

1)	 The voltage is zero at the load and at distances from the load which are multiples of 
a half wavelength.

2)	 The current is maximum at the load and is zero at distances from the load that are 
odd multiples of a quarter wavelength.

3)	 The corresponding points are separated by one half wavelength.

Case 2 – Open‐circuited load ˆ
LZ   The load reflection coefficient in the case is

	 ˆ 1L 	 (17.145)

Using Eq. (17.140) in Eqs (13.139) gives

	

2 21 e 1 e

e e e e 2cos

2

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆcos 2 cos 2

j d j d
L

j d j d j d j d

V d V V

V V d

dV d V

	 (17.146a)

and

	

2 21 e 1 e

e e e

e 2sin 2

ˆ ˆ
ˆ ˆ

ˆ

s 2
ˆ

n
ˆ

i

j d j d
L

C C

j d j d j d

C

j d

C C

V V
I d

Z Z
V

Z
V V dj d
Z Z

	 (17.146b)

or

	
2 cosˆ 2ˆ dV d V 	 (17.147a)

	
2 sin 2

ˆ
ˆ

C

V dI d
Z

	 (17.147b)

The magnitudes of the voltage and current waves for an open‐circuited load are 
shown in Figure 17.48.

We observe the following:

1)	 The current is zero at the load and at distances from the load which are multiples of 
a half wavelength.

2)	 The voltage is maximum at the load and is zero at distances from the load that are 
odd multiples of a quarter wavelength.

3)	 The corresponding points are separated by one half wavelength.

In both cases, the voltage and current waves do not travel as the time advances, but 
stay where they are, only oscillating in time between the stationary zeros. In other 
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words, they do not represent a traveling wave in either direction. The resulting wave, 
which is a superposition of two traveling waves with opposite directions of travel, is thus 
termed a standing wave.

Case 3 – Matched load ˆ
L CZ Z   The load reflection coefficient in the case is

	 ˆ 0L 	 (17.148)

Using Eq. (17.140) in Eqs (13.139) gives

	
2ˆ ˆ ˆeˆ 1 j d

LV d V V 	 (17.149a)

	
21

ˆ ˆ
ˆ ˆ e j d

L
C C

V V
I d

Z Z
	 (17.149b)

The magnitudes of the voltage and current waves for matched load are shown in 
Figure 17.49.

We observe that the voltage and current magnitudes are constant along the line.

Case 4 – Arbitrary resistive load R  The magnitudes of the voltage and current waves for 
matched load are shown in Figure 17.50.

We observe that the locations of the voltage and current maxima and minima are 
determined by the actual load impedance, but again adjacent corresponding points on 
each waveform are separated by one half wavelength.

In all cases, except for the matched load, the magnitudes of the voltage and current 
vary along the line. This variation is quantitatively described by the voltage standing 
wave ratio (VSWR) defined as

d d = 0

ẐL = ∞

|V̂(d)|

|Î (d)|

3λ
2

5λ λ
4

3λ
4

λ
2

λ
2

λ
4

Figure 17.48  Magnitudes of the voltage and current for an open‐circuited load.
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ẐL = ZC
|V̂(d)|

|Î (d)|
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4

3λ
4

λ
2

λ
4

Figure 17.49  Magnitudes of the voltage and current for a matched load.
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max

min

ˆ

ˆ
V d

VSWR
V d

	 (17.150)

Let’s return to the expressions for the voltage magnitude in Eq. (17.139a), repeated here,

	
21 eˆ ˆ ˆ j d

LV d V 	 (17.151)

The maximum of this magnitude is

	 max
1ˆ ˆ ˆ

LV d V 	 (17.152a)

while the minimum of this magnitude is

	 min
1ˆ ˆ ˆ

LV d V 	 (17.152b)

Substituting Eqs (17.152) into Eq. (17.150) gives an alternative expression for VSWR as

	

ˆ1

1 ˆ
L

L
VSWR 	 (17.153)

When the load is short‐circuited or open‐circuited, we have

	

ˆ 0
ˆ

L

L

Z
VSWR

Z
	 (17.154)

When the load is matched, we have

	
ˆ1 L CVSWR Z Z 	 (17.155)

In general,

	 1 VSWR 	 (17.156)

│V̂(d )│
│Î(d)│

4

ZL = Rˆ

–
λ

V̂max

V̂min

d

Figure 17.50  Magnitudes of the voltage and current for an arbitrary resistive load.
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17.3  s Parameters

To characterize high frequency circuits we can use s parameters which relate traveling 
voltage waves that are incident, reflected, and transmitted when a two‐port network in 
inserted into a transmission line. This is depicted in Figure 17.51.

The incident waves (a1, a2) and reflected waves (b1, b2) used to define s parameters for 
a two‐port network are shown in Figure 17.52 (Ludwig and Bogdanov, 2009).

The linear equations describing this two‐port network in terms of the s parameters are

	
b s a s a
b s a s a

1 11 1 12 2

2 21 1 22 2

	 (17.127)

or in a matrix form

	

b
b

s s
s s

a
a

1

2

11 12

21 22

1

2
	 (17.128)

where S is the scattering matrix given by

	
S

s s
s s
11 12

21 22
	 (17.129)

Recall the general solution for the line voltage and current along a transmission line 
in Eq. (17.122):

	
ˆ ˆˆ ˆ e eˆz zV z V V 	 (17.130a)

Port 2

Circuit
Incident wave

Re�ected wave
Transmitted wave

Port 1

Figure 17.51  s parameters are related to the traveling waves.

Device

a2

b2

V̂2

–

+

Î2

V̂1

–

+

Î1

a1

b1

Figure 17.52  Incident and reflected waves.
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ˆ ˆˆ ˆˆ
ˆ ˆe ez z

C C

V VI z
Z Z

	 (17.130b)

at z = 0 Eqs (17.130) become

	
ˆ ˆ0 ˆV V V 	 (17.131a)

	

ˆ ˆˆ
ˆ0 ˆ

C C

V VI
Z Z

	 (17.131b)

V̂  and V̂  in Eq. (17.131) denote the amplitudes of the incident and reflected voltage 
waves, respectively. From Eq. (17.131b) we get

	
ˆ ˆ ˆ0 ˆ

CZ I V V 	 (17.132)

Adding Eqs (17.131a) and (17.132) gives

	
ˆ ˆ ˆ0 ˆ0 2CZ I V V 	 (17.133)

while subtracting Eq. (17.132) from Eq. (17.131a) results in

	
ˆˆ ˆ0 ˆ0 2CV Z I V 	 (17.134)

Thus, from Eqs (17.133) and (17.134) we obtain

	

ˆ 0ˆ0ˆ
2

ˆ
CV Z I

V 	 (17.135a)

	

ˆ 0ˆ0ˆ
2

ˆ
CV Z I

V 	 (17.135b)

As we shall soon see, it is convenient to use the normalized incident and reflected 
voltages, instead of the ones in Eq. (17.135):

	

ˆˆ 0 0
2

ˆ
ˆ C

C

V Z I
V

Z
	 (17.136a)

	

ˆˆ 0 0
2

ˆ
ˆ C

C

V Z I
V

Z
	 (17.136b)

We refer to these normalized waves as power waves. Using the notation of Figure 17.46, 
we rewrite Eqs (17.136) at each port as

	

1 1 1
1

ˆˆ

2

ˆ
C i

C C

V Z I Va
Z Z

	 (17.137a)

	

1 1 1
1

ˆˆ

2

ˆ
C r

C C

V Z I Vb
Z Z

	 (17.137b)
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and

	

2 2 2
2

ˆˆ

2

ˆ
C i

C C

V Z I Va
Z Z

	 (17.138a)

	

2 2 2
2

ˆˆ

2

ˆ
C r

C C

V Z I Vb
Z Z

	 (17.138b)

Where Vi1, Vi2 are the incident voltage waves, and Vr1, Vr2 are the reflected voltage 
waves at ports 1 and 2, respectively.

In the typical application of a two‐port network, the circuit is driven at port 1 and 
terminated by a load at port 2, as shown in Figure 17.53.

Returning to Eq. (17.127), repeated here,

	

b s a s a
b s a s a

1 11 1 12 2

2 21 1 22 2
	 (17.139)

We obtain the individual s parameters as

	
s b

a a
11

1

1 02

	 (17.140a)

Thus, s11 is the input port reflection coefficient, when the incident wave at port 2 is 
zero, which means that port 2 should be terminated in a matched load ˆ )ˆ( L CZ Z  to 
avoid reflections. This is shown in Figure 17.55.

Also,

	
s b

a a
12

1

2 01

	 (17.140b)

Thus, s12 is the transmission coefficient from port 2 to port 1, with the input port 
terminated in a matched load, as shown in Figure 17.55.

Also,

	
s b

a a
21

2

1 02

	 (17.140c)

Thus, s21 is the transmission coefficient from port 1 to port 2, with the output port 
terminated in a matched load, as shown in Figure 17.54.

ẐLDevice
b1

a1

b2

a2
V̂G

+
–

ẐG

Figure 17.53  Typical two port circuit.
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Finally,

	
s b

a a
22

2

2 01

	 (17.140d)

Thus, s22 is the output port reflection coefficient, when the incident wave on port 1 is 
zero, as shown in Figure 17.55.

Power waves and generalized scattering parameters  Recall: the total voltage and current 
on a transmission line can be expressed in terms of the incident and reflected voltage 
wave amplitudes as in (17.131), repeated here:

	
ˆ ˆ0 ˆV V V 	 (17.141a)

	

ˆ ˆˆ
ˆ0 ˆ

C C

V VI
Z Z

	 (17.141b)

The average power delivered to a load can be expressed as

	

*
*

ˆ1 1Re Re
2

ˆˆˆ
2

ˆ ˆ
ˆ ˆAVG

C C

V VP VI V V
Z Z

	 (17.142)

If the line is lossless then its characteristic impedance is real and we have

	

* * *

2 2* *

ˆˆ ˆ ˆ ˆ ˆ1 1Re Re
2 2

1 Re
2

ˆ ˆ ˆ ˆ

AVG
C

C

P VI V V V V
Z

V V V V V V
Z

	 (17.143)

Device
b1 b2

a1 a2 = 0
V̂G

ẐC

ẐL = ẐC+
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ẐG

Figure 17.54  Port 2 termination.

Device

a2

b2b1

a1 = 0
V̂G

ẐC

ẐL = ẐC
+
–

ẐG

Figure 17.55  Port 1 termination.
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The middle two terms inside the brackets in Eq. (17.143) are of the form

	
* 2 Iˆ ˆ mA A j A 	 (17.144)

and thus are purely imaginary. Thus, the average power delivered to the load is the 
difference of the incident and reflected powers.

	
P

Z
V V

Z
V VAVG

C C

1
2

1
2

2 2 2 2
Re 	 (17.145)

This result is only valid when the line characteristic impedance is real. This result is 
not valid when the characteristic impedance is complex, as in the case of a lossy trans-
mission line.

The normalized voltage waves or power can be applied to both lossless and lossy 
lines. These power waves will also lead to the so‐called generalized s parameters.

Recall the normalized voltage waves, i.e. power waves defined by

	

1 1
1

2

ˆˆ ˆ
C

C

V Z Ia
Z

	 (17.146a)

	

1 1
1

2

ˆˆ ˆ
C

C

V Z Ib
Z

	 (17.146b)

	

2 2
2

2

ˆˆ ˆ
C

C

V Z Ia
Z

	 (17.146c)

	

2 2
2

2

ˆˆ ˆ
C

C

V Z Ib
Z

	 (17.146d)

Let’s solve Eqs (17.146a,b) for the voltage and current waves in terms of the power 
waves amplitudes.

	 1 1 1
ˆ2 ˆ ˆ

C Ca Z V Z I 	 (17.147a)

	 1 1 1
ˆ2 ˆ ˆ

C Cb Z V Z I 	 (17.147b)

Adding Eqs (17.147a) and (17.147b) gives

	 1 1 12 2 2 ˆ
C Ca Z b Z V 	 (17.148)

or

	

1 1
1 1 1

ˆ C
C C

C

a b Z
V a Z b Z

Z
	 (17.149)

Subtracting Eq. (17.147b) from Eq. (17.147a) gives

	 1 1 12 2 2 ˆ ˆ
C C Ca Z b Z Z I 	 (17.150)
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or

	 1 1 1
ˆ ˆ

C C Ca Z b Z Z I 	 (17.151)

and thus

	

1 1 1 1
1̂ ˆ

C C

C C

a Z b Z a bI
Z Z

	 (17.152)

Then, using Eqs (17.149) and (17.152) the average power delivered to the load can be 
expressed as

	

*
1 1 1 1*ˆ1 1Re Re

2 2
ˆ C

AVG
C C

a b Z a bP VI
Z Z

	 (17.153)

or
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AVG
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2

Re

Re
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	 (17.154)

and thus

	
P a bAVG

1
2

1
21

2
1

2	 (17.155)

Similarly, at port 2, we have

	
P a bAVG

1
2

1
22

2
2

2	 (17.156)

If the voltages and currents are expressed in terms of the rms values then the average 
power at port 1 is expressed as

	 P a bAVG 1
2

1
2	 (17.157)

while at port 2,

	 P a bAVG 2
2

2
2	 (17.158)

where |a1|2 is the power incident on the input port of the network, |b1|2 is the power 
reflected from the input port of the network, |a2|2 is the power incident on the output 
port of the network, and |b2|2 is the power reflected from the output port of the network.

Thus, we can relate the s parameters to the powers as follows.

	

s
b

a
a

11
2 1

2

1
2

02

1Reflected power at port 
Incident power at  port 1

	 (17.159a)
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s
b

a
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	 (17.159b)
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22
2 2

2

1
2

02

2

2

Reflected power at port
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	 (17.159d)

We can express several gains and losses in terms of s parameters, as follows.
Forward power gain is defined as

	
Forward Power GaindB 10 202

2

1
2

2

1
log log

b

a

b
a

	 (17.160a)

or

	 Forward Power GaindB 10 2021
2

21log logs s 	 (17.160b)

Reverse power gain is defined as

	
Reverse Power GaindB 10 201

2

2
2

1

2
log log

b

a

b
a

	 (17.161a)

or

	 Reverse Power GaindB 10 2012
2

12log logs s 	 (17.161b)

Insertion loss is defined as

	
Insertion LossdB 10 201

2

2
2

1

2
log log

a

b

a
b

	 (17.162a)

or

	
Insertion LossdB 20 1

21
log

s 	 (17.162b)
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Return loss is defined as

	
Return LossdB 10 201

2

1
2

1

1
log log

a

b

a
b

	 (17.163a)

or

	
Return LossdB 20 1

11
log

s 	 (17.163b)

17.4  EMC Applications

17.4.1  Crosstalk between PCB traces

In this section we will discuss crosstalk between PCB traces and present the simulation 
and measurement results from a PCB shown in Figure 17.56.

Before presenting the results, let’s review the phenomenon of crosstalk.
When two PCB traces (transmission lines) are in the vicinity of one another, a signal 

propagating along one line can induce a signal on another line, due to capacitive (electric 
field) and inductive (magnetic field) coupling between the two lines. This phenomenon 
is called crosstalk.

The cross‐section of a PCB with the microstrip transmission lines is shown in 
Figure 17.57.

A PCB of thickness d supports two traces separated by distance s. A ground plane 
constitutes the reference conductor for the two circuits. This arrangement can be mod-
eled by the circuit shown in Figure 17.58 (Paul, 2006, p. 597).

The generator circuit connects a voltage VS(t) and its source impedance, RS, to a load RL. 
The adjacent receptor line conductors are terminated by the resistances RNE and RFE at the 
near end (NE), and the far end (FE), respectively. The signal present on the generator line 
induces the near‐end and far‐end coupled crosstalk voltages, VNE and VFE.

Figure 17.56  PCB used for crosstalk measurements.
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In order to determine these voltages, let’s briefly describe the physical phenomenon 
taking place. The current on the generator line, IG, creates a magnetic field that results 
in a magnetic flux ΨG crossing the loop of the receptor circuit, as shown in Figure 17.59(a).

If this flux is time varying, then according to Faraday’s law, it induces a voltage VR in 
the receptor circuit. The circuit model of this field phenomenon is represented by a 
mutual inductance and is shown in Figure 17.59(b). We refer to this interaction between 
the circuits as the magnetic or inductive coupling.

Using the current divider we obtain the induced near‐and far‐end voltages as

	
V t R

R R
L dI

dtNE
NE

NE FE
m

G 	 (17.164a)

	
V t R

R R
L dI

dtFE
FE

NE FE
m

G 	 (17.164b)

Generator Receptors

d

Ground plane

Figure 17.57  Cross‐section of a PCB with a 
microstrip line.
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Figure 17.58  Circuit model of a PCB with a microstrip line.

Figure 17.59  Inductive coupling between the circuits (a) field model, (b) circuit model.

RNE

(b)

X

(a)

RFEVNE

VR =
dΨG dIG

dt dt

IG

IG

ψG
VFE

+

–

+
+

= Lm

–

–



Transmission Lines 529

Similarly, the voltage between the two conductors of the generator circuit, VG, 
has associated with it a charge separation that creates electric field lines, some 
of  which terminate on the conductors of the receptor circuit, as shown in 
Figure 17.60(a).

If this charge (voltage) varies with time, it induces a current in the receptor circuit. 
The circuit model of this field phenomenon is represented by a mutual capacitance, and 
is shown in Figure  17.60(b). We refer to this interaction between the circuits as the 
electric or capacitive coupling.

Using the voltage divider, we obtain the induced near‐and far‐end voltages as

	
V t R R

R R
C dV

dtNE
NE FE

NE FE
m

G 	 (17.165a)

	
V t R R

R R
C dV

dtFE
NE FE

NE FE
m

G 	 (17.165b)

Superposition of these two types of coupling results in the circuit model shown in 
Figure 17.61.

The total induced voltages, by superposition, are given by

	
V t R

R R
L dI

dt
R R
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G NE FE

NE FE
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G 	 (17.166a)

	
V t R
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L dI

dt
R R

R R
C dV

dtFE
FE

NE FE
m

G NE FE

NE FE
m

G 	 (17.166b)

If the circuit is electrically small at the highest significant frequency of interest then 
the generator voltage and current can be obtained from the circuit shown in Figure 17.62.

RNE RFEVNE
IR = Cm

dVG

dt

qG
E

E

–qG

VG VFE

+
+

–
–

+

–

(b)(a)

Figure 17.60  Capacitive coupling between the circuits (a) field model, (b) circuit model.
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+ –

VNE
VFE

+
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–

IR = Cm
dVG
dt

RNE RFE

Figure 17.61  Inductive and capacitive coupling circuit model.
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Then,

	
V t R

R R
V tG

L

S L
S 	 (17.167a)

	
I t

R R
V tG

S L
S

1 	 (17.167b)

Substituting Eqs (17.167) into Eqs (17.166) results in
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R R

L
R R

R R
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NE

NE FE
m

S L

NE FE1
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C R
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NE FE
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S L

Capacitive Coupling
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dV t
dt
S 	 (17.168b)

Note that the induced crosstalk voltage is proportional to the mutual inductance and 
capacitance between the two circuits and the derivative of the source voltage.

The crosstalk circuit model in the frequency domain is shown in Figure 17.63
From this equivalent circuit in the frequency domain, or directly from Eqs (17.168) 

we obtain the near‐end and far‐end phasor crosstalk voltages as

	 Inductive Coupling Capacitive Coupling

1ˆ ˆNE NE FE L
NE m m S

NE FE S L NE FE S L

R R R RV L C j V
R R R R R R R R
 

	 (17.169a)

	
 

Inductive Coupling Capacitive Coupling

1ˆ ˆFE NE FE L
FE m m S

NE FE S L NE FE S L

R R R RV L C j V
R R R R R R R R

	 (17.169b)

Figure 17.62  Electrically short generator circuit model.
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Observe that the crosstalk induced voltages increase at a rate of 20 dB/decade with 
frequency.

Figure  17.64 shows the experimental setup to verify the crosstalk derivations 
(Adamczyk and Teune, 2009). The source is a 1 Vpp, 1 MHz trapezoidal pulse with a 50% 
duty cycle with a 100 ns rise time and 200 ns fall time.

The board with different circuit topologies was investigated and is described in 
Table 17.2

The load resistors, as well as the near‐ and far‐end resistors were chosen to be 50 Ω. 
The characteristic impedances of both the generator and receptor circuits were also 50 Ω.

Table 17.2  Board topologies.

Case
Line separation s 
[mils]

Distance to Ground Plane d 
[mils]

1 25 54.8
2 25 12
3 75 12

V̂R = jωLmÎ G

+
+

–

–

V̂NE

+

–

V̂FE
RNE RFEÎ R = jωCmV̂G

Figure 17.63  Inductive and capacitive coupling circuit model in the frequency domain.

Figure 17.64  Experimental set‐up for crosstalk verification.
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Figures  17.65–17.70 show the generator (aggressor) signal as well as the resulting 
near‐ and far‐end voltages induced on the receptor (victim) line.

Measured and simulated frequency‐domain results are shown in Figure 17.66.
Measured and simulated frequency‐domain results are shown in Figure 17.68.
Measured and simulated frequency‐domain results are shown in Figure 17.70.
We make the following observation in Case 1, presented in Figure  17.65. Voltage 

induced on the near end during the rise time is VNE 1 54. mV, while the same voltage 
induced during the fall time is VNE 760 V.

Since the value of the rise time is twice that of the fall time, according to Eq. (17.168), 
the induced voltages should differ in magnitude by a factor of two, which indeed is the 
case. We also note that the polarities of the two voltages are opposite, which is not 
unexpected from Eq. (17.168). Similar observations can be made for the voltages 
induced on the far end.

Furthermore, since the coefficients of coupling for the near‐end voltage Eq. (17.168a) 
are positive, the induced‐voltage during the rise is also positive. The far‐end voltage is 
negative during the rise time, indicating that the inductive coupling dominates the 
capacitive one.

Bringing the ground plane closer to the lines, while keeping the distance between the 
lines unchanged (Case 2) resulted in the reduction of the induced voltage magnitudes, 
as shown in Figure 17.66.

Aggressor signal

Victim line – Near end

Case 1

1VPPFall time = 200 ns

Rise time = 100 ns
25 mils

54.8 mils

Victim line – Far end

1.54 mV

760 μV

260 μV

560 μV

Figure 17.65  Crosstalk induced voltages, Case 1.
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Figure 17.66  FE Crosstalk – Measured and simulated frequency‐domain results – Case 1.
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Figure 17.67  Crosstalk induced voltages, Case 2.
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Figure 17.68  FE Crosstalk – Measured and simulated frequency‐domain results – Case 2.
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Figure 17.69  Crosstalk induced voltages, Case 3.
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Case 3 depicts the scenario where the distance to the ground plane is unchanged from 
Case 2, but the separation between the lines is increased. This results in negligible 
induced voltages.

In all cases the induced crosstalk increased at a rate of 20 dB/decade with the frequency.

17.4.2  LISN Impedance Measurement

This section utilizes the s parameter measurements to confirm that the line impedance 
stabilization network (LISN) meets the CISPR 25 requirements. (Note: See Appendix A 
for the LISN measurements description.)

CISPR 25 LISN is shown in Figure 17.71.
The CISPR 25 LISN impedance measurement setup is shown in Figure 17.72.
Note that the DC power supply input terminals need to be short circuited. This is 

accomplished with a shorting bar, as shown in Figure 17.73.
Before the impedance measurement is taken, the calibration process needs to take 

place to characterize the cable used to connect the LISN to the network analyzer. The 
calibration involves a calibration kit shown in Figure 17.74, which consists of a short, 
open, and 50 Ω load.

This calibration kit is used for s11 and s21 calibration measurements, as shown in 
Figure 17.75.

Finally, the impedance measurements can be taken as shown in Figure 17.76.
Ideally, the LISN’s impedance should be 50 Ω over the entire frequency range of the 

measurement. According to CISPR 25, the LISN impedance (measured by the network 
analyzer) in the frequency range of 100 kHz to 100 MHz should be within the specified 
tolerance band.
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Figure 17.70  FE Crosstalk – Measured and simulated frequency‐domain results – Case 3.
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DC power
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Figure 17.72  CISPR 25 LISN measurement setup.

Measurement side

Network analyzer 50 Ω load

DC input side

Figure 17.71  CISPR 25 LISN.
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Let’s recall the definition of the s11 parameter utilizing Figure 17.77.

	
s b

a a
11

1

1 02

	 (17.170)

Adapting this figure to the LISN impedance measurement setup, we arrive at the 
Figure 17.78.

The ideal LISN would present 50 Ω impedance to the network analyzer (over the 
entire frequency range) and thus the reflected voltage wave would equal in magnitude 
to the incident voltage wave resulting in the ratio.

	
s b

a11
1

1
1 0dB	 (17.171)

Figure 17.73  Shorting bar for impedance 
measurement.

Figure 17.74  Calibration kit.
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When both b1 and a1 are the voltage magnitudes, we can refer to s11 as the (voltage) 
reflection coefficient,

	
s b voltage a voltage11 1 1Reflection coefficient , 	 (17.172)

When b1 is a voltage magnitude and a1 is the current magnitude (i.e. voltage/resistance 
ratio calculated internally by the network analyzer when the units of Ω are chosen) then 
the s11 coefficient describes the impedance,

Figure 17.76  Test setup for the impedance measurement.

Figure 17.75  Calibration measurements.
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s b voltage a current11 1 1Impedance , 	 (17.173)

This is what is displayed when we measure LISN impedance over the frequency (on a 
linear scale). Figure 17.79 shows the s11 measurement of the LISN impedance over the 
frequency range.

Network
analyzer LISN 50 Ω

load

a1

b1

Figure 17.78  Network analyzer measurement of s11.

V̂G
+
–

ẐG

a1 a2 = 0

b2
b1

Device

ẐC

ẐL = ẐC

Figure 17.77  Circuit used to define s11.

Figure 17.79  s11 measurement – LISN impedance.
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17.4.3  Preamp Gain and Attenuator Loss Measurement

Preamp gain measurement and attenuator loss constitute an s21 measurement with a 
network analyzer. Figure 17.80 shows the test setup for the preamp gain measurement.

The s21 gain of the preamp measurement is shown in Figure 17.81.
As expected, the gain of the preamp is close to 32 dB over the range of the specified 

frequency.
Figure 17.82 shows the test setup for the attenuator loss measurement.
Note: Before this measurement is taken, both cables should be calibrated, as shown in 

Figure 17.83.
The s21 attenuator loss measurement is shown in Figure 17.84.
As shown, the attenuator loss is 10 dB over the specified frequency range.

Figure 17.80  Test setup for the preamp gain measurement.

Figure 17.81  Preamp gain measurement.
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Figure 17.82  Test setup for the attenuator loss measurement.

Figure 17.83  s11, s22, and s21 (through) calibration.
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18

18.1  Bridge between the Transmission Line 
and Antenna Theory

In this section we will use the theory of the standing waves on transmission lines 
discussed in the previous chapter to build a bridge between transmission line theory 
and the fundamental antenna structure of a dipole antenna.

Consider a standing wave pattern in lossless two‐wire transmission line terminated in 
an open, as shown in Figure 18.1.

When the incident wave arrives at the open‐circuited load, it undergoes a complete 
reflection. The incident and reflected waves combine to create a pure standing wave 
pattern as shown in Figure 18.1.

The current reflection coefficient at an open‐circuited load is −1, and the current in 
each wire undergoes a 180° phase reversal between adjoining half cycles (this is shown 
by the reversal of the arrow directions).

The current in a half‐cycle of one wire is of the same magnitude but 180° out‐of‐phase 
from that in the corresponding half‐cycle of the other wire. If the spacing between the 
two wires is very small (s ≪ λ), the fields radiated by the current of each wire are can-
celled by those of the other. Effectively, there is no radiation from this transmission line.

Now, let’s flare the terminal section of the transmission line, as shown in Figure 18.2 
(Balanis, 2205, p. 18).

It is reasonable to assume that the current distribution is essentially unaltered in form 
in each of the wires of the transmission line. Since the two wires are no longer parallel 
and close to each other, the radiated fields do not cancel each other and there is a net 
radiation from the flared section.

Continuing the flaring process, we arrive at the structure shown in Figure 18.3.
The fields radiated by the two vertical parts of the transmission line will reinforce 

each other, as long as the total length of the flared section is

	 0 l 	 (18.1)

The maximum radiation (in the direction shown in Figure 18.2, i.e. broadside to this 
antenna) occurs for the total length of both vertical part equal to

	
l

2
	 (18.1)

Antennas and Radiation
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This is shown in Figure 18.3.
The radiating structure shown in Figure 18.4 is referred to as a half‐wave dipole, dis-

cussed in the next section. The dipole antenna fields and parameters are derived from 
the Hertzian (electric) dipole fields, presented next.

18.2  Hertzian Dipole Antenna

In Section 6.7.3 we defined vector magnetic potential as a vector related to the magnetic 
flux density vector B by

– +

| I |

I0

S

λ
2

λ
2

Figure 18.1  Standing wave pattern in a transmission line terminated with an open.

– +

| I |

I0

s

s

z

l/2

λ
2

λ
2

Figure 18.2  Transmission line with terminal 
section flared.
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	 ˆ ˆB A	 (18.3)

Subsequently, we showed that once A is known, the electric field intensity E can be 
obtained from

	
ˆ ˆ1ˆ j jE A A 	 (18.4)

and the magnetic field intensity can be obtained from H from

	
1 ˆĤ A	 (18.5)

Alternatively, once H is obtained from Eq. (18.5), E can be obtained from H:

	

1ˆ ˆ
j

E H	 (18.6)

In Section 6.7.4 we considered a Hertzian dipole, shown in Figure 18.5. A Hertzian (or 
electric) dipole consists of a short thin wire of length l, carrying a phasor current Î , 
positioned symmetrically at the origin of the coordinate system and oriented along the 
z axis.

– +

| I |

| I |

I0

I0

s

s

l/2

l/2

l/2

λ
2

λ
2

Figure 18.3  Transmission line with terminal section flared.
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Utilizing Eqs (18.4)–(18.6) we derived the expressions for the electric and magnetic 
field intensities at a distance r from a Hertzian dipole as

	
E I l

r
j

r
r

j r2
4

1 10 2
2 2 3 3cos e 	 (18.7a)

– +

| I |

| I |

I0
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λ / 4

λ / 4
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Figure 18.4  Maximum radiation broadside to the antenna.
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Figure 18.5  Hertzian dipole.
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E I l j

r r
j

r
j r0 2

2 2 3 34
1 1sin e 	 (18.7b)

	 E 0	 (18.7c)

and

	 Hr 0	 (18.7d)

	 H 0	 (18.7e)

	
H I l j

r r
j r0 2

2 24
1sin e 	 (18.7f )

The expressions in Eqs (18.7) apply at any distance r from the antenna. They can be 
simplified at a “large enough” distance for the antenna. To determine what large enough 
corresponds to, consider a positive number x.

	

if

if

x
x x x

x
x x x

1 1 1 1

1 1 1 1
3 2

2 3

	 (18.8)

Thus, for very small x, ( )x 1 , the terms 1/x2 and 1/x2 will dominate. On the other 
hand, for large x, ( )x1 , the terms 1/x2 and 1/x2 will be negligible compared to the 
1/x term.

Now let

	 x r 	 (18.9)

Thus, at a small distance from the antenna (referred to as the near field)

	

r
r r r

1 1 1 1
2 3 	 (18.10)

At a large distance from the antenna (referred to as the far field)

	

r
r r r

1 1 1 1
2 3 	 (18.11)

and the terms 1/(βr)2 and 1/(βr)3 will be negligible compared to the 1/βr term. The 
boundary between the near field and the far field is

	
x r r1 1 1 1

2 2
1
6

or
/

	 (18.12)

We should point out that λ/2π is the boundary between the near and far fields. To be 
in the far field, we need to be further away from this boundary. How much further? We 
will address this in the next section.
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In the far field, the expressions for the electric and magnetic field intensities at a 
distance r from a Hertzian dipole are

	 Er 0	 (18.13a)

	
E j I l

r

j r
0

4
sin e 	 (18.13b)

	 E 0	 (18.13c)

and

	 Hr 0	 (18.13d)

	 H 0	 (18.13e)

	
H j I l

r

j r
0

4
sin e 	 (18.13f )

18.3  Far Field Criteria

In this section we will derive the far field criteria for the wire‐type and surface‐type 
antennas.

18.3.1  Wire‐Type Antennas

Recall that the Hertzian dipole expressions for the θ component of the E field and φ 
component of the complete fields are

	
E I l j

r r
j

r
j r0 2

2 2 3 34
1 1sin e 	 (18.14a)

	
H I l j

r r
j r0 2

2 24
1sin e 	 (18.14b)

With the radiated wave we associate the wave impedance defined as

	

ˆˆ
ˆw
EZ
H

	 (18.15)

A far‐field criterion for the Hertzian dipole (and other wire‐type antennas) is derived 
from the requirement that the wave impedance in the far field is equal to the intrinsic 
impedance of free space:

	
0

ˆ 7ˆ 7
ˆ

3w
EZ
H

	 (18.16)
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In free space, 0 0, , and we have

	

0

0

2
0 0 2 2 3 3

0 0 0

2
0 2 2

0 0

0 2 3 32 2 3 3 0 0 0 00 0 0
0 3

0
22 2 0 00 0

3 3
0 0

0
0

1 1 1sin e
4

1 1sin e
4

1 1 1

ˆ
ˆˆ

1 1 1

1 11 1

ˆ ˆ

j r

w
j r

Il j j
r r rEZ

H Il j
r r

j jj j r r r j rr r r
j rjj r rr r

j r j r
j

r

3
0

2 3 2
0 0 0 0

03 3 2
0 0 0 0

2
0 0

1
j r

j
r r r j r

j r j r r j r
j

r r

	 (18.17)

Letting,

	
0

0

2 	 (18.18)

we obtain

	

2

0 0
0 2

0 0

ˆ

2 2

ˆ
2

ˆ 1

2
w

r rj
EZ
H r rj

	 (18.19)

Evaluating this expressions at different distances (in terms of the wavelength) from 
the antenna we get

	
0

00.707ˆ 45 ,
2wZ r 	 (18.20a)

	 0 0375.93 0. 1 , 3ˆ 0wZ r 	 (18.20b)

The result in Eq. (81.20b) leads to the far‐field criterion for the wire‐type antennas as

	 d far field 3 0	 (18.21)

18.3.2  Surface‐Type Antennas

Consider a radiated wave away from a point source, as shown in Figure 18.6.
This wave resembles a spherical wave at distances away from a point source. It is 

reasonable to assume that in the far field, this spherical wave can be approximated by a 
uniform plane wave in the vicinity of the receiving antenna.



Foundations of Electromagnetic Compatibility550

The approximation criterion can be stated as the allowable difference Δ (expressed in 
terms of the wavelength) between the ideal plane wave and the actual spherical wave:

	 k
	 (18.22)

Utilizing Figure 18.7, we get

	
d d D2 2

2

2
	 (18.23)

or

	
d d d D2 2 2

2
2

4
	 (18.24)

resulting in

	
2

4
02

2
d D 	 (18.25)
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λ

Figure 18.6  Radiating point source.
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Figure 18.7  Radiating point source geometry.
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It is reasonable to make the following assumption:

	  d d2 2 	 (18.26)

Then, we may approximate the expression in Eq. (18.25) as

	 2
4

2
d D 	 (18.27)

or using Eq. (18.22) as

	 2
4

0
2

d
k

D 	 (18.28)

resulting in

	 d kD2

08
	 (18.29)

A reasonable value for k is

	 k 16	 (18.30)

Utilizing Eq. (18.30) in Eq. (18.29) results in the far‐field criterion for the surface‐type 
antennas as

	
d D

far field
2 2

0
	 (18.31)

18.4  Half‐Wave Dipole Antenna

A half‐wave dipole consists of a thin wire fed or excited at the midpoint by a voltage 
source. The total length of the dipole equals half a wavelength. Each leg of a dipole has 
a length equal to a quarter of a wavelength, as shown in Figure 18.8.

Often the voltage source is connected to the antenna via transmission line, as shown 
in Figure 18.9.

The far fields of the half‐wave dipole can be obtained by dividing the dipole antenna 
into infinitesimal dipoles of length dz, as shown in Figure 18.10.

Treating each infinitesimal dipole as a Hertzian dipole, we use the previously derived 
results

	
0

esin
4

ˆ j rI z dz
dE j

r
	 (18.32a)

	
0 sin

4

ˆ j rI z dz edH j
r

	 (18.32b)

where the current distribution is sinusoidal and given by (Paul, 2006, p. 430)
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Figure 18.8  Half‐wave dipole.
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Figure 18.9  Half‐wave dipole connected to a transmission line.
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Figure 18.10  Half‐wave dipole subdivision into infinitesimal dipoles.
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0 0

0 0

sin , 0 / 2
4

sin , / 2 0
4

ˆ
ˆ

ˆ

I z z
I z

I z z
	 (18.32a)

Adding the contributions from all infinitesimal elements (after some mathematical 
manipulations) we can obtain the results for the far fields of the half‐wave dipole as

	

0
0 0eˆ

2
ˆ

j rIE j F
r

	 (18.33a)

	

0
0eˆˆ
2

j rIH j F
r

	 (18.33b)

where, the so‐called space factor is

	
F

cos cos

sin
2 	 (18.34)

The radiation pattern of a half‐wave dipole is shown in Figure 18.11.
The electric field is at maximum broadside to the antenna ( 90 ). In this case, the 

space factor equals unity.

	
F

cos cos

sin

cos cos

sin
cos
s

1
2

1
2

90

90
0

iin90
1
1

1	 (18.35)
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Figure 18.11  Radiation pattern of 
a half‐wave dipole.
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18.5  Quarter‐Wave Monopole Antenna

A quarter‐wave monopole can be obtained from a half‐wave dipole by replacing one of 
the arms of the dipole by an infinite ground plane, as shown in Figure 18.12.

An infinite ground plane is, of course, not realistic; a practical quarter‐wave antenna 
is shown in Figure 18.13.

The radiation pattern of a quarter‐wave monopole above the ground plane is the 
same as that for the half‐wave dipole, as discussed in the next section.

18.6  Image Theory

In image theory, a radiating antenna (actual source) is placed at some distance h from a 
perfect conducting plane. An image of this antenna (virtual source) is placed below the 
conducting plane at the same distance h, as shown in Figure 18.14 (Balanis, 2005, p. 185).

I

In�nite ground plane

4
�

Figure 18.12  Quarter‐wave dipole.

Figure 18.13  A practical monopole antenna.
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Because of the reflecting ground plane, the total field at an observation point P is the 
sum of the direct wave and the reflected wave. Obviously, there is no field below the 
ground plane.

Instead of obtaining the total field by summing the actual direct and the reflected 
waves, we add the direct waves from the actual source and the direct wave from its 
image (virtual source) to obtain the same result (above the ground plane). When con-
sidering the virtual direct wave, we pretend that the ground plane does not exist and 
therefore the virtual wave has a direct unobstructed path to the observation point.

Why are we using this approach? Because the calculation of the fields using the actual 
waves is quite complicated, whereas the calculations using the image theory are quite 
simple, as we shall see.

Consider the geometry shown in Figure 18.15
The source is an infinitesimal dipole of length l, carrying a constant current I0. The 

observation point P is in the far field. Using the previously derived results, the direct 
component of the E field at the observation point is

	
E j I l

r
d

j r

0
0 0

1
1

0 1

4
e sin 	 (18.36a)

The virtual component is

	
E j I l

r
v

j r

0
0 0

2
2

0 2

4
e sin 	 (18.36b)

The total field at the observation point is

	
E E E j I l

r
j I l

r
d v

j r j r

0
0 0

1
1 0

0 0

2

0 1 0 2

4 4
e esin sin 2	 (18.37)
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Figure 18.14  Hertzian dipole and its image.



Foundations of Electromagnetic Compatibility556

Using the law of cosines we have

	 r r h rh1
2 2 2 cos 	 (18.38a)

	 r r h rh2
2 2 2 cos 	 (18.38b)

In the far field, r h  and the Eqs (18.38) can be approximated as

	 r r h1 cos 	 (18.39a)

	 r r h2 cos 	 (18.39b)

Geometrically, Eqs (18.39) represent parallel lines, as shown in Figure 18.16. This is 
often referred to as the parallel‐ray approximation.

Obviously, we have

	 1 	 (18.40a)

	 2 	 (18.40b)

We will use the approximations in Eqs (18.39) and (18.40) when substituting for r1 and 
r2 in the phase component of the expressions in Eq. (18.37). That is,

	 e ej r j r h0 1 0 cos 	 (18.41a)

	 e ej r j r h0 2 0 cos 	 (18.41b)

When approximating the amplitude components, we may further approximate r1 
and r2 as

	 r r1 	 (18.42a)

	 r r2 	 (18.42b)
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Figure 18.15  Direct waves from the Hertzian dipole and its image.
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Utilizing Eqs (18.41) and (18.42) in Eq. (18.37) we get
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	 (18.43)

That is,

	

E j I l
r

h z

z

j r

0
0 0

0

0

2
0

0 0

e sin cos cos ,

,
	 (18.44)

This result can be extended to the case of a quarter‐wave monopole (Paul, Pg. 429).

18.7  Differential‐ and Common‐Mode Currents 
and Radiation

18.7.1  Differential‐ and Common‐Mode Currents

Consider a typical circuit model shown in Figure 18.17.
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x
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Figure 18.16  Parallel‐ray approximation.
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If there were no other circuits or sources or paths of coupling present external to this 
circuit, the forward current would equal the return current. In virtually any practical 
circuit a different scenario takes place, as shown in Figure 18.18.

ÎD is referred to as the differential‐mode (DM) current, while ÎC is referred to as the 
common‐mode (CM) current. The DM currents are usually the functional currents; they 
are equal in magnitude and of opposite directions. The CM currents are equal in mag-
nitude and flowing in the same direction. (In the next section, we will show an example 
of a circuit in which CM currents are created.)

In the analysis of the DM and CM currents we often use the circuit model shown in 
Figure 18.19, showing, in addition to the DM and CM currents, the total currents I1 and 
I2 flowing in the same direction.

Source

+
–

Load

Return current

Ẑ L

ẐS
Forward current

V̂S

Figure 18.17  A typical circuit model.

Source

+
–

Load

Î D Î C

Ẑ LV̂S

ẐS

Î D Î C

Figure 18.18  A realistic circuit model.
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+
–
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ẐS
Î D Î C

Î 1

V̂S Ẑ LÎ 2

Î D Î C

Figure 18.19  Circuit model showing the total currents.
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These two total currents are related to the DM and CM currents by

	 1̂
ˆ ˆ
C DI I I 	 (18.45a)

	 2̂
ˆ ˆ
C DI I I 	 (18.45b)

Adding and subtracting Eqs (18.45a) and (18.45b) gives

	 1 2
ˆ ˆ ˆ2 CI I I 	 (18.46a)

	 1 2
ˆ ˆ ˆ2 DI I I 	 (18.46b)

Thus, in terms of the total currents, the DM and CM currents can be expressed as

	 1 2
ˆ ˆ1

2
ˆ

DI I I 	 (18.47a)

	 1 2
ˆ ˆ1

2
ˆ

CI I I 	 (18.47b)

We are now ready to discuss the radiation from the DM and CM currents.

18.7.2  Radiation from Differential‐ and Common‐Mode Currents

Consider the circuit in Figure 18.20, showing the differential‐mode currents and the 
corresponding radiated E fields in the far field of these radiating elements.

If we treat the conductors as Hertzian dipoles, or half‐wave dipoles, the maximum 
radiated E field is broadside to the antenna ( 90 ) and in the z direction, as shown. 

P

E1

E2

E P
Observation point

in far field

Conductor 1 Conductor 2

Total field

x

d

z

y

s

Î D

Î D

Figure 18.20  Differential‐mode radiation.
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The radiated fields due to both conductors are of opposite directions, giving a small 
total radiated field as shown.

The total radiated field at the observation point in the far field can be obtained by 
treating the two‐conductor structure as a small loop antenna (Ott, 2009, p. 465) or by 
treating each of them as a small dipole antenna and superimposing the fields (Paul, 
2006, p. 506).

Now, consider the circuit in Figure 18.21, showing the CM currents and the corre-
sponding radiated E fields in the far field of these radiating elements.

The radiated fields due to both conductors are of the same direction, thus reinforcing 
each other to give the total radiated field as shown.

It should be noted that the CM currents could be several orders of magnitude smaller 
than the DM currents, yet the radiation from them could exceed the regulatory limits.

The total radiated field at the observation point in the far field can be obtained by 
treating each of the conductors as a small dipole antenna and superimposing the fields 
(Paul, 2006, p. 515).

We will calculate the total fields using the approach described by Paul (2006, p. 506). 
In order to calculate the DM and CM radiation, consider the scenario shown in 
Figure 18.22.

The two linear antennas shown are placed along the x axis, carrying the currents in 
the z direction. We will determine the radiated field due to both antennas broadside to 
them (i.e. in the xy plane, or for 90 .

The total radiated electric field at an observation point P in the far field will be the 
sum of the field of each conductor

Total field E

E1 E2

Observation point
in far field

P

P

x

Conductor 1 Conductor 2

s

y

d

z

Î C

Î C

Figure 18.21  Common‐mode radiation.
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	 ,1 ,2
ˆ ˆ ˆE E E 	 (18.48)

Treating each conductor as a Hertzian dipole and utilizing Eq. (18.13) we have

	

0 1
1

1 0 0
1

esi
ˆ

n
4

ˆ
j rI lE j
r

	 (18.49a)

	

0 2
2

2 0 0
2

esi
ˆ

n
4

ˆ
j rI lE j
r

	 (18.49b)

Thus, the total field in Eq. (18.48) equals

	

0 1 0 2

0 1 0 2

1 2
0 0 0 0

1 2

1 2
0 0

1 2

e esin s
ˆ ˆˆ in
4 4

e esin
4

ˆ ˆ

j r j r

j r j r

I l I lE j j
r r

l I Ij
r r

	 (18.50)

Using the parallel‐ray approximation discussed in previous section we have

	
r r s
1 2

cos 	 (18.51a)

	
r r s
2 2

cos 	 (18.51b)

s

s

ϕ

ϕ

ϕ

2

2
cos ϕ

cos ϕ

s
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r2

r
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P

Êθ1

2

s
2

Î 1

Î 2

Êθ
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Figure 18.22  Far fields of the two‐wire antennas.
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Substituting Eqs (18.51) into the exponential phase terms in Eq. (18.50) and substituting

	 r r1 	 (18.52a)

	 r r2 	 (18.52b)

into the denominators of Eq. (18.50) we obtain

	

0 0

0 0 0

cos cos
2 2

1 2
0 0

cos cos
2 2

0 0 1 2

ˆ ˆˆ e esin
4

esi e e
4

ˆn ˆ

s sj r j r

s sj r j j

l I IE j
r r

lj I I
r

	 (18.53)

Thus broadside to the antennas ( )sin 1  the total radiated field is

	

0 0 0cos cos
2 2

0 0 1 2
ˆ e e e

4
ˆ ˆ

s sj r j jlE j I I
r

	 (18.54)

The maximum radiation will occur in the plane of the wires and on the line perpen-
dicular to the conductors, thus for 0  or 180  (Paul, 2006, p. 509). Using 180  
in Eq. (18.54) we obtain

	

0 0 02 2
0 0 1 2

e eˆ
4

ˆ eˆ
s sj r j jlE j I I

r
	 (18.55)

Next, we will apply Eq. (18.55) to the DM and CM currents shown in Figures 18.19 
and 18.20, respectively.

Differential‐mode radiation  Letting

	 1̂
ˆ

DI I 	 (18.56a)

	 2̂
ˆ

DI I 	 (18.56b)

and replacing the distance r by d (taken from the midpoint between the conductors) in 
Eq. (18.55) we obtain

	

0 0 0

0 0 0

0

0

2 2
0 0

2 2
0 0

0 0 0

0 0 0

e e e
4

e e e
4

e 2sin
4 2

e sin
2

ˆ ˆ ˆ

ˆ

ˆ

2

ˆ

s sj d j j
D D

s sj d j jD

j d
D

j d
D

lE j I I
d

l Ij
d

l I sj j
d

l I s
d

	 (18.57)
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Utilizing

	
0

0

2 	 (18.58)

in Eq. (18.57) we obtain

	

0

0

0
0 0

0

0 0

ˆˆ 2 2sin
2 2

e sin
ˆ

j d
D

j d
D

l I e sE
d

l I s
d

	 (18.59)

For electrically small spacing between the line, i.e.

	
s s
 0

0
1or 	 (18.60)

we use the approximation

	
sin s s

0 0
	 (18.61)

Using Eq. (18.61) in Eq. (18.59) results in

	

0
0

0 0

ˆˆ e j d
Dl I sE

d
	 (18.62)

Now,

	
0

0
83 10v

f f
	 (18.63a)

	 0 120 	 (18.63b)

Using Eqs (18.63) in Eq. (18.62) produces

	

0

0
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0

0

0 0
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2
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e
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ˆ
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e131.59

ˆ

ˆ

ˆ

1 ˆ0

j d
D

j d
D

j d

D

j d

D

l I sE
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	 (18.62)

The magnitude of the total field is

	
16 2131.59 10 ˆ

D
lsE f I
d

	 (18.63)

This corresponds to the equivalent formulas in Ott (2009, p. 466, Eq. (12–1)) and Paul 
(2006, p. 510, Eq. (8.12)).
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Common‐mode radiation  Letting

	 1̂ ĈI I 	 (18.64a)

	 2̂ ĈI I 	 (18.64b)

and replacing the distance r by d (taken from the midpoint between the conductors) in 
Eq. (18.55) we obtain

	

0 0 0

0 0 0

0

0

2 2
0 0

2 2
0 0

0 0 0

0 0 0

e e e
4

e e e
4

e 2cos
4 2
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ˆ

ˆ

2

ˆ

s sj d j j
C C

s sj d j jC

j d
C

j d
C

lE j I I
d

l Ij
d

l I sj
d

l I sj
d

	 (18.65)

Utilizing

	
0

0

2 	 (18.66)

in Eq. (18.65) we obtain

	

0

0

0
0 0

0

0 0

ˆ2 e 2cos
2 2

e co

ˆ

ˆ
s

j d
C

j d
C

l I sE j
d

l I sj
d

	 (18.67)

For electrically small spacing between the line, i.e.

	
s s
 0

0
1or 	 (18.68)

we use the approximation

	
cos s

0
1	 (18.69)

Using Eq. (18.69) in Eq. (18.67) results in

	

0
0

0

ˆˆ e j d
Cl IE j

d
	 (18.62)

Again,

	
0

0
83 10v

f f
	 (18.64a)
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	 0 120 	 (18.65b)

Using Eqs (18.65) in Eq. (18.67) produces

	

0

0

0

0

0

8

8

ˆˆ

ˆ

e

120 e
3 10

e125.66 ˆ10

j d
C

j d
C

j d

C

l IE j
d

l f Ij
d

f lI
d

	 (18.62)

The magnitude of the total field is

	
E fI l

dC125 66 10 8. ˘ 	 (18.63)

This corresponds to the equivalent formulas in Ott (2009, p. 477, Eq. (12‐6)) and Paul 
(2006, p. 515, Eq. (8.16a)).

18.8  Common Mode Current Creation

In this section we present an example of how the common‐mode current is created in a 
differential signaling circuit. In order to facilitate this discussion, we begin with a simple 
circuit configuration and augment it to reflect high‐speed digital circuits.

18.8.1  Circuits with a Shared Return Path

Consider the circuit shown in Figure 18.23.
The current Iforward leaves the source, arrives at the load and the same amount of cur-

rent, Ireturn, flows back to the source. Note that the load voltage is the same as the source 
voltage.

The scenario shown in Figure 18.23 is an idealized one. In high‐speed digital circuits, 
we often encounter the arrangement shown in Figure 18.24, where we need to account 

Source Load

Iforward

Ireturn

Figure 18.23  Load driven by a source.
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for the finite impedances of the source and load connections to the reference plane, 
which itself has a non‐zero impedance (Johnson and Graham, 2003, p. 365).

Z1 and Z2 in Figure 18.24 represent the finite impedances of the IC package pins or 
balls to make the connection to the ground reference plane, and ZGND represents the 
finite impedance in the return path.

Writing KVL for the circuit shown in Figure 18.24 we get

	 V V V V VS L GND2 1	 (18.64)

Since

	 V Z i1 1 	 (18.65a)

	 V Z i1 1 	 (18.65b)

Equation (18.64) can be rewritten as

	 V V Z i V Z iS L GND2 1 	 (18.66)

or

	 V V Z i V Z iL S GND2 1 	 (18.67)

Note that the load voltage is not equal to the source voltage (as is the case in 
Figure 18.23). The voltage across the load is lower than the source voltage by the various 
voltage drops along the current loop. Also, if the return path is shared with other 
circuits, as shown in Figure 18.25, then there is the potential for common impedance 
coupling between the circuits.

We have considered the finite impedance of the ground connections and ZGND in the 
ground plane, but a similar scenario occurs in power planes, as shown in Figure 18.26.

Currents flowing in a power plane affect the power voltages in the same way as the 
currents flowing in the ground plane affect the ground voltages. Whether we are more 
concerned with the power plane or the ground plane, noise voltage depends on whether 
the circuit uses the power rails or the ground rail as the internal reference for logic 
signals (Johnson and Graham, 2003, p. 368).

V1

–

–

–

–

–

+

+

+

+

+

Z1 Z2 V2

VL

i

ZGND

VS

VGND

Figure 18.24  Finite impedance in the connections and ground path.
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Another example of common‐impedance coupling is shown in Figure 18.27.
The driver for the second circuit, (VS2), shares the same physical IC package as the 

load for the first circuit. Thus, they share a common ground connection Z2. As the 
return current i2 enters the package through Z2, it will affect the voltage at the load of 
the first circuit.

A variation of the circuit shown in Figure 18.27 is shown in Figure 18.28.
The driver for the second circuit, (VS2), shares the same physical IC package as the 

load for the first circuit but now each circuit has its own ground connection. Obviously, 
this eliminates the shared common‐impedance coupling between the driver and the 
load in the same package.

Let’s assume that no current flows through the ground connections, as shown in 
Figure 18.29.

Under this assumption, in each circuit, the forward current will be equal in magni-
tude and opposite in direction to the return current, just like the scenario in the very 
first, idealized circuit in Figure 18.23.

Also, each of the drivers no longer relies on the reference voltage with respect to the 
ground plane. The reference voltage, VS, is simply the voltage difference between the 
two wires. Finally, each circuit is immune to any type of interference that affects both 

VGND

ZGND

Z1 Z2

i

–

–

–

–

–

+

+

+
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V2
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iother ckts
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Figure 18.25  Common ground‐plane impedance coupling.
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Figure 18.26  Common power‐plane impedance coupling.
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wires equally. That is, the potential of each wire is shifted by the same amount, the 
potential difference between the wires remains the same.

These very desirable characteristics will no longer be true if the currents through the 
connection impedances Z1 and Z2 are non‐zero. Thus, in a practical circuit, we would 
want these currents to be minimized to insignificant levels. Even if this is accomplished, 
another problem arises in high‐speed digital circuits: capacitive coupling to other 
conducting paths or metallic objects. This is shown in Figure 18.30.

ZGND

Z1

+

+

–

–

–

–

–
–

+

+

+
+

Z2 V2

VL

V1

VS1 VS2

IC1 IC2

i1
i2

VGND

Figure 18.27  Another example of common impedance coupling.
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Figure 18.28  A variation of the previous circuit.
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Figure 18.29  No current flows through the ground connections.
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The return current now has a choice of two paths back to the source: the intended 
path through the return wire or the parasitic path through the impedance Z1 or Z2. This 
leads us to the topic of differential signaling discussed in the next section.

18.8.2  Differential Signaling

Consider the circuit shown in Figure 18.31.
Writing KVL for the circuit shown gives

	 V V VS S L 0	 (18.68)

or

	 V VL S2 	 (18.69)

A simple remedy resulting in the load voltage equal the source voltage is shown in 
Figure 18.32, or in Figure 18.33 with the bottom source polarity reversed.

Thus, the differential signaling results in equal and opposite voltages (with respect to the 
reference ground) and equal and opposite currents flowing in the forward and return paths.

Figure 18.33 shows dc voltages, but of course the same discussion holds for ac voltages.

VS
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Z1

IC1
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–

Figure 18.30  Capacitive coupling to other conducting paths or metallic objects.
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Figure 18.31  Differential signaling circuit.



Foundations of Electromagnetic Compatibility570

18.8.3  Common‐Mode Current Creation

Let’s add the coupling between the differential pair and the ground plane as in 
Figure 18.34.

If the layout is symmetrical, then both wires couple equally to the reference ground 
plane (through ZF and ZR), and ac currents induced in the ground plane by one wire will 
be counteracted by equal and opposite currents induced by the other wire. Thus, there 
will be no net parasitic current in the reference plane.

If the differential‐pair voltages are not precisely complementary, or the stray imped-
ances ZF and ZR are not well balanced, then some stray current will flow in the reference 
plane. This is shown in Figure 18.35.
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Figure 18.32  A variation of the previous circuit.
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Figure 18.33  Equivalent differential signaling circuit.
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We refer to this stray current as the common‐mode current and designate it in cir-
cuits as shown in Figure 18.36.

18.9  Antenna Circuit Model

18.9.1  Transmitting‐Mode Model

A physical model of an antenna in a transmitting mode is shown in Figure 18.37.
A corresponding circuit model of an antenna in a transmitting mode is shown in 

Figure 18.38.
Input impedance of an antenna, Ẑin, is the impedance presented by an antenna (to the 

generator circuit) at its input terminals A‐B.
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Figure 18.34  Coupling to the ground plane.
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Figure 18.36  Common‐mode current flow.
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Figure 18.37  Physical model of an antenna in a transmitting mode.
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Figure 18.38  Circuit model of an antenna in a transmitting mode.
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Figure 18.39 shows more details of this circuit model.
The input impedance of an antenna is

	
ˆ

in in inZ R jX 	 (18.70)

where

	 R R Rin loss rad	 (18.71)

Rrad is the radiation resistance, and Xin the radiation reactance of the antenna.
Recall that in Section 6.7.5 (Eq. 6.176), we calculated the radiated power of a Hertzian 

dipole as

	
P l I

rad 80
2

2
2

0
2

	 (18.72)

The radiation resistance is a fictitious resistance that dissipates the same power as 
that radiated by the Hertzian dipole when carrying the same current. Thus,

	
P R I

rad rad
0
2

2
	 (18.73)

Therefore, the radiation resistance of a Hertzian dipole is

	
R l

rad 80 2
2

	 (18.74)

The radiation resistance of a half‐wave dipole is 73 Ω, while the radiation reactance is 
j42.5 Ω (Paul, 2006, p. 435). The values for the quarter‐wave monopole are the half of 
those for the half‐wave dipole.

The circuit models (assuming no losses) of a half‐wave diploe and a quarter‐wave 
monopole are shown in Figure 18.40, and Figure 18.41, respectively.

18.9.2  Receiving‐Mode Model

A physical model of an antenna in a receiving mode is shown in Figure 18.42.

V̂
g

Ẑ
g

R
rad

R
loss

X
in

+
–

Figure 18.39  Detailed circuit model of an antenna in transmitting mode.
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A corresponding circuit model of an antenna in a receiving mode is shown in 
Figure 18.43.

A visual model of the half‐wave dipole receiving antenna operation is shown in 
Figure 18.44.

An oscillating EM wave (E field shown) arrives at the antenna and is directed along its 
arms. This E field exerts a force on the electrons in the antenna arms, causing them to 
move back and forth between the antenna ends, charging them alternatively positive 
and negative. This oscillating current flows through the receiver resulting in a voltage 
reading.

A

A

B

B

73 Ω

j42.5 Ω2

λ

Figure 18.40  Circuit model of a half‐wave dipole.

A

A

B
B

36.5 Ω
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Figure 18.41  Circuit model of a quarter‐wave monopole.
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Figure 18.42  Physical model of an antenna in a transmitting mode.
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18.10  EMC Applications

18.10.1  EMC Antenna Measurements

Figure 18.45 shows a log‐periodic antenna used for radiated emissions measurements.
The antenna is connected through a high‐quality coaxial cable to a receiver as shown 

in Figure 18.46 (the measurement setup conforms to CISPR 25 requirements).
A simplified test setup is shown in Figure 18.47.
The wave radiating from the equipment under test (EUT) is captured by the measur-

ing antenna, connected through a coax cable to the receiver (spectrum analyzer or EMI 
receiver).

The voltage measured by this receiver is V̆rec. In order to relate this voltage reading to 
the actual electric field measured by the antenna, Êinc, we need the so‐called antenna 
factor (supplied by the antenna manufacturer).

Receiver circuit B

A

XT

Xin

RT

Rloss

Rrad

VT

Circuit model:

+
–

Figure 18.43  Circuit model of an antenna in a receiving mode.
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Figure 18.44  Half‐wave dipole in a receiving mode.
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Figure 18.45  Log‐periodic antenna for 300–1000 MHz frequency range measurements.
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Figure 18.46  Log‐periodic antenna connected to a measuring receiver.
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Antenna factor is defined as

	

V/m in incident wave 1,
V receiv d

ˆ

ˆ e m
inc

rec

E
AF

V
	 (18.75)

That is, the antenna factor is the ratio of the incident electric field at the surface of the 
measurement antenna to the received voltage at the antenna terminal.

The antenna factor is usually given in dB:

	
AFdB dB V/m incident wave dB V received voltage 	 (18.76)

It is provided by the antenna manufacturer, either as a table or a plot vs frequency. 
Figure 18.48 shows the antenna factor for a log‐periodic antenna.

From Eq. (18.76) we get

	
dB V/m incident wave dB V received voltage AFdB	 (18.77)

In order to account for the cable loss, we need to modify the above equation to

	
dB V/m incident wave dB V received voltage cable lossdAFdB BB	

(18.78)

18.10.2  Antenna VSWR and Impedance Measurements

Consider the model of an antenna system in the receiving mode shown in Figure 18.49.
The spectrum analyzer is matched to the coaxial cable. If the antenna’s radiation 

resistance was 50 Ω over the measurement frequency range then the voltage induced at 
the base of the antenna would appear at the spectrum analyzer (assuming no cable loss).

If the antenna’s resistance differed from 50 Ω then some of the power received by the 
antenna would be reflected back or reradiated, and the reading at the spectrum analyzer 
would be lower.

It is therefore very useful to know the impedance of the antenna over its measurement 
range. One very good indicator of the antenna impedance is obtained by measuring the 
VSWR of the antenna.

Spectrum
analyzer

Antenna

Coax cable

Semianechoic chamber

Radiated
wave

EUT

Figure 18.47  Simplified radiated emissions setup.
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Figure 18.48  Antenna factor for a log‐periodic antenna.
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Figure 18.49  Antenna in the receiving mode.
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Figure 18.50  Antenna SVWR measurement setup.
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Consider the setup shown in Figure 18.50.
If, in a given frequency range, the antenna’s resistance is 50 Ω then the VSWR reading 

will be 1. The more the impedance of the antenna differs from 50 Ω the higher the 
VSWR reading.

Figures  18.50 and 18.51 show the actual setup for measuring VSWR of the log‐
periodic antenna.

The VSWR measurement for this antenna is shown in Figure 18.53, while the imped-
ance measurement is shown in Figure 18.54.

Note that the VSWR is very close to the value of one in the frequency range 300 MHz 
to 1 GHz, which is the intended frequency range of this antenna.

Note that the impedance measurement is very close to the value of 50 Ω in the 
intended frequency range of this antenna.

18.10.3  Comb Transmitter Measurements

To evaluate the radiated emissions measurement setup, we often use a comb generator, 
shown in Figure 18.55.

A comb generator is a transmitting antenna that produces signals of (ideally) the same 
amplitude, equally spaced in frequency. Figure 18.56 shows the comb generator meas-
urement results in the frequency range 30–300 MHz, which is the intended frequency 
range for the biconical antenna.

Coax cable inside the chamberLog-periodic antenna

Figure 18.51  Log‐periodic antenna measurement setup inside the chamber.
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Coax cable outside the chamber Preamp EMI receiver

Figure 18.52  Measurement setup outside the chamber.

Figure 18.53  Log‐periodic antenna VSWR measurement results.
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Figure 18.54  Log‐periodic antenna impedance measurement results.

Bicon antenna Comb generator

Figure 18.55  Comb generator measurement setup.
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Appendix A

This appendix presents a description of the basic setups for radiated and conducted 
emissions, radiated and conducted immunity, and electrostatic discharge (ESD). 
A representative sample of commercial EMC regulations is used to explain the basics of 
EMC measurements. Pictures of the typical test setups, equipment, and facilities are 
presented. Each test is supported by the examples of the real test data, many of them 
illustrating the “pass” and “fail” results.

This presentation is not intended to review all existing EMC regulations or to discuss 
the details of each test procedure and the required documentation. The intent is simply 
to discuss each test and the equipment required to perform it, to the extent needed to 
gain a basic understanding of and to interpret the test results.

A.1  Introduction – FCC Part 15 and CISPR 22 Standards

EMC standards and regulations have been imposed by various government regulatory 
bodies and various industries to control allowable emissions from electronic products. 
In the USA, the Federal Communications Commission (FCC) regulates the use of radio 
and wire communications. Part 15 of the FCC Rules and Regulations sets forth technical 
standards and operational requirements for RF devices.

The most widely outside the USA is CISPR 22, which sets limits on the radiated and 
conducted emissions of information technology equipment, which basically includes all 
digital devices in the similar meaning as for the FCC (CISPR – Comité International 
Spécial des Perturbations Radioélectriques – International Special Committee on Radio 
Interference).

The limits are divided into Class A (commercial devices) and Class B equipment 
(residential devices), and their meaning is essentially the same as the FCC definitions.

A.1.1  Peak vs Quasi‐Peak vs Average Measurements

Most radiated and conducted limits in EMC testing are based on quasi‐peak detection 
mode. Quasi‐peak detectors weigh signals according to their repetition rate, which is a 
way of measuring their “annoyance factor”. High amplitude low repetition rate signals 
could produce the same output as low amplitude high repetition rate signals.

EMC Tests and Measurements
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As the repetition rate increases, the quasi‐peak detector produces a higher voltage 
output, i.e. a response on spectrum analyzer or EMI receiver. Figure A.1 shows an EMI 
receiver and its typical screen output.

Quasi‐peak detector readings will be less than or equal to the peak detection. An average 
detector will be less than or equal to the quasi‐peak detection. This is shown in Figure A.2.

Figure A.1  An EMI receiver and its typical screen output.
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Because quasi‐peak readings are much slower (by two or three orders of magnitude 
compared with peak) it is very common to scan initially with the peak detection, and then 
if this is marginal or fails, switch and run the quasi‐peak measurement against the limits.

This approach is illustrated in Figures  A.3–A.5 which show the current probe 
measurements.

Since the peak detector measurement failed, it was followed by the average and the 
quasi‐peak measurements, which passed.

A.1.2  FCC and CISPR 22 Limits

Maybe the easiest way to begin the discussion of EMC regulations and test limits is 
to  start with the FCC and CISPR 22 conducted emission limits, since these two are 
the same (this is not the case in general).

PK
detection
QP
detection

AV
detection

Figure A.2  Relationship between the detectors.

Figure A.3  Peak detector measurement.
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Figure A.6 shows the Class A conducted emissions limits, while Figure A.7 shows 
the limits for Class B.

Note that the conducted emission testing is performed in the frequency range of 
0.15–30 MHz.

Figure A.4  Average detector measurement.

Figure A.5  Quasi‐peak detector measurement.
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The FCC and CISPR 22 conducted emissions limits are the same. This is not the case 
with the radiated emission limits.

CISPR 22 radiated emissions limits are specified at a 10 m distance for both Class A 
and Class B devices. FCC radiated emission limits are specified at a 10 m distance 
for Class A devices but at a distance of 3 m for Class B devices.

79

Voltage
(dBμV)

73

66

60

79 (66)8912.5 (1995)

4467 (1000)

Frequency (MHz) μV QP (AV) dBμV QP (AV)

73 (60)

150 kHz 500 kHz 30 MHz f

(AV)

0.5 - 30

0.15 - 0.5

(QP)

Figure A.6  FCC and CISPR 22 Class A conducted emissions limits.
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Figure A.7  FCC and CISPR 22 Class B conducted emissions limits.
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Figure A.8 show the CISPR 22 Class A and Class B radiated emissions limits.
The FCC Class A radiated emissions limits are shown in Figure A.9, while the Class B 

radiated emissions limits are shown in Figure A.10.
Finally, Figure A.11 compares the CISPR 22 and FCC radiated emissions limits for 

Class A devices.

A.2  Conducted Emissions

Conducted emissions are the noise currents generated by the EUT (or DUT – device 
under test) that propagate through the power cord or harness to other components/
systems or power grid.

FCC and CISPR 22 set the limits on the ac conducted emissions. CISPR 25 (automotive 
standard), MIL‐STD‐461 (military standard) set the limits on the dc conducted emissions.

To measure the conducted emissions the artificial network (AN) or the line imped-
ance stabilization network (LISN) is used. (LISN looks like a 50 Ω resistor to the EUT 
and basically acts as an LC low pass filter).

Figure A.12 shows an ac LISN and Figure A.13 shows its schematic.
There are several variations of the dc LISNs. Figures A.14 and A.15 show two of them.
FCC and CISPR 22 require two conducting planes (horizontal and vertical), shown in 

Figure A.16, and use the voltage method to measure the conducted emissions.
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Figure A.8  CISPR 22 Class B radiated emissions limits.
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Figure A.9  FCC Class A radiated emissions limits.
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Figure A.10  FCC Class B radiated emissions limits.
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Figure A.11  Comparison of the CISPR 22 and FCC Class A radiated emissions limits.

EMI receiver
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Figure A.12  FCC/CISPR22 ac LISN.
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CISPR 25 requires a screen room, shown in Figure A.17, and specifies two methods: 
voltage method and current probe method.

A.2.1  FCC and CISPR 22 Voltage Method

The details of the FCC/CISPR 22 conducted emissions voltage method setup are shown 
in Figure A.18. (for clarity, the vertical ground plane is not shown).

AC
power 
net

From spectrum
analyzer or EMI
receiver

Dummy load
resistor

0.1 μF

Line

Neutral

1 μF1 μF

50 μH

1 kΩ 1 kΩ50 Ω50 Ω

50 μH

0.1 μF

Green
wire

AC LISN – FCC/CISPR 22

EUT

Figure A.13  ac LISN schematic.

0.1 μF

1 μF

5 μH
A

B
E

D

C

CISPR 25

1000 Ω

Figure A.14  CISPR 25 dc LISN.
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Figure A.19 shows a DUT (laptop) positioned on the test table (dimensions not to 
scale) in a screen room setup for the conducted emissions testing.

The ac conducted emissions are measured on both the line and the neutral lines. An 
example of the line conducted emissions is shown in Figure A.20, while the emissions 
on the neutral line are shown in Figure A.21.

A.2.2  CISPR 25 Voltage Method

The details of the CISPR 25 conducted emissions voltage method setup are shown in 
Figure A.22. and A.23.

0.25 μF8 μF

50 μH
A

B
E

D

C

MIL-STD-461

1000 Ω5 Ω

Figure A.15  MIL‐STD‐461 dc LISN.

Non-conductive table

Horizontal ground
reference plane

Vertical ground
reference plane

Figure A.16  FCC/CISPR 22 conducted emissions test setup.
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CISPR 25 categorizes the devices into five classes; the classification is based on the 
physical location of the device in a vehicle and the severity of the exposure to the EM 
environment. Class 1 limits are the least severe and the Class 5 limits are the most 
severe, as shown in Tables A.1 and A.2.

Figure A.17  Screen room for CISPR 25 conducted emissions measurements.

LISN

10 cm

Non-conductive table

Device under test
(rear of DUT �ushed
with rear of table top)

80 cm

80 cm

40 cm

40 cm to vertical
reference place

Horizontal ground
reference plane

Figure A.18  The details of the FCC/CISPR 22 voltage method setup.



Vertical ground plane (VGP)
(screen room wall)
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(screen room �oor)

LISN

Table 40 cm from VGP

Table top 80 cm
above �oor

Shelf 40 cm
above �oor

10 cm

Non-conductive table

DUT �ush with rear
of table top

Figure A.19  DUT arrangement in a screen room for conducted emissions testing.

Figure A.20  An example of the line conducted emissions.
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Note in Table A.1 that the peak limit for Class 3 device in the frequency range of 
41–88 MHz is 46 dBμV.

CISPR 25 dc conducted emissions are measured on both the battery and the ground 
lines in the frequency range 150 kHz to 108 MHz.

Figure A.26 shows an example of the CISPR 25 conducted emissions voltage method 
(fail) peak detector results on a battery line for a Class 3 device. Figure A.25 shows the 
(pass) results for the ground line.

Figure A.21  An example of the neutral conducted emissions.
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Note that in both Figures A.24 and A.25, the limit line for the Class 3 device in the 
frequency range 41–88 MHz is set at 46 dBμV, which, of course, is consistent with 
the limits specified in Table A.1.

A.2.3CISPR 25 Current Probe Method

The details of the CISPR 25 conducted emissions current probe method setup are 
shown in Figure A.26. and A.27.

Class 1 through Class 5 limits for the current probe method are shown in Tables A.3 
and A.4.

Note that in Table A.3 the peak limit for Class 5 device in the frequency range of 
41–88 MHz is 0 dBμA. Table A.4 shows that the average limit for Class 5 device in the 
frequency range of 41–88 MHz is −10 dBμA.
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Figure A.22  The details of the CISPR 25 voltage method setup.
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Figure A.23  More details of the CISPR 25 voltage method setup.
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Figure A.28 shows an example of the CISPR 25 conducted emissions current method 
peak detector (pass) results for a Class 5 device. Figure A.29 shows the (fail) results for 
the average detector.

Note that in Figure  A.28 the limit line for Class 5 device in the frequency range 
41–88 MHz is set at 0 dBμA, while in Figure A.29 the limit line in the same frequency 
range is at −10 dBμA. This, of course, is consistent with the limits specified in Tables A.3 
and A.4.

Table A.1  CISPR 25 voltage method – peak and quasi‐peak limits.

Service/Band Frequency MHz

Levels (dBμV)

Class 1 Class 2 Class 3 Class 4 Class 5

PK QP PK QP PK QP PK QP PK QP

LW 0.15 ‐ 0.3 110 97 100 87 90 77 80 67 70 57
MW 0.53 ‐ 1.8 86 73 78 65 70 57 62 49 54 41
SW 5.9 ‐ 6.2 77 64 71 58 65 52 59 46 53 40
FM 76 ‐ 108 62 49 56 43 50 37 44 31 38 25
TV Band 1 41 ‐ 88 58 – 52 – 46 – 40 – 34 –
CB 26 ‐ 28 68 55 62 49 56 43 50 37 44 31
VHF 30 ‐ 54 68 55 62 49 56 43 50 37 44 31
VHF 68 ‐ 87 62 49 56 43 50 37 44 31 38 25

Table A.2  CISPR 25 voltage method – average detector limits.

Service/Band Frequency MHz

Levels (dBμV)

Class 1 Class 2 Class 3 Class 4 Class 5

AVG AVG AVG AVG AVG

LW 0.15 ‐ 0.3 90 80 70 60 50
MW 0.53 ‐ 1.8 66 58 50 42 34
SW 5.9 ‐ 6.2 57 51 45 39 33
FM 76 ‐ 108 42 36 30 24 18
TV Band 1 41 ‐ 88 48 42 36 30 24
CB 26 ‐ 28 48 42 36 30 24
VHF 30 ‐ 54 48 42 36 30 24
VHF 68 ‐ 87 42 36 30 24 18



Appendix A598

59

57.5

55

52.5

50

47.5

45

42.5

40

37.5

35

dB
uV

32.5

30

27.5

25

22.5

20

17.5

14

3530 40 45 5550 60 65 70 75
Frequency (MHz)

80 85 90 95 100 105 108

Emissions

Ambient

Emissions Limit

Ambient Limit

Failure Points

Test Date & Time

Chart Name

CE-V CISPR25 Ed3
Class 3 PK 30MHz-
108MHz B BAT plot

10:53:22.309 AM
3/23/2016

Figure A.24  CISPR 25 conducted emissions voltage method – peak detector results on a battery line 
for a Class 3 device.
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Figure A.25  CISPR 25 conducted emissions voltage method – peak detector results on a ground line 
for a Class 3 device.
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Figure A.26  The details of the CISPR 25 current probe method setup.
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Figure A.27  More details of the CISPR 25 current probe method setup.
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A.3  Radiated Emissions

CISPR 22 specifies that the measurement of the radiated emissions from products be 
performed at an OATS (open area test site), shown in Figure  A.30, while CISPR 25 
requires the measurements to be performed in a semi‐anechoic test chamber (also 
referred to as absorber‐lined shielded enclosure – ALSE), shown in Figure A.31.

Table A.3  CISPR 25 current probe method – peak and quasi‐peak limits.

Service/Band Frequency MHz

Levels (dBμA)

Class 1 Class 2 Class 3 Class 4 Class 5

PK QP PK QP PK QP PK QP PK QP

LW 0.15 ‐ 0.3 90 77 80 67 70 57 60 47 50 37
MW 0.53 ‐ 1.8 58 45 50 37 42 29 34 21 26 13
SW 5.9 ‐ 6.2 43 30 37 24 31 18 25 12 19 6
FM 76 ‐ 108 28 15 22 9 16 3 10 –3 4 –9
TV Band 1 41 ‐ 88 24 – 18 – 12 – 6 – 0 –
CB 26 ‐ 28 34 21 28 15 22 9 16 3 10 –3
VHF 30 ‐ 54 34 21 28 15 22 9 16 3 10 –3
VHF 68 ‐ 87 28 15 22 9 16 3 10 –3 4 –9

Table A.4  CISPR 25 current probe method – average detector limits.

Service/Band Frequency MHz

Levels (dBμA)

Class 1 Class 2 Class 3 Class 4 Class 5

AVG AVG AVG AVG AVG

LW 0.15 ‐ 0.3 70 60 50 40 30
MW 0.53 ‐ 1.8 38 30 22 14 6
SW 5.9 ‐ 6.2 23 17 11 5 –1
FM 76 ‐ 108 8 2 –4 –10 –16
TV Band 1 41 ‐ 88 14 8 2 –4 –10
CB 26 ‐ 28 14 8 2 –4 –10
VHF 30 - 54 14 8 2 –4 –10
VHF 68 ‐ 87 8 2 –4 –10 –16
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Figure A.28  CISPR 25 conducted emissions current probe method – peak detector results for a  
Class 5 device.

Figure A.29  CISPR 25 conducted emissions current probe method – average detector results for a 
Class 5 device.
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A.3.1  Open‐Area Test Site (OATS) Measurements

The ideal OATS is a flat piece of land, free of overhead wires and nearby reflective 
structures, away from any and all external signals, with a perfectly reflective ground 
plane. Weather protection is usually needed, but the structure should not contain any 
metallic material (beams, nails, door hinges, etc.).

Since the OATS should be away from all reflective structures, this requires the control 
room to be remotely located or located underneath the ground plane. The measure-
ments should be made with a quasi‐peak measuring receiver in the frequency range 
30 MHz to 1 GHz (peak measurements are permitted).

The test site should be sufficiently large to permit antenna placing at the specified 
distance. The ground plane should extend at least 1 m beyond the periphery of the EUT 

Figure A.30  An open area test site (OATS).
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and the largest measuring antenna, and cover the entire area between the EUT and the 
antenna. The boundary of the area is defined by an ellipse, as shown in Figure A.32.

When performing the radiated emissions measurements at an OATS, it is critical that 
the ambient measurement is taken first, in order to determine the electromagnetic 
environment present. Such a measurement is shown in Figure A.33.

After having taken the ambient measurement and identifying any external noise 
sources present, the DUT emission measurement is taken. Such a measurement is 
shown in Figure A.34.

A.3.2  Semi‐Anechoic Chamber Measurements

CISPR 25 radiated emissions measurements are performed in a semi‐anechoic chamber 
in the frequency range of 150 kHz to 2.5 GHz. In the frequency range of 150 kHz to 
30 MHZ a vertical monopole antenna, shown in Figure A.35, is used.

The details of the CISPR 25 radiated emissions setup using a monopole antenna 
are shown in Figures A.36. and A.37.

Figure A.31  A semi‐anechoic chamber for radiated emissions.
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Figure  A.38 shows an example of the CISPR 25 radiated emissions, Class 5, peak 
detector, monopole antenna measurement.

In the frequency range of 30–300 MHZ a biconnical antenna, shown in Figure A.39, 
is used.

The details of the CISPR 25 radiated emissions setup using a biconnical antenna are 
shown in Figure A.40. and A.41.
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Measurement distance R
(usually 3 m or 10 m)

1-4 m
height

EUT on a 
turntable

Antenna

M
in

or
 d

ia
m

et
er

 =
 R

  3√ 

Figure A.32  OATS ground plane boundary.

Figure A.33  OATS ambient measurement.
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Figure A.34  OATS DUT emissions measurement.

Figure A.35  Monopole antenna for 
0.15‐30 MHz frequency range 
measurements.
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Figure  A.42 shows an example of the CISPR 25 radiated emissions, Class 5, peak 
detector, biconical antenna measurement.

In the frequency range of 300–1000 MHZ a log‐periodic antenna, shown in 
Figure A.43, is used.

The details of the CISPR 25 radiated emissions setup using a log‐periodic antenna are 
shown in Figure A.44. and A.45.

Figure  A.46 shows an example of the CISPR 25 radiated emissions, Class 5, peak 
detector, log‐periodic antenna measurement.
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Figure A.36  The details of the CISPR 25 setup with a monopole antenna.
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Figure A.37  More details of the CISPR 25 monopole antenna setup.
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Figure A.38  CISPR 25 radiated emissions, monopole antenna – peak detector results for a  
Class 5 device.

Figure A.39  Biconnical antenna for 
30–300 MHz frequency range 
measurements.
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A.4  Conducted Immunity – ISO 11452‐4

ISO 11452‐4 specifies the conducted immunity testing using a bulk current injection 
(BCI) method. BCI is a method of carrying out immunity tests by inducing disturbance 
signals directly into the wiring harness by means of a current injection probe.

The injection probe is a current transformer through which the wiring harness of the 
device under test (DUT) is passed, as shown in Figure A.47.
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Figure A.40  The details of the CISPR 25 setup with a biconical antenna.
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Figure A.41  More details of the CISPR 25 biconical antenna setup.



Appendix A 609

Figure A.42  CISPR 25 radiated emissions, biconical antenna – peak detector results for a Class 5 
device.

Figure A.43  Log‐periodic antenna for 
300–1000 MHz frequency range 
measurements.



Appendix A610

Immunity tests are carried out by varying the test severity level and frequency 
(1 MHz – 400 MHz) of the induced disturbance. BCI testing is performed in a screen 
room; the immunity tests require several pieces of additional equipment outside the 
screen room. These include signal generator, power amplifier, power meter, power 
sensors, directional coupler, simulation and monitoring system, and computer control. 
The external equipment pieces and their interconnections are shown in Figure A48.

Figure A.49 shows the location of the equipment external to the screen room used for 
the immunity testing.
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Figure A.44  The details of the CISPR 25 setup with a log‐periodic antenna.
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Figure A.45  More details of the CISPR 25 log‐periodic antenna setup.
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The measurement setup inside the screen room is shown in Figure A.50.
The internal setup shown in Figure  A.50 accommodates two types of BCI test 

methods specified in ISO 11452‐4 the substitution method and the closed‐loop method 
with power limitation. These will be discussed next.

Figure A.46  CISPR 25 radiated emissions, log‐periodic antenna – peak detector results for a  
Class 5 device.

Injection probe Wiring harness 

Figure A.47  ISO 11452‐4 BCI test setup.
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Figure A.48  BCI external equipment.
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A.4.1  Substitution Method

In the substitution method a calibration fixture is used to record the power needed to 
produce the required current in the 50 Ω load. Then, during the testing, that power is 
applied over the frequency range.

The details of the ISO 11452‐4 conducted immunity testing setup using the substitu-
tion method are shown in Figures A.51 and A.52.

ISO 11452‐4 specifies five test severity levels as shown in Table A.5.
Note in Table A.5 that in the frequency range of 3–200 MHz the test level I limit is 

60 mA while the test level IV limit is 200 mA. This is reflected in the limit lines shown 
in Figures A.53 and A.54, which show the ISO11542‐4 conducted immunity test results 
using the substitution method.

A.4.2  Closed‐Loop Method with Power Limitation

In this method a calibration fixture is used to record the power needed to produce the 
required current in the 50 Ω environment. Then during the testing, power is applied 
until the required current is measured or the power limit is reached (Plimit = 4 × Pcalibration).

The details of the ISO 11452‐4 conducted immunity testing setup using the closed‐
loop method with power limitation are shown in Figures A.55 and A.56.

DUT
Calibration �xture

Battery

Strofoam

Ground plane

Current injection probe
Wiring harness Current measuring probe

LISNs

Figure A.50  BCI setup inside the screen room.
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Figure A.51  The details of the ISO 11542–4 setup using the substitution method.
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Figure A.52  More details of the of the ISO 11542‐4 setup using the substitution method.

Table A.5  ISO 11542‐4 test severity levels.

Frequency 
band MHz Test level I mA Test level II mA Test level III mA Test level IV mA

Test  
level V mA

1‐3 60 ×  f(MHz)/3 100 ×  f(MHz)/3 150 ×  f(MHz)/3 200 ×  f(MHz)/3 Specific 
values agreed 
between the 
users of this 
part of ISO 
11452

3‐200 60 100 150 200
200‐400 60 × 200/f(MHz) 100 × 200/f(MHz) 150 × 200/f(MHz) 200 × 200/f(MHz)
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A.5  Radiated Immunity

ISO 11452‐11 specifies that the measurement of the radiated immunity be performed 
in a reverberation chamber, while ISO 11452‐12 requires the use of a semi‐anechoic test 
chamber (also referred to as an absorber‐lined shielded enclosure  –  ALSE). These 
chambers are shown in Figure A.57.

A.5.1  Radiated Immunity – ISO 11452‐11

ISO 11452‐11 requires a reverberation chamber for radiated immunity testing. A rever-
beration chamber is a shielded highly conductive enclosure. Unlike the semi‐anechoic 
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Figure A.53  ISO11452‐4 BCI test result (fail) using the substitution method.
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Figure A.54  ISO11452‐4 BCI test result (pass) using the substitution method.
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or fully anechoic chamber it is not lined with an absorbing material, as shown in 
Figure A.58. The metallic walls are highly reflective to the electromagnetic waves.

Just like the conducted immunity tests, this radiated immunity test requires several 
pieces of additional equipment outside the reverberation chamber. These are shown in 
Figure A.59.
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Figure A.55  The details of the ISO 11542‐4 setup using the closed‐loop method with power 
limitation.
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Figure A.56  More details of the of the ISO 11542‐4 setup using the closed‐loop method with power 
limitation.
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The details of the ISO 11452‐11 radiated immunity testing setup are shown in 
Figure A.60.

Reverberation chamber dimensions should be large compared to the wavelength; the 
larger the chamber the lower the usable frequency for testing. A mechanical tuner/
stirrer, shown in Figure A.61, should have one dimension that is at least one‐quarter 
wavelength at the lowest frequency.

Reverberation chamber – ISO 11452-11 Semi-anechoic chamber – ISO 11452-2

Figure A.57  Reverberation and semi‐anechoic chambers for radiated immunity.

Figure A.58  Reverberation chamber is a highly reflective enclosure.
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Figure A.59  External equipment required for the reverberation chamber testing.
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Figure A.60  The details of the ISO 11542‐11 setup for radiated immunity testing.



Appendix A 619

The mechanical tuner should be shaped asymmetrically to maximize the non‐
repetitive reflections generated by the transmitting antenna inside the chamber.

A.5.2  Radiated Immunity – ISO 11452‐2

ISO 11452‐12 requires a semi‐anechoic chamber for radiated immunity testing. Just 
like the radiated immunity test described in the previous section, this test requires a 
standard immunity equipment external to the chamber, as shown in Figure A.62.

Figure A.61  Mechanical tuner/stirrer.
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Figure A.62  ISO 11452‐2 external equipment.
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The details of the ISO 11452‐2 radiated immunity test setup are shown in Figure A.63 
when using a biconical antenna, and in Figure A.64 for log‐periodic antenna.

Figures A.65 and A.66 show the ISO11452‐4 conducted immunity test results using 
the substitution method.

A.6  Electrostatic Discharge (ESD)

An ESD test is performed with an ESD gun, as shown in Figure A.67.
Typical RC cartridge combinations are shown in Figure A.68.
The ESD gun reflects the human body circuit model shown in Figure A.69.
The human body model is based on the human body resistance and capacitance (see 

Chapter 13). The human body model simulates the ESD event when a charged body 
directly transfers an electrostatic charge to the ESD sensitive device.

ESD specifications define several terms related to the testing methods:
Contact discharge method – a method of testing, in which the electrode of the test 

generator is held in contact with the EUT, and the discharge actuated by the discharge 
switch within the generator.

Air discharge method – a method of testing, in which the charged electrode of the test 
generator is brought close to the EUT, and the discharge actuated by a spark to the EUT.

Direct application – application of the discharge directly to the EUT.
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Figure A.63  ISO 11452‐2 setup for radiated immunity testing using biconical antenna.
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Figure A.64  ISO 11452‐2 setup for radiated immunity testing using log‐periodic antenna.
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Indirect application – application of the discharge to a coupling plane in the vicinity 
of the EUT.

These terms are used when specifying the details of the ESD testing, as shown in 
Tables A.6 and A.7.

An ESD test table‐top setup in a screen room is shown in Figure A.70.
The details of the ISO 10605 powered DUT, direct ESD test setup are shown in 

Figure A.71.
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Figure A.66  ISO 11452‐2 radiated immunity test result (pass).
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Figure A.67  ESD gun and RC cartridge.
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Figure A.68  Typical RC cartridge combinations.

ESD gun

Product
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i
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+

–

Figure A.69  Human body circuit model.

Table A.6  ISO 10605 – ESD generator parameters.

Parameter Characteristic

Output voltage range contact discharge mode 2 kV to 15 kV
Output voltage range air discharge mode 2 kV to 25 kV
Output polarity Positive and negative
Storage capacitances 150 pF, 330 pF
Storage resistance 330 Ω, 2000 Ω
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The details of the ISO 10605 powered DUT, indirect ESD test setup are shown in 
Figure A.72.

Packaging and handling ISO 10605 test setup details are shown in Figure A.73.
Finally, the details of the ISO 61000‐4‐2 test setup for table‐top equipment are shown 

in Figure A.74.

Vertical ground plane (IEC 61000-4-2)
Battery (ISO 10605)

Figure A.70  ESD table‐top test setup.

Table A.7  ISO 61000–4‐2 – Test levels and ESD generator parameters.

IEC 61000‐4‐2 Test Levels and ESD generator parameters

Contact discharge Air discharge

Level Test voltage (kV) Level Test voltage (kV)

1 2 1   2
2 4 2   4
3 6 3   8
4 8 4 15

Storage capacitance Storage resistance

150 pF 330 Ω
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Figure A.71  ISO 10605 powered DUT, direct ESD test setup.
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Figure A.72  ISO 10605 powered DUT, indirect ESD test setup.
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Final remarks about ESD testing
The testing should be performed by direct and indirect application of discharges to the 
EUT, according to a test plan. This should include:

1)	 representative operating conditions of the EUT
2)	 whether the EUT should be tested as table‐top or floor‐standing
3)	 the points at which discharges are to be applied
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Figure A.73  ISO 10605 packaging and handling, ESD test setup.
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Figure A.74  ISO 61000‐4‐2 ESD test setup for table‐top equipment.
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4)	 at each point, whether contact or air discharges are to be applied
5)	 the test level to be applied
6)	 the number of discharges to be applied at each point for compliance testing.

The test results should be classified on the basis of the operating conditions and the 
functional specifications of the EUT, as in the following, unless different specifications 
are given by the product committees or product specifications:

1)	 normal performance within the specification limits
2)	 temporary degradation or loss of function or performance which is self‐recoverable
3)	 temporary degradation or loss of function or performance which requires operator 

intervention or system reset
4)	 degradation or loss of function which is not recoverable due to damage to equipment 

(components) or software, or loss of data
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a
Absolute capacitance, 380
Absolute potential, 369
Absorber‐lined shielded enclosure 

(ALSE), 600
Ampere’s law, 406
Antenna:

circuit model, 573
measurements, 575
radiated power, 238, 573
radiation resistance, 573, 577

Attenuator loss measurement, 541
Average power:

phasor form, 147
resistive load, 147
sinusoidal steady state, 146

b
Bandwidth, 347
Biot‐Savart’s law, 405
Bode plots, 272
Bounce diagram, 493
Bulk current injection (BCI) method, 608

c
Capacitance calculations:

coaxial cable, 378
isolated sphere, 379
parallel‐plate capacitor, 376
spherical capacitor, 379
two‐wire transmission line, 377

Capacitance definition, 376
Capacitive coupling, 394, 529

Capacitor:
energy stored, 156
phasor‐domain relationship, 157
s‐domain relationship, 160
time‐domain relationship, 155

Charge‐current continuity equation, 441
Charge distributions, 355
CISPR 22, 583
CISPR 25, 600
Class A limits, 587
Class B limits, 587
CMOS inverter, 75
Comb transmitter, 579
Common‐impedance coupling, 448
Common‐mode:

choke, 255
creation, 570
current, 196, 558
radiation, 560

Complex conjugate, 112
Complex numbers:

exponential form, 119
operations, 113
polar form, 111
properties, 118
rectangular form, 109

Conducted emissions, 588
current‐probe method, 596
voltage method, 592

Conducted immunity, 608
closed‐loop method with power 

limitation, 613
substitution method, 613

Index
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Constant‐coordinate surfaces, 45
Coordinate systems:

Cartesian, 23
cylindrical, 25
spherical, 27
transformations, 29

Coulomb’s law, 356
Cramer’s rule, 12
Crosstalk:

far‐end voltage, 529
model, 14, 183
near‐end voltage, 529
PCB traces, 527

Current:
distributions, 405
divider, 174, 179, 183
probes, 423
return path, 444
wave, 100

d
Decoupling capacitors, 310
Derivative:

definition, 37
formulas, 37
partial, 39
properties, 38

Determinant, 7, 25, 27, 29
Differential elements:

length, 40
surface, 43
volume, 45

Differential‐mode currents, 558
radiation, 559

Differential operators:
curl, 52
divergence, 51
gradient, 50
Laplacian, 54

Differential signaling, 569
Displacement current density, 443
Divergence theorem of Gauss, 71

e
Eddy currents, 439
Electric boundary conditions, 380
Electric coupling see Capacitive coupling
Electric dipole antenna, 544

radiated fields, 33, 128, 547, 548
radiated power, 137

Electric field intensity, 358, 359
coaxial transmission line, 367
cylinder of charge, 366
line of charge, 365
plane of charge, 364
point charge, 361
sphere of charge, 362

Electric flux density, 359
Electric flux lines, 373
Electromagnetic wave equation, 57
Electrostatic discharge, 385, 620
EMC filters:

cascaded LC, 319
first‐order low‐pass, 319
LC low‐pass, 319
π filter, 320
T filter, 320

EMC measurements, 583
Equipotential surface, 373
Euler formula, 119

f
Faraday’s law, 412
Far field, 547
Far field criteria, 548, 549, 551
Federal Communications Commission 

(FCC) part 15, 583
Fourier series representation, 236,  

329, 335
Frequency transfer function, 267

g
Gauss’s law, 360
Ground bounce, 78

h
Half‐wave dipole antenna, 551
Helmholtz wave equation, 95
Hertzian dipole antenna see Electric 

dipole antenna
Human‐body model, 392

i
Image theory, 554
Impedance:

parallel connection, 178
phasor domain, 161
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s domain, 163
series connection, 177

Inductance:
loop, 72
mutual, 243
partial, 74
self, 243

Inductance calculations:
coaxial cable, 416
parallel wires, 417

Inductive coupling see Magnetic coupling
Inductor:

energy stored, 155
phasor‐domain relationship, 158
s‐domain relationship, 160
time‐domain relationship, 154

Insertion loss, 318, 526
Intrinsic impedance, 460
ISO 10605, 622
ISO 11452‐2, 619
ISO 11452‐4, 608
ISO 11452‐11, 615
ISO 61000‐4‐2, 624

k
Kirchhoff ’s current law:

phasor‐domain, 168
s‐domain, 168
time‐domain, 165

Kirchhoff ’s voltage law:
phasor‐domain, 168
s‐domain, 169
time‐domain, 166

l
Laplace transform:

definition, 147
inverse, 150
pairs, 148
properties, 149

Lentz’s law, 413
Line impedance stabilization network 

(LISN), 535, 591
Line integral, 61
Lorentz condition, 127

m
Magnetic boundary conditions, 418
Magnetic coupling, 428, 529

Magnetic field intensity, 404
coaxial line, 408
line of current, 408

Magnetic flux density, 403
Magnetic vector potential see Vector 

magnetic potential
Matrix:

addition, 4
equality, 4
identity, 7
inverse, 9
multiplication, 5
scalar multiplication, 4

Maximum power transfer:
resistive circuits, 220
sinusoidal steady state, 223

Maxwell’s equations:
differential form, 56, 124
integral form, 72, 124
phasor form, 123
static fields, 410

Mesh current method, 192

n
Near field, 547
Node voltage method, 189
Norton equivalent circuit, 217

o
Ohm’s law, 152
Open‐Area Test Site (OATS), 600

p
Parallel‐ray approximation, 556
Passive filters:

parallel RLC bandpass, 287
parallel RLC band reject, 291
RC high‐pass, 282
RC low‐pass, 279
RL high‐pass, 281
RL low‐pass, 278
series RLC bandpass, 284
series RLC band reject, 289

Passive sign convention, 144
Phasor, 121
Power rail collapse, 78
Power supply filters:

common‐mode current circuit 
model, 196
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differential‐mode current circuit 
model, 198

general topology, 196
Preamp gain measurement, 540
Propagation constant, 461

q
Quarter‐wave monopole antenna, 554

r
Radiated emissions, 600

semi‐anechoic chamber, 603
Radiated immunity, 615
Radiated susceptibility test, 17
RC circuit, 81
Reflection coefficient, 467, 482, 486, 503
Resistors:

parallel connection, 172
phasor‐domain relationship, 156
s‐domain relationship, 159
series connection, 169
time‐domain relationship, 152

Resonance, 294
Resonant frequency, 294
Return loss, 527
Reverberation chamber, 615
RLC circuit:

parallel, 94
series, 85

RL circuit, 83

s
Scalar product, 13, 25, 27, 29
Self‐resonant frequency, 309
Shield break frequency, 436
Shielding, 400, 433

effectiveness, 470
electromagnetic wave, 467

Source transformation, 207
s parameters, 20, 240, 520
Spectral bounds, 345
Standing waves, 512, 544
Stokes’s theorem, 71, 73
Superposition, 203, 529
Surface integral, 67

t
Thevenin equivalent circuit, 211
Transfer function, 259
Transfer impedance, 424
Transformers,

air‐core, 250
iron‐core, 251

Transmission coefficient, 467, 503
Transmission line, 475

capacitive termination, 184
characteristic impedance, 478
crosstalk model, 14, 185, 248
discontinuity, 501
equations, 55, 125, 477
inductive termination, 99
ringing, 103
transient analysis, 475

Triboelectric list, 386
Two‐port networks, 224

u
Uniform plane wave, 453
Unit vectors, 24, 26, 28

v
Vector:

components, 23, 26, 28
decomposition, 23, 26, 28
product, 13

Vector magnetic potential, 33, 73,  
125, 411

Voltage calculations:
coaxial cable, 372
concentric spheres, 373
line charge, 370
plane of charge, 371

Voltage definition, 368
Voltage divider, 170, 178
Voltage standing wave ratio(VSWR), 

519, 577
Voltage wave, 100
Volume integral, 71

w
Wave impedance, 549

Power supply filters: (cont’d)


